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Abstract

The supplementary material provides additional ab-
lation studies on the two datasets: LaFan1 and CMU
datasets. More detailed experimental results are discussed
regarding the effectiveness of Stage-II and our initialisation
strategy, the robustness of the proposed method for noisy la-
tent representations, as well as the usage of global position
& rotation loss terms. Moreover, we discuss the capability
of using our method for the scenario of non-uniformly dis-
tributed keyframes. Note that we could not include the ma-
terial in the main part of the paper due to the space limit.

1. Intermediate token generation stage
As shown in Table 1, removing Stage II leads to worse

performance on both LaFan1 and CMU datasets. In this
case, keyframe guidance is not adopted to the tokenization
of missing frames. This results in a tendency that the in-
termediate tokens distribute differently with the keyframe
representations in the latent space.

Table 1. Ablation study by removing stage II in place of MAE-
styled monolithic tokens.

Dataset LaFAN1 CMU
Method L2P L2Q NPSS L2P L2Q NPSS
w/ Stage II 0.3790 0.3951 0.1677 0.2226 0.3157 0.1625
w/o Stage II 0.4681 0.4808 0.2003 0.3823 0.4304 0.2762

2. Stage-II with LERP initialisation
As shown in Table 2, LERP initialisation for Stage-II is

not as good as the strategy devised in the proposed method.
In the context of motion interpolation, the inclusion of an
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LERP reference generally leads to local optimums, even
though it can provide initially reasonable results.

Table 2. Comparison between initial query tokens of Stage II in
our architecture.

Dataset LaFAN1 CMU
Stage II Initialization L2P L2Q NPSS L2P L2Q NPSS
LERP+Temporal Indices 0.7518 0.6577 0.2891 0.3521 0.4275 0.2670
Temporal Indices 0.3790 0.3951 0.1677 0.2226 0.3157 0.1625

3. The stochasticity of human body motion

We have investigated stochasticity by adding Gaussian
noises with σ = 0.005 to the latent space and the eval-
uation metrics are listed in Table 3. It can be observed
that the proposed method is generally robust to Gaussian
noises. Specifically, in TGcomplete [2], due to the unknown
future keyframe, stochasticity is important for adapting to
unknown scenarios after the next known keyframe. In
our method. we address animation workflows where all
keyframes are known, and thus the stochasticity is not nec-
essary.

Table 3. Impact of stochasticity in the latent space.

Dataset LaFAN1 CMU
Stage III input L2P L2Q NPSS L2P L2Q NPSS
w/ Gaussian noise σ = 0.005 noise 0.4218 0.4169 0.2301 0.2993 0.3892 0.2311
w/o noise 0.3790 0.3951 0.1677 0.2226 0.3157 0.1625

4. Global position & rotation losses

Global objectives allow the model to balance local pose
feature accuracy when it would lead to more effective global
joint positions and rotations. This becomes a more promi-
nent issue with joints that are further down the skeletal hi-
erarchy. Furthermore, since we evaluate the performance in
the global space, i.e. L2P and L2Q, optimising global fea-



Table 4. Performance of our method (left) and the masked auto-encoder method (right) with uniformly and randomly distributed keyframes,
tested with the LaFAN1 dataset.

Keyframe distribution Our method - Random Our method - Uniform Keyframe distribution MAE - Random MAE - Uniform
# of keyframes L2P L2Q NPSS L2P L2Q NPSS # of keyframes L2P L2Q NPSS L2P L2Q NPSS
5 1.1668 0.7473 1.0356 0.7630 0.5870 0.4118 5 1.4231 0.8969 1.3666 1.0161 0.7410 0.6108
7 0.7949 0.5889 0.6307 0.5007 0.4436 0.2306 7 1.0640 0.7423 0.8633 0.7770 0.5887 0.4238
9 0.5885 0.4797 0.4053 0.3782 0.3584 0.1625 9 0.8564 0.6375 0.6093 0.6615 0.4991 0.3555
11 0.4755 0.4100 0.3076 0.2993 0.2990 0.1228 11 0.7388 0.5642 0.5158 0.5514 0.4325 0.2803
13 0.4067 0.3632 0.2514 0.2438 0.2545 0.0990 13 0.6637 0.5151 0.4490 0.4794 0.3800 0.2416
15 0.3491 0.3291 0.2088 0.2103 0.2247 0.0864 15 0.5922 0.4700 0.3869 0.4182 0.3415 0.2164

Table 5. Comparison between different loss setting when remov-
ing global positional or rotational loss, i.e. LFKp and LFKq .

Dataset LaFAN1 CMU
Method L2P L2Q NPSS L2P L2Q NPSS
Our method 0.3790 0.3951 0.1677 0.2226 0.3157 0.1625
w/o global position loss 0.6179 0.4950 0.2411 0.3391 0.3891 0.2368
w/o global rotation loss 0.5897 0.5216 0.2644 0.3150 0.4547 0.2525

tures becomes more necessary. The benefit of global loss
functions is shown in Table 5.

5. Non-uniformly distributed keyframes

Our method can be used with arbitrarily defined
keyframes in variable-length motions. Table 4 shows a
comparison between randomly and uniformly distributed
keyframe settings on LaFAN1 dataset. The metrics were
evaluated with our method and MAE method [3]. Since
random keyframes generally have higher entropy for repre-
sentation, they lead to lower performances. All results of
our main paper’s experiments, as well as other results in the
supplementary material, are conducted under uniform sam-
pling for consistency.

6. More visualisations

Figure 1 - 3 illustrates three additional interpolation ex-
amples for the comparison of the LERP, BERT [1], ∆-
interpolator [4], TGcomplete [2], MAE [3] and our proposed
method with their L2P, L2Q and NPSS metrics. Specifi-
cally, the three examples are for motions of getting up, sport
with walking, and avoiding obstacles.

7. Video demo

A video demo containing qualitative comparisons for
different methods can be found at: https://youtu.
be/V2DOMoqEBvQ.
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Figure 1. Illustration of the interpolation on a motion sequence of getting up.



Figure 2. Illustration of the interpolation on a motion sequence of sport with walking.



Figure 3. Illustration of the interpolation on a motion sequence of navigating obstacles.


