
1

An implementation of a randomized algorithm
for principal component analysis

Arthur Szlam, Facebook Artificial Intelligence Research
Yuval Kluger, Yale University Department of Pathology
Mark Tygert, Facebook Artificial Intelligence Research and Yale University

Recent years have witnessed intense development of randomized methods for low-rank approximation.
These methods target principal component analysis (PCA) and the calculation of truncated singular value
decompositions (SVD). The present paper presents an essentially black-box, fool-proof implementation for
Mathworks’ MATLAB, a popular software platform for numerical computation. As illustrated via several
tests, the randomized algorithms for low-rank approximation outperform or at least match the classical
techniques (such as Lanczos iterations) in basically all respects: accuracy, computational efficiency (both
speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures
remain the methods of choice for estimating spectral norms, and are far superior for calculating the least
singular values and corresponding singular vectors (or singular subspaces).

Categories and Subject Descriptors: Mathematics of Computing [Mathematical Software]: Statistical
Software

General Terms: Algorithms, Performance

Additional Key Words and Phrases: principal component analysis, PCA, singular value decomposition, SVD

ACM Reference Format:
Arthur Szlam, Yuval Kluger, and Mark Tygert, 2014. An implementation of a randomized algorithm for
principal component analysis. ACM Trans. Math. Softw. 1, 1, Article 1 (December 2014), 13 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Randomized algorithms for low-rank approximation in principal component analysis
and singular value decomposition have drawn a remarkable amount of attention in
recent years, as summarized in the review of Halko et al. [2011]. The present paper
describes developments that have led to an essentially black-box, fool-proof MATLAB
implementation of these methods, and benchmarks the implementation against the
standards. For applications to principal component analysis, the performance of the
randomized algorithms run under their default parameter settings meets or exceeds
(often exceeding extravagantly) the standards’. In contrast to the existing standards,
the randomized methods are gratifyingly easy to use, rapidly and reliably producing
nearly optimal accuracy without extensive tuning of parameters (in accordance with
guarantees that rigorous proofs provide). The present paper concerns implementations

This work was supported in part by a US DoD DARPA Young Faculty Award and US NIH Grant R0-1
CA158167.
Author’s addresses: A. Szlam, Facebook, 8th floor, 770 Broadway, New York, NY 10003; Y. Kluger, Yale
University, School of Medicine, Department of Pathology, Suite 505F, 300 George St., New Haven, CT 06511;
M. Tygert, Facebook, 1 Hacker Way, Menlo Park, CA 94025
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0098-3500/2014/12-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

ar
X

iv
:1

41
2.

35
10

v1
 [

st
at

.C
O

]
 1

1
D

ec
 2

01
4

1:2 A. Szlam et al.

for MATLAB; a related development is the C++ package “libSkylark” of Avron et al.
[2014]. Please beware that the randomized methods on their own are ill-suited for
calculating small singular values and the corresponding singular vectors (or singular
subspaces), including ground states and corresponding energy levels of Hamiltonian
systems; the present article focuses on principal component analysis involving low-
rank approximations.

The present paper has the following structure: Section 2 outlines the randomized
methods. Section 3 stabilizes an accelerated method for nonnegative-definite self-
adjoint matrices. Section 4 details subtleties involved in measuring the accuracy of
low-rank approximations. Section 5 tweaks the algorithms to improve the performance
of their implementations. Section 6 discusses some issues with one of the most popular
existing software packages. Section 7 tests the different methods on dense matrices.
Section 8 tests the methods on sparse matrices. Section 9 draws several conclusions.

2. OVERVIEW
The present section sketches randomized methods for singular value decomposition
(SVD) and principal component analysis (PCA). The definitive treatment — that
of Halko et al. [2011] — gives details, complete with guarantees of superb accuracy;
see also the sharp analysis of Witten and Candès [2014] and the new work of Woodruff
[2014] and others. PCA is the same as the SVD, possibly after subtracting from each
column its mean and otherwise normalizing the columns (or rows) of the matrix being
approximated.

PCA is most useful when the greatest singular values are reasonably greater than
those in the tail. Suppose that k is a positive integer that is substantially less than both
dimensions of the matrix A being analyzed, such that the k greatest singular values
include the greatest singular values of interest. The main output of PCA would then be
a good rank-k approximation to A (perhaps after centering or otherwise normalizing
the columns or rows of A). The linear span of the columns of this rank-k approximation
is an approximation to the range of A. Given that k is substantially less than both
dimensions of A, the approximate range is relatively low dimensional.

