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Abstract

Social networks have become an indispensable part of our
lives, with billions of people producing ever-increasing
amounts of text. At such scales, content policies and their
enforcement become paramount. To automate moderation,
questionable content is detected by Natural Language Pro-
cessing (NLP) classifiers. However, high-performance classi-
fiers are hampered by misspellings and adversarial text per-
turbations. In this paper, we classify intentional and uninten-
tional adversarial text perturbation into ten types and propose
a deobfuscation pipeline to make NLP models robust to such
perturbations. We propose Continuous Word2Vec (CW2V),
our data-driven method to learn word embeddings that en-
sures that perturbations of words have embeddings similar
to those of the original words. We show that CW2V em-
beddings are generally more robust to text perturbations than
embeddings based on character ngram. Our robust classifica-
tion pipeline combines deobfuscation and classification, us-
ing proposed defense methods and word embeddings to clas-
sify whether Facebook posts are requesting engagement such
as likes. Our pipeline results in engagement bait classifica-
tion that goes from 0.70 to 0.67 AUC with adversarial text
perturbation, while character ngram-based word embedding
methods result in downstream classification that goes from
0.76 to 0.64.

Introduction
Social media hosts billions of active users, and enforcing
content policies is critical to user experience. Even with
better-designed policies, such a scale requires automated
moderation. Unfortunately, the Natural Language Process-
ing (NLP) classifiers used for questionable content can be (i)
confused by inadvertent typos, and (ii) deliberately manipu-
lated by perturbing relevant text while preserving its human-
readable appearance.

The motivation for our work can be illustrated by the fol-
lowing use case. Consider an ML classifier that detects Face-
book posts that fall under engagement bait, i.e., baiting the
viewer to like, comment, etc. We investigate how this clas-
sifier can be fooled through adversarial text perturbations,
and then we develop methods to mitigate such text pertur-
bations. Figure 1 shows illustrative examples of engagement
bait Facebook posts that avoid detection by perturbing their
text. Adversarial text perturbations likely impact other clas-
sifiers, and our methods should be helpful more broadly than

Figure 1: Examples of Facebook posts adversarially per-
turbed to avoid detection and demotion for engagement bait.

the immediate context used by our experiments.
In this paper, we identify ten common types of adver-

sarial text perturbation based on our analysis of Facebook
posts. To address these perturbations, we develop rule-based
string manipulations deobfuscation and trainable word em-
beddings such that words with perturbations have embed-
dings similar to those of the original unperturbed words. The
two rule-based string manipulations are (1) the Alternating
Characters Defense (ACD), which detects and filters out al-
ternating obfuscating characters (e.g. ’-’ in ’t-e-x-t’), and (2)
Unicode Canonicalization (UC), which uses a mapping to
convert Unicode confusables to their ascii equivalents. We
assemble our defense methods into a deobfuscation pipeline
and evaluate how well it detects harmful Facebook posts.

Our trainable word embeddings, Continuous Word2Vec
(CW2V), strive to ensure that perturbed words have embed-
dings similar to their unperturbed versions. We accomplish
this by treating words as continuous rather than discrete in-
puts, so a minor perturbation of the string also results in
only a minor perturbation in the embedding. We make the
model originally proposed for Word2Vec (Mikolov et al.
2013a) more robust to perturbations by modifying the inputs
and outputs to address our objective that words with similar



spelling have similar embeddings. Instead of passing words
as one-hot encodings of the tokens in a vocabulary, we pass
words as vectors that encode the string distances between
the given word and each word in a specially selected index
of words. The model is then trained on these inputs the same
way as in Word2Vec, resulting in embeddings that reflect
both the spelling and the meaning of each word.

Cosine distances between our embeddings have a corre-
lation of 0.77 with Levenshtein distances between words,
confirming that small text changes only slightly change our
embeddings. For embeddings trained using a prior character
ngram-based method, the correlation is 0.05.

This paper offers four key contributions:

1. A taxonomy of text perturbations based on prior litera-
ture and additional ones that we discovered.

2. A method called Continuous Word2Vec (CW2V) to con-
struct word embeddings such that words with similar
spelling or meaning map to similar vectors.