Shortly we will discuss an efficient construction of k orthonormal vectors that nearly
span the range of A; such vectors enable the efficient construction of an approximate
SVD of A, as follows. Denoting by Q the matrix whose columns are these vectors,
the orthogonal projector on their span is QQ∗ (where Q∗ denotes the adjoint — the
conjugate transpose — of Q), and so

A ≈ QQ∗A, (1)

since this orthogonal projector nearly preserves the range of A. Because the number
k of columns of Q is substantially less than both dimensions of A, we can efficiently
compute

B = Q∗A, (2)

which has only k rows. We can then efficiently calculate an SVD

WΣV ∗ = B, (3)

where the columns of W are orthonormal, as are the columns of V , and Σ is a diagonal
k × k matrix whose entries are all nonnegative. Constructing

U = QW (4)

and combining formulae (1)–(4) then yields the SVD

UΣV ∗ ≈ A. (5)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

An implementation of a randomized algorithm for principal component analysis 1:3

If k is substantially less than both dimensions of A, then A has far more entries than
any other matrix in the above calculations.

Thus, provided that we can efficiently construct k orthonormal vectors that nearly
span the range of A, we can efficiently construct an SVD that closely approximates
A itself (say, in the sense that the spectral norm of the difference between A and the
approximation to A is small relative to the spectral norm of A). In order to identify
vectors in the range of A, we can apply A to random vectors — after all, the result of
applyingA to any vector is a vector in the range ofA. If we applyA to k random vectors,
then the results will nearly span the range of A, with extremely high probability (and
the probability of capturing most of the range is even higher if we apply A to a few
extra random vectors). Rigorous mathematical proofs (given by Halko et al. [2011]
and by Witten and Candès [2014], for example) show that the probability of missing a
substantial part of the range of A is negligible, so long as the vectors to which we apply
A are sufficiently random (which is so if, for example, the entries of these vectors are
independent and identically distributed — i.i.d. — each drawn from a standard normal
distribution). Since the results of applying A to these random vectors nearly span the
range of A, applying the Gram-Schmidt process (or other methods for constructing QR
decompositions) to these results yields an orthonormal basis for the approximate range
of A, as desired.

This construction is particularly efficient whenever A can be applied efficiently to
arbitrary vectors, and is always easily parallelizable since the required matrix-vector
multiplications are independent of each other. The construction of B in formula (2)
requires further matrix-vector multiplications, though there exist algorithms for the
SVD of A that avoid explicitly constructing B altogether, via the application of A∗

to random vectors, identifying the range of A∗. The full process is especially efficient
when both A and A∗ can be applied efficiently to arbitrary vectors, and is always easily
parallelizable. Further accelerations are possible whenA is self-adjoint (and even more
when A is nonnegative definite).

If the singular values of A decay slowly, then the accuracy of the approximation in
formula (5) may be lower than desired; the long tail of singular values that we are
trying to neglect may pollute the results of applying A to random vectors. To suppress
this tail of singular values relative to the singular values of interest (the leading k are
those of interest), we may identify the range of A by applying AA∗A rather than A
itself — the range of AA∗A is the same as the range of A, yet the tail of singular values
of AA∗A is lower (and decays faster) than the tail of singular values of A, relative to the
singular values of interest. Similarly, we may attain even higher accuracy by applying
A and A∗ in succession to each of the random vectors multiple times. The accuracy
obtained thus approaches the best possible exponentially fast, as proven by Halko
et al. [2011].

In practice, we renormalize after each application of A or A∗, to avoid problems due
to floating-point issues such as roundoff or dynamic range (overflow and underflow).
The renormalized methods resemble the classical subspace or power iterations (QR or
LR iterations) widely used for spectral computations, as reviewed by Golub and Van
Loan [2012]. Our MATLAB codes — available at http://tygert.com/software.html —
provide full details, complementing the summary in Section 5 below.

3. STABILIZING THE NYSTRÖM METHOD
Enhanced accuracy is available when the matrix A being approximated has special
properties. For example, Algorithm 5.5 (the “Nyström method”) of Halko et al. [2011]
proposes the following scheme for processing a nonnegative-definite self-adjoint matrix
A, given a matrix Q satisfying formula (1), that is, A ≈ QQ∗A, such that the columns
of Q are orthonormal:

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

http://tygert.com/software.html

1:4 A. Szlam et al.

Form

B1 = AQ. (6)

Construct

B2 = Q∗B1. (7)

Compute a triangular matrix C for the Cholesky decomposition

C∗C = B2. (8)

By solving linear systems of equations, construct

F = B1C
−1 = ((C∗)−1B∗

1)∗. (9)

Compute the SVD

USV ∗ = F, (10)

where the columns of U are orthonormal, the columns of V are also orthonormal, S is
diagonal, and all entries of S are nonnegative. Set

Σ = S2. (11)

Then (as demonstrated by Halko et al. [2011]) A ≈ UΣU∗, and the accuracy of this
approximation should be better than that obtained using formulae (2)–(4).

Unfortunately, this procedure can be numerically unstable. Even if A is self-adjoint
and nonnegative-definite, B2 constructed in (7) may not be strictly positive definite
(especially with roundoff errors), as required for the Cholesky decomposition in (8).
To guarantee numerical stability, we need only replace the triangular matrix for the
Cholesky decomposition in (8) from formulae (6)–(11) with the calculation of a self-
adjoint square-root C of B2, that is, with the calculation of a self-adjoint matrix C such
that

C2 = B2. (12)

The SVD of B2 provides a convenient means for computing the self-adjoint square-root
C. Technically, the inverse in formula (9) should become a (regularized) pseudoinverse,
or, rather, should construct backwardly stable solutions to the associated systems of
linear equations.

Replacing the Cholesky factor with the self-adjoint square-root is only one possibility
for guaranteeing numerical stability. Our MATLAB codes instead add (and subtract)
an appropriate multiple of the identity matrix to ensure strict positive definiteness
for the Cholesky decomposition. This alternative is somewhat more efficient, but its
implementation is more involved. The simpler approach via the self-adjoint square-
root should be sufficient in most circumstances.

4. MEASURING ACCURACY
For most applications of principal component analysis, the spectral norm of the dis-
crepancy, ‖A − UΣV ∗‖, where UΣV ∗ is the computed approximation to A, is the most
relevant measure of accuracy. The spectral norm ‖H‖ of a matrix H is the maximum
value of |Hx|, maximized over every vector x such that |x| = 1, where |Hx| and |x|
denote the Euclidean norms of Hx and x (the spectral norm of H is also equal to the
greatest singular value of H). The spectral norm is unitarily invariant, meaning that
its value is the same with respect to any unitary transformation of the rows or any
unitary transformation of the columns — that is, the value is the same with regard
to any orthonormal basis of the domain and to any orthonormal basis of the range or
codomain [Golub and Van Loan 2012].

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

An implementation of a randomized algorithm for principal component analysis 1:5

If the purpose of a principal component analysis is to facilitate dimension reduction,
denoising, or calibration, then the effectiveness of the approximation at reconstructing
the original matrix is the relevant metric for measuring accuracy. This would favor
measuring accuracy as the size of the difference between the approximation and the
matrix being approximated, as in the spectral-norm discrepancy, rather than via direct
assessment of the accuracy of singular values and singular vectors. The spectral norm
is a uniformly continuous function of the matrix entries of the discrepancy, unlike the
relative accuracy of singular values (the relative accuracy of an approximation σ̃ to
a singular value σ is |σ̃ − σ|/σ); continuity means that the spectral norm is stable to
small perturbations of the entries [Golub and Van Loan 2012].

The Frobenius norm of the difference between the approximation and the matrix
being approximated is unitarily invariant as is the spectral norm, and measures the
size of the discrepancy as does the spectral norm (the Frobenius norm is the square
root of the sum of the squares of the matrix entries) [Golub and Van Loan 2012]. Even
so, the spectral norm is generally preferable for big data subject to noise. Noise often
manifests as a long tail of singular values which individually are much smaller than
the leading singular values but whose total energy may approach or even exceed the
leading singular values’. For example, the singular values for a signal corrupted by
white noise flatten out sufficiently far out in the tail [Alliance for Telecommunications
Industry Solutions Committee PRQC 2011]. The sum of the squares of the singular
values corresponding to white noise or to pink noise diverges when adding further
singular values as the dimensions of the matrix increase [Alliance for Telecommuni-
cations Industry Solutions Committee PRQC 2011]. The square root of the sum of the
squares of the singular values in the tail thus overwhelms the leading singular values
for big matrices subject to white or pink noise (as well as for other types of noise).
Such noise can mask the contribution of the leading singular values to the Frobenius
norm (that is, to the square root of the sum of squares); the “signal” has little effect
on the Frobenius norm, as this norm depends almost entirely on the singular values
corresponding to “noise.”

Since the Frobenius norm is the square root of the sum of the squares of all entries,
the Frobenius norm throws together all the noise from all directions. Of course, noise
afflicts the spectral norm, too, but only the noise in one direction at a time — noise
from noisy directions does not corrupt a direction that has a high signal-to-noise ratio.
The spectral norm can detect and extract a signal so long as the singular values corre-
sponding to signal are greater than each of the singular values corresponding to noise;
in contrast, the Frobenius norm can detect the signal only when the singular values
corresponding to signal are greater than the square root of the sum of the squares
of all singular values corresponding to noise. Whereas the individual singular values
may not get substantially larger as the dimensions of the matrix increase, the sum of
the squares may become troublingly large in the presence of noise. With big data, noise
may overwhelm the Frobenius norm. In the words of Joel A. Tropp, Frobenius-norm
accuracy may be “vacuous” in a noisy environment. The spectral norm is comparatively
robust to noise.