3. A deobfuscation pipeline using CW2V and two other
rule-based defense methods to improve the robustness of
NLP classifiers against these perturbation types.

4. Empirical impact measurements for perturbations and
defenses in the classification pipeline, with comparison
to prior state-of-the-art methods.

Background and Problem Analysis
Ethics We preface our methods with the warning that the
context, ethics, and harms of the content detection algorithm
itself must be carefully considered. With this research, we
do not aim to empower governments or law enforcement to
target vulnerable groups. We acknowledge that certain pop-
ulations may be using text obfuscation and perturbation to
protect themselves from surveillance, de-platforming, or de-
tection in repressive regimes. We urge those employing miti-
gation for adversarial text perturbation in their classification
pipelines to thoroughly investigate the ethics of their appli-
cations before deployment.

Prior work on text perturbations distinguishes several
types of text perturbation, quantifies their effect on down-
stream classifiers, and publishes tools for simple yet effec-
tive adversarial text manipulation (Vijayaraghavan and Roy
2020; Eger et al. 2019; Gao et al. 2018; Li et al. 2019). Prior
work also shows that simply training and testing on adver-
sarially perturbed data does not improve downstream perfor-
mance against these attacks because of the combinatorial ex-
plosion of possible obfuscations (Belinkov and Bisk 2017).

Prior approaches to mitigating adversarial text pertur-
bation include inferring various word vectors from the
context of each out-of-vocabulary word and finding a word
in the dictionary that minimizes (1) the distance between
its string and the string of the out-of-vocabulary word in
question and (2) the distance between its vector and the
context-inferred word vector (Zhou et al. 2019; Alshemali
and Kalita 2019; Fivez, Šuster, and Daelemans 2017). Meth-
ods for calculating word vectors and string distances vary,

and the way in which the two objectives were optimized to-
gether vary. Jones et al. (2020) cluster words in a corpus
such that each cluster contains possible perturbed versions
of the same word, and then use a single token to represent
the words in each cluster. While their method fixes the in-
put text so that the downstream model does not need to be
robust to perturbations, our word embedding method takes
context into account when learning embeddings, and our de-
obfuscation does not depend on having seen the right word
somewhere in the training set. Choosing the best word by
spelling without context is difficult when the test set con-
tains words unseen in training; for example, there are 26
words in the English dictionary that are a single character
away from the word like1, and while defining the mapping
of perturbed words to correct words during training helps, it
requires that words in the test set outside the mapping de-
fined during training are not in the mapping.

Related work on word embeddings leverages character-
level subword representations (Devlin et al. 2019) or n-
grams (Bojanowski et al. 2017) to enable inferring repre-
sentations for words that are not in the training corpus. The
methods developed in this paper differ in that our model
learns from text perturbations in the training data and builds
word embeddings such that words that are likely perturba-
tions of each other have similar embeddings. We use the
FastText model from Bojanowski et al. (2017) as a base-
line and show that our embeddings are more robust to most
types of adversarially perturbed text than FastText embed-
dings, which use the average of a word’s character n-grams
to encode its meaning. We choose FastText as a baseline
because it can infer embeddings for words not found in its
training set, which the original Word2Vec cannot. Prior work
by Piktus et al. (2019) also builds on FastText to mitigate
misspellings, focusing on training the embeddings to be ro-
bust to common character substitutions; our work addition-
ally handles 8 other perturbation types.

Pitfalls of bag-of-characters word representations Rep-
resenting words as bags of characters may seem attractive
because it catches misspellings that involve arbitrary char-
acter permutations, such as “advresairal” as a misspelling of
“adversarial”, as well as character repetition as in “pleease”.
However, bag-of-characters approaches have serious limita-
tions, surpassed in our work. First, in the English dictionary2

of 466,551 words, 312,790 words collide with at least one
other word if represented as bags of characters. Each bag
of characters maps to 2.03 words on average, and up to 116
words. Second, our method trains embeddings on a specific
corpus and can work with a specific portfolio of perturba-
tions. A propos, traditional spam is intentionally misspelled
to avoid filters while clickbait titles often replace characters
with Unicode look-alikes.