To summarize, a long tail of singular values that correspond to noise or are otherwise
unsuitable for designation as constituents of the “signal” can obscure the signal of
interest in the leading singular values and singular vectors, when measuring accuracy
via the Frobenius norm. Principal component analysis is most useful when retaining
only the leading singular values and singular vectors, and the spectral norm is then
more informative than the Frobenius norm.

Fortunately, estimating the spectral norm is straightforward and reliable using
the power method with a random starting vector. Theorem 4.1(a) of Kuczyński and
Woźniakowski [1992] proves that the computed estimate lies within a factor of two of

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

1:6 A. Szlam et al.

the exact norm with overwhelmingly high probability, and the probability approaches 1
exponentially fast as the number of iterations increases. The guaranteed lower bound
on the probability of success is independent of the structure of the spectrum; the bound
is highly favorable even if there are no gaps between the singular values. Estimating
the spectral-norm discrepancy via the randomized power method is simple, reliable,
and highly informative.

5. ALGORITHMIC OPTIMIZATIONS
The present section describes several improvements effected in our MATLAB codes
beyond the recommendations of Halko et al. [2011].

As Shabat et al. [2013] observed, computing the LU decomposition is typically more
efficient than computing the QR decomposition, and both are sufficient for most stages
of the randomized algorithms for low-rank approximation. Our MATLAB codes use
LU decompositions whenever possible. For example, given some number of iterations,
say its = 4, and given an n × k random matrix Q, the core iterations in the case of a
self-adjoint n× n matrix A are

for it = 1:its

Q = A*Q;

if(it < its)
[Q,R] = lu(Q);

end

if(it == its)
[Q,R,E] = qr(Q,0);

end

end

In all but the last of these iterations, an LU decomposition renormalizes Q after the
multiplication with A. In the last iteration, a pivoted QR decomposition renormalizes
Q, ensuring that the columns of the resulting Q are orthonormal. Incidentally, since
the initial matrix Q was random, pivoting in the QR decomposition is not necessary;
replacing the line “[Q,R,E] = qr(Q,0)” with “[Q,R] = qr(Q,0)” sacrifices little in the
way of numerical stability.

A little care in the implementation ensures that the same code can efficiently handle
both dense and sparse matrices. For example, if c is the 1× n vector whose entries are
the means of the entries in the columns of an m× n matrix A, then the MATLAB code
Q = A*Q - ones(m,1)*(c*Q) applies the mean-centered A to Q, without ever forming
all entries of the mean-centered A. Similarly, the MATLAB code Q = (Q'*A)' applies
the adjoint of A to Q, without ever forming the adjoint of A explicitly, while taking full
advantage of the storage scheme for A (column-major ordering, for example).

Since the algorithms are robust to the quality of the random numbers used, we can
use the fastest available pseudorandom generators, for instance, drawing from the
uniform distribution over the interval [−1, 1] rather than from the normal distribution
used in many theoretical analyses.

Another possible optimization is to renormalize only in the odd-numbered iterations
(that is, when the variable “it” is odd in the above MATLAB code). This particular
acceleration would sacrifice accuracy. However, as Rachakonda et al. [2014] observed,

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

An implementation of a randomized algorithm for principal component analysis 1:7

this strategy can halve the number of disk accesses/seeks required to process a matrix
A stored on disk when A is not self-adjoint. As our MATLAB codes do not directly
support out-of-core calculations, we did not incorporate this additional acceleration,
preferring the slightly enhanced accuracy of our codes.

6. HARD PROBLEMS FOR PROPACK
PROPACK is a suite of software that can calculate low-rank approximations via
remarkable, intricate Lanczos methods, developed by Larsen [2001]. Unfortunately,
PROPACK can be unreliable for computing low-rank approximations. For example,
using PROPACK’s principal routine, “lansvd,” under its default settings to process the
diagonal matrix whose first three diagonal entries are all 1, whose fourth through
twentieth diagonal entries are all .999, and whose other entries are all 0 yields the
following wildly incorrect estimates for the singular values 1, .999, and 0:
rank-20 approximation to a 30 × 30 matrix: 1.3718, 1.3593, 1.3386, 1.3099, 1.2733,
1.2293, 1.1780, 1.1201, 1.0560, 1.0000, 1.0000, 1.0000, 0.9990, 0.9990, 0.9990, 0.9990,
0.9990, 0.9990, 0.9990, 0.9990 (all values should be 1 or .999)
rank-21 (with similar results for higher rank) approximation to a 30 × 30 matrix:
1.7884, 1.7672, 1.7321, 1.6833, 1.6213, 1.5466, 1.4599, 1.3619, 1.2537, 1.1361, 1.0104,
1.0000, 1.0000, 1.0000, 0.9990, 0.9990, 0.9990, 0.9990, 0.9990, 0.9990, 0.9990 (this last
value should be 0; all others should be 1 or .999)
rank-50 approximation to a 100 × 100 matrix: 1.3437, 1.3431, 1.3422, 1.3409, 1.3392,
1.3372, 1.3348, 1.3321, 1.3289, 1.3255, 1.3216, 1.3174, 1.3128, 1.3079, 1.3027, 1.2970,
1.2910, 1.2847, 1.2781, 1.2710, 1.2637, 1.2560, 1.2480, 1.2397, 1.2310, 1.2220, 1.2127,
1.2031, 1.1932, 1.1829, 1.1724, 1.1616, 1.1505, 1.1391, 1.1274, 1.1155, 1.1033, 1.0908,
1.0781, 1.0651, 1.0519, 1.0385, 1.0248, 1.0110, 1.0000, 1.0000, 1.0000, 0.9990, 0.9990,
0.9990 (the last 30 values should be 0; all others should be 1 or .999)

Full reorthogonalization fixes this — as Rasmus Larsen, the author of PROPACK,
communicated to us — but at potentially great cost in computational efficiency.

7. PERFORMANCE FOR DENSE MATRICES
We calculate rank-k approximations to an m × n matrix A constructed with specified
singular values and singular vectors; A = UΣV ∗, with U , Σ, and V constructed thus:
We specify the matrix U of left singular vectors to be the result of orthonormalizing via
the Gram-Schmidt process (or via an equivalent using QR-decompositions) m vectors,
each of length m, whose entries are i.i.d. Gaussian random variables of zero mean and
unit variance. Similarly, we specify the matrix V of right singular vectors to be the
result of orthonormalizing n vectors, each of length n, whose entries are i.i.d. Gaussian
random variables of zero mean and unit variance. We specify Σ to be the m× n matrix
whose entries off the main diagonal are all zeros and whose diagonal entries are the
singular values σ1, σ2, . . . , σmin(m,n). We consider six different distributions of singular
values, testing each for two settings of m and n (namely m = n = 1000 and m = 100,
n = 200). The first five distributions of singular values are

σj = 1/j, j = 1, 2, . . . ,min(m,n) (13)

σj =

 1, j = 1
2 · 10−5, j = 2, 3, . . . , k
10−5 · (k + 1)/j, j = k + 1, k + 2, . . . ,min(m,n)

(14)

σj =

{
10−5(j−1)/(k−1), j = 1, 2, . . . , k
10−5 · (k + 1)/j, j = k + 1, k + 2, . . . ,min(m,n)

(15)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

1:8 A. Szlam et al.

σj =

 10−5(j−1)/(k−1), j = 1, 2, . . . , k
10−5, j = k + 1
0, j = k + 2, k + 3, . . . ,min(m,n)

(16)

σj =

{
10−5 + (1− 10−5) · (k − j)/(k − 1), j = 1, 2, . . . , k

10−5 ·
√

(k + 1)/j, j = k + 1, k + 2, . . . ,min(m,n)
(17)

The spectral norm of A is 1 and the spectral norm of the difference between A and
its best rank-k approximation is 10−5 for each of the four preceding examples. For the
sixth example, we use for σ1, σ2, . . . , σmin(m,n) the absolute values of min(m,n) i.i.d.
Gaussian random variables of zero mean and unit variance.

For each of the four parameter settings displayed in Figure 1 (namely, k = 3,m = n =
1000; k = 10,m = n = 1000; k = 20,m = n = 1000; and k = 10,m = 100, n = 200), we plot
the spectral-norm errors and runtimes for pca (our code), lansvd (PROPACK of Larsen
[2001]), MATLAB’s built-in svds (ARPACK of Lehoucq et al. [1998]), and MATLAB’s
built-in svd (LAPACK of Anderson et al. [1999]). For pca, we vary the oversampling
parameter l that specifies the number of random vectors whose entries are i.i.d. as
l = k + 2, k + 4, k + 8, k + 16, k + 32; we leave the parameter specifying the number
of iterations at the default, its = 2. For lansvd and svds, we vary the tolerance for
convergence as tol = 10−8, 10−4, 1, 104, 108, capping the maximum number of iterations
to be k — the minimum possible — when tol = 108. Each plotted point represents
the averages over ten randomized trials (the plots look similar, but slightly busier,
without any averaging). The red asterisks correspond to pca, the blue “plus signs”
correspond to lansvd, the black “times signs” correspond to svds, and the green circles
correspond to svd. Clearly pca reliably yields substantially higher performance. Please
note that lansvd is the closest competitor to pca, yet may return entirely erroneous
results without warning, as indicated in Section 6.