1alike, bike, Dike, fike, glike, Hike, yike, kike, leke, lice, lige,
like, liked, liken, liker, likes, lile, lime, lire, lite, live, loke, Mike,
Nike, Pike, sike, tike

2defined by Merriam-Webster (https://www.merriam-webster.
com), collected by https://github.com/dwyl/english-words



PERTURBATION TYPE DEFENSE EXAMPLE DEFINITION

Combined Unicode ACD P.l.e.a.s.e l.i.k.e a.n.d s.h.a.r.e Insert a Unicode character between
each original character.

Fake punctuation CW2V Pleas.e lik,e and shar!e Randomly add zero or more punc-
tuation marks between characters.

Neighboring key CW2V Plwase lime and sharr Replace characters with keyboard-
adjacent characters.

Random spaces CW2V Pl ease lik e and sha re Randomly insert zero or more
spaces between characters.

Replace Unicode UC Pleãse lı̂ke and sharê Replace characters with Unicode
look-alikes.

Space separation ACD Please l i k e and s h a r e Place spaces between characters.

Tandem character obfuscation UC PLE/\SE LIKE /\ND SH/\RE Replace individual characters with
multiple characters that together
look like the original.

Transposition CW2V Plaese like adn sahre Swap adjacent characters.

Vowel repetition and deletion CW2V Pls likee nd sharee Repeat or delete vowels.

Zero-width space separation ACD Please like and share Place zero-width spaces (Unicode
character 200c) between characters.

Table 1: Perturbations performed on the string “Please like and share”. CW2V is the word embedding method proposed in this
paper. ACD (Alternating Characters Defense) is a string manipulation to detect when the characters of a word are all separated
by a repeating character (e.g. ’-’ in ’t-e-x-t’) and filter out that character. UC (Unicode Canonicalization) uses a mapping to
convert Unicode confusables to their ascii equivalents.

Text perturbation types Table 1 describes ten types of
adversarial text obfuscation—those covered in the literature
and those we found in obfuscated public posts on Facebook.
Additional types include adding punctuation or emoji before
or after words without spaces (separators), but we delegate
them to tokenization and do not include here.

Text Perturbation Defense Methods
To address each of the ten perturbation types, we introduce
three tools: two rule-based defense methods to run directly
on input text first, and then a method to build word embed-
dings robust to the remaining text perturbation types.

Alternating Characters Defense We use the first rule-
based defense, the Alternating Characters Defense (ACD),
to fight the Combined Unicode, Space separation, and Zero-
width space separation perturbations. It first checks for al-
ternating whitespaces and then checks for arbitrary alternat-
ing non-alphanumeric characters. The first step is performed
on the entire document and fixes each affected portion by
joining adjacent single-character fragments. In the second
step, the document is split into words on whitespace, and
we check each word for at least half of its characters being
non-alphanumeric. In the typical case considered in our em-
pirical studies, all even-numbered or all odd-numbered char-
acters are identical. Because the inserted character needs to
appear at least twice to be detected, words of less than three

characters are not considered.

Unicode Canonicalization (UC) is a rule-based defense
that counters the Replace Unicode and Tandem character
obfuscation perturbations. We define mappings from obfus-
cated characters to recognizable characters and replace all
instances of the obfuscated characters with the correct rec-
ognizable characters in the text. To address both perturbation
types, we include mappings for Unicode confusables and for
tandem combinations of characters. In our empirical studies,
we use the crowdsourced mappings for Unicode confusables
on the Unicode website3 and a custom mapping from 38 tan-
dem character combinations to 18 characters4.