For reference, the rank of the approximation being constructed is k, and the matrixA
being approximated ism×n. The plotted accuracy is the spectral norm of the difference
between A and the computed rank-k approximation. Each plot in Figure 1 appears
twice, with different ranges for the axes.

We also construct rank-4 approximations to an n × n matrix A whose entries are
i.i.d. Gaussian random variables of mean

√
30/n and variance 1, flipping the sign of

the entry in row i and column j if i · j is odd. Such a matrix has two singular values
that are roughly twice as large as the largest of the others; without flipping the signs
of the entries, there would be only one singular value substantially larger than the
others, still producing results analogous to those reported below. For the four settings
m = n = 100, 1000, 10000, 100000, Figure 2 plots the spectral-norm errors and runtimes
for pca (our code), lansvd (PROPACK of Larsen [2001]), and MATLAB’s built-in svds
(ARPACK of Lehoucq et al. [1998]). For pca, we use 0, 2, and 4 extra power/subspace
iterations (setting its = 0, 2, 4 in our MATLAB codes), and plot the case of 0 extra
iterations separately, as pca0its; we leave the oversampling parameter l specifying the
number of random vectors whose entries are i.i.d. at the default, l = k + 2. For lansvd
and svds, we vary the tolerance for convergence as tol = 10−2, 1, 108, capping the maxi-
mum number of iterations to be 4 — the minimum possible — when tol = 108. The best
possible spectral-norm accuracy of a rank-4 approximation is about half the spectral
norm ‖A‖ (not terribly accurate, yet unmistakably more accurate than approximating
A by, say, a matrix whose entries are all 0). Each plotted point represents the averages
over ten randomized trials (the plots look similar, but somewhat busier, without this
averaging). The red asterisks correspond to pca with its = 2 or its = 4, the blue “plus
signs” correspond to lansvd, the black “times signs” correspond to svds, and the green
asterisks correspond to pca with its = 0, that is, to pca0its. The plots omit svds for

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

An implementation of a randomized algorithm for principal component analysis 1:9

0.90.95 1 1.051.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca lansvd

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

svds svd

k=3, m=n=1000

0.90.95 1 1.051.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca lansvd

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

svds svd

k=20, m=n=1000

0.90.95 1 1.051.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca lansvd

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

svds svd

k=10, m=n=1000

0.90.95 1 1.051.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca lansvd

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

svds svd

k=10, m=100, n=200

Fig. 1. Results for dense matrices

m = n = 100000, since the available memory was insufficient for running MATLAB’s
built-in implementation. Clearly pca is far more efficient. Some extra power/subspace
iterations are necessary to yield good accuracy; except for m = n = 100000, using only
its = 2 extra power/subspace iterations yields very nearly optimal accuracy, whereas
pca0its (pca with its = 0) produces very inaccurate approximations.

The computations used MATLAB 8.3.0.532 (R2014a) on a four-processor machine,
with each processor being an Intel Xeon E5-2680 v2 containing 10 cores, where each
core operated at 2.8 GHz, with 25.6 MB of L2 cache. We did not consider the MATLAB
Statistics Toolbox’s own “pca,” “princomp,” and “pcacov,” as these compute all singular
values and singular vectors (not only those relevant for low-rank approximation), just
like MATLAB’s built-in svd (in fact, these other functions call svd).

8. PERFORMANCE FOR SPARSE MATRICES
We compute rank-k approximations to each real m×n matrix A from the University of
Florida sparse matrix collection of Davis and Hu [2011] with 200 < m < 2000000 and
200 < n < 2000000, such that the original collection provides no right-hand side for use
in solving a linear system with A (matrices for use in solving a linear system tend to
be so well-conditioned that forming low-rank approximations makes no sense).

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

1:10 A. Szlam et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

error relative to the spectral norm ||A||

ru
n
ti
m

e
 i
n
 m

u
lt
ip

le
s
 o

f
n

2
 s

e
c
o
n
d
s

k = 4; m = n = 100, 1000, 10000, 100000

pca lansvd svds pca0its

Fig. 2. Importance of power/subspace iterations

For each of the six parameter settings displayed in Figure 3 (these settings are
10−3 ≤ α ≤ 10−2, as well as 10−5 ≤ α ≤ 10−4 and 10−7 ≤ α ≤ 10−6, for both k = 10 and
k = 100, where α = [(number of nonzeros)/(mn)] · [k/max(m,n)]), we plot the spectral-
norm errors and runtimes for pca (our code) and lansvd (PROPACK of Larsen [2001]).
For pca, we vary the parameter specifying the number of iterations as its = 2, 5, 8; we
leave the oversampling parameter l that specifies the number of random vectors whose
entries are i.i.d. at the default, l = k + 2. For lansvd, we vary the tolerance for conver-
gence as tol = 10−5, 1, 103. The red asterisks correspond to pca and the blue “plus
signs” correspond to lansvd. Please note that lansvd may return entirely erroneous
results without warning, as indicated in Section 6.

For reference, the rank of the approximation being constructed is k, and the matrixA
being approximated ism×n. The plotted accuracy is the spectral norm of the difference
between A and the computed rank-k approximation; pca’s error was never greater
than twice the best for either algorithm for any setting of parameters. Each plot in
Figure 3 appears twice, once with lansvd on top of pca, and once with pca on top of
lansvd. Figure 3 indicates that neither pca nor lansvd is uniformly superior for sparse
matrices.

We also use MATLAB’s built-in svds to compute rank-k approximations to each real
m × n matrix A from the University of Florida collection of Davis and Hu [2011] with
200 < m < 20000 and 200 < n < 20000, such that the original collection provides no
right-hand side for use in solving a linear system with A (matrices for use in solving
a linear system tend to be so well-conditioned that forming low-rank approximations
makes no sense). We report this additional test since there was insufficient memory
for running svds on the larger sparse matrices, so we could not include results for svds
in Figure 3.

For each of the two parameter settings displayed in Figure 4 (namely, k = 10 and
k = 100), we plot the spectral-norm errors and runtimes for pca (our code), lansvd
(PROPACK of Larsen [2001]), and MATLAB’s built-in svds (ARPACK of Lehoucq et al.
[1998]). For pca, we vary the parameter specifying the number of iterations, its = 2, 5,
8; we leave the oversampling parameter l that specifies the number of random vectors
whose entries are i.i.d. at the default, l = k + 2. For lansvd, we vary the tolerance for
convergence as tol = 10−5, 1, 103. For svds, we vary the tolerance as for lansvd, but
with 10−6 in place of 10−5 (svds requires a tighter tolerance than lansvd to attain the
best accuracy). The red asterisks correspond to pca, the blue “plus signs” correspond
to lansvd, and the black “times signs” correspond to svds. Please note that lansvd

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

An implementation of a randomized algorithm for principal component analysis 1:11

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

lansvd

k=10, 1E−03<=[(#nonzeros)/(mn)][k/max(m,n)]<=1E−02

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

lansvd

k=100, 1E−03<=[(#nonzeros)/(mn)][k/max(m,n)]<=1E−02

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

lansvd

k=10, 1E−05<=[(#nonzeros)/(mn)][k/max(m,n)]<=1E−04

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

lansvd

k=100, 1E−05<=[(#nonzeros)/(mn)][k/max(m,n)]<=1E−04

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

lansvd

k=10, 1E−07<=[(#nonzeros)/(mn)][k/max(m,n)]<=1E−06

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

lansvd

k=100, 1E−07<=[(#nonzeros)/(mn)][k/max(m,n)]<=1E−06

Fig. 3. pca vs. lansvd for sparse matrices

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

1:12 A. Szlam et al.

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca lansvd

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

svds

k=10, 200<m<20000, 200<n<20000

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

pca lansvd

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

error relative to pca’s best

ru

n
ti
m

e
 r

e
la

ti
v
e
 t
o
 p

c
a
’s

 b
e
s
t

svds

k=100, 200<m<20000, 200<n<20000

Fig. 4. svds vs. lansvd vs. pca for small sparse matrices

may return entirely erroneous results without warning, as indicated in Section 6. The
plotted accuracy is the spectral norm of the difference between A and the computed
rank-k approximation; pca’s error was always at most twice the best for any of the
three algorithms for any setting of parameters. Each plot in Figure 4 appears twice,
once with svds on top of lansvd on top of pca, and once with pca on top of lansvd on top
of svds. In Figure 4, pca generally exhibits higher performance than svds.

The computations used MATLAB 8.3.0.532 (R2014a) on a four-processor machine,
with each processor being an Intel Xeon E5-2680 v2 containing 10 cores, where each
core operated at 2.8 GHz, with 25.6 MB of L2 cache. We did not consider the MATLAB
Statistics Toolbox’s own “pca,” “princomp,” and “pcacov,” as these compute all singular
values and singular vectors (not only those relevant for low-rank approximation), just
like MATLAB’s built-in svd (in fact, these other functions call svd).

9. CONCLUSION
On strictly serial processors with no complicated caching (such as the processors of
many decades ago), the most careful implementations of Lanczos iterations by Larsen
[2001] and others could likely attain performance nearing the randomized methods’,
unlike competing techniques such as the power method or the closely related nonlinear
iterative partial least squares (NIPALS) of Wold [1966]. The randomized methods can
attain much higher performance on parallel and distributed processors, and generally
are easier to use — setting their parameters properly is trivial (defaults are fine), in
marked contrast to the wide variance in performance of the classical schemes with
respect to inputs and parameter settings. Furthermore, despite decades of research
on Lanczos methods, the theory for the randomized algorithms is more complete and
provides strong guarantees of excellent accuracy, whether or not there exist any gaps
between the singular values. With regard to principal component analysis for low-rank
approximation, Lanczos iterations are like complicated, inherently serial heuristics
for trying to emulate the reliable and more easily parallelized randomized methods.
The randomized algorithms probably should be the methods of choice for computing
the low-rank approximations in principal component analysis, when implemented and
validated with consideration for the developments in Sections 3–6 above.

SOFTWARE
Our MATLAB implementation is available at http://tygert.com/software.html

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

http://tygert.com/software.html

An implementation of a randomized algorithm for principal component analysis 1:13

REFERENCES

Alliance for Telecommunications Industry Solutions Committee PRQC. 2011. ATIS
Telecom Glossary, American National Standard T1.523. Alliance for Telecommuni-
cations Industry Solutions (ATIS), American National Standards Institute (ANSI),
Washington, DC.

Edward Anderson, Zhaojun Bai, Christian Bischof, Laura Susan Blackford, James
Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling,
Alan McKenney, and Daniel Sorensen. 1999. LAPACK User’s Guide. SIAM, Philadel-
phia, PA.

Haim Avron, Costas Bekas, Christos Boutsidis, Kenneth Clarkson, Prabhanjan Kam-
badur, Giorgos Kollias, Michael Mahoney, Ilse Ipsen, Yves Ineichen, Vikas Sind-
hwani, and David Woodruff. 2014. LibSkylark: Sketching-Based Matrix Compu-
tations for Machine Learning. IBM Research, in collaboration with Bloomberg
Labs, NCSU, Stanford, UC Berkeley, and Yahoo Labs. Available at http://xdata-
skylark.github.io/libskylark.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix collec-
tion. ACM Trans. Math. Software 38, 1 (2011), 1:1–1:25.

Gene Golub and Charles Van Loan. 2012. Matrix Computations (4th ed.). Johns Hop-
kins University Press.

Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp. 2011. Finding structure with
randomness: probabilistic algorithms for constructing approximate matrix decom-
positions. SIAM Rev. 53, 2 (2011), 217–288.

Jacek Kuczyński and Henryk Woźniakowski. 1992. Estimating the largest eigenvalue
by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal.
Appl. 13, 4 (1992), 1094–1122.

Rasmus Larsen. 2001. Combining implicit restart and partial reorthogonaliza-
tion in Lanczos bidiagonalization. Presentation at U.C. Berkeley, sponsored by
Stanford’s Scientific Computing and Computational Mathematics (succeeded by
the Institute for Computational and Mathematical Engineering). Available at
http://sun.stanford.edu/∼rmunk/PROPACK/talk.rev3.pdf.

Richard Lehoucq, Daniel Sorensen, and Chao Yang. 1998. ARPACK User’s Guide: Solu-
tion of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
SIAM, Philadelphia, PA.

Srinivas Rachakonda, Rogers F. Silva, Jingyu Liu, and Vince Calhoun. 2014. Memory-
efficient PCA approaches for large-group ICA. (2014). fMRI Toolbox, Medical Image
Analysis Laboratory, University of New Mexico.

Gil Shabat, Yaniv Shmueli, and Amir Averbuch. 2013. Randomized LU decomposition.
Technical Report 1310.7202. arXiv.

Rafi Witten and Emmanuel Candès. 2014. Randomized algorithms for low-rank matrix
factorizations: sharp performance bounds. Algorithmica (2014). To appear. DOI:
10.1007/s00453-014-9891-7.

Herman Wold. 1966. Estimation of principal components and related models by it-
erative least squares. In Multivariate Analysis, Parachuri R. Krishnaiaah (Ed.).
Academic Press, 391–420.

David Woodruff. 2014. Sketching as a Tool for Numerical Linear Algebra. Foundations
and Trends in Theoretical Computer Science, Vol. 10. Now publishers.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: December 2014.

	1 Introduction
	2 Overview
	3 Stabilizing the Nyström method
	4 Measuring accuracy
	5 Algorithmic optimizations
	6 Hard problems for PROPACK
	7 Performance for dense matrices
	8 Performance for sparse matrices
	9 Conclusion