Defending Against Split Words The rest of this sec-
tion discusses Continuous Word2Vec (CW2V), our method
for building perturbation-robust word embeddings. CW2V
builds embeddings that reflect word spelling and thus relies
on a tokenizer to split the document into words, e.g., using
non-word characters to determine word boundaries (as used
in our experiments to ensure reproducibility). So, the Fake
Punctuation and Random Spaces perturbations both effec-
tively take a word and split it into multiple words, yielding
multiple word embeddings. To evaluate the effectiveness of
CW2V against these perturbations, we measuring how close

3https://www.unicode.org/Public/security/8.0.0/confusables.txt
4Examples include /\→ A and () → o.



the average of the embeddings of the word-parts is to the
embedding of the whole word. Among ideas for future work,
we mention combining adjacent words during tokenization
to make word boundaries less performance-critical.5

Word embeddings for continuous words seek to ensure
that small spelling changes result in small changes in the em-
beddings, in effect, treating words as continuous rather than
discrete. Figure 2 illustrates the proposed method for learn-
ing word embeddings. We first extract a vocabulary from the
training corpus and then select its subset as an index of axes
on which we build spelling vectors by measuring string sim-
ilarity (str sim below). Then, for words within a context
window, we pass the spelling vectors to a shallow neural net-
work to learn word embeddings. We can then infer the em-
bedding of any word by multiplying its spelling vector by
the first layer of the neural network.

Selecting an index subset of the vocabulary is key to en-
suring that words with similar spellings have similar spelling
vectors. The size of this subset is a hyperparameter, n in Fig-
ure 2. We cluster the words in the available vocabulary into n
clusters using hierarchical agglomerative clustering, where
the distance metric between each pair of words is the Leven-
shtein edit distance divided by the length of the shorter word.
The index subset of the vocabulary is built by randomly se-
lecting one word from each cluster (alternatively, for each
cluster one can find the word that minimizes the sum of dis-
tances to other words in the cluster). This process is simi-
lar to the robust encoding method proposed by Jones et al.
(2020). Other than technical differences such as the cluster-
ing algorithm and the method for choosing the “best” word
in each cluster, our method is different in that it is choosing
only an index as described here rather than the final word
representation; we can then use the index to represent any
word outside the training set, and we also take context into
account to build the embeddings later on.

Definition of str sim Given a word w, we define its
spelling vector as str sim(wi, w) where i ranges from 0
to the length of the vocabulary, and wi is the ith element in
the ordered subset of the vocabulary. Given two words as
strings wa and wb, we define str sim(wa, wb) as

str sim(wa, wb) =

{
2 ∗min(lena, lenb) if wa = wb
min(lena,lenb)

L(wa,wb)
otherwise

(1)
where lena and lenb are the lengths of wa and wb, respec-
tively, and L(wa, wb) is the Levenshtein edit distance be-
tween wa and wb. This formula defines str sim as the re-
ciprocal of Levenshtein distance, scaled to the length of the
smaller word (with a special case when the Levenshtein dis-

5To mitigate the Fake Punctuation perturbation, one can treat
punctuation like any other character and not use it to determine
word boundaries. The resulting word embeddings should be closer
to the de-perturbed word embeddings. However, not using punc-
tuation during tokenization causes more harm to ML performance
than do the few words split with these perturbations. Therefore, the
experiments in this paper use punctuation in the tokenizer.

tance is 0). The spelling vector describes a distribution of
similarities over the index subset of the vocabulary.

By construction, metric distance between spelling vectors
reflects string distance between their original words, and
this property extends to further constructs involving these
vectors. Thus, we use spelling vectors to train a neural net-
work with one hidden layer. As in the skip-gram model by
Mikolov et al. (2013a), the input to the neural network con-
sists of vectors for wordi and the output consists of vectors
for wordj , each such word must be within a fixed context
window of wordi in the training corpus. In our work (Fig-
ure 2), spelling vectors of dimension n are used as the input
and output of the neural network. The dimension of the hid-
den layer is a hyperparameter h. Two matrices of sizes n×h
and h × n are jointly trained using stochastic gradient de-
scent. After training, the final embedding of a word is found
by multiplying its spelling vector by the first matrix of the
neural network (the Embedding matrix).

Hyperparameters Hyperparameters introduced in Fig-
ure 2 include n, the size of the index subset of the vocab-
ulary. Intuitively, a larger n allows for more expressive vec-
tors. But if we set n to the number of words in a de-perturbed
version of the training corpus, then each de-perturbed word
may form a cluster, and the spelling vectors would reflect
proximity to each word in the de-perturbed vocabulary. Sim-
ilarly, if we set n to a fraction of the vocabulary size, then
the resulting ordered subset would contain a set of words
whose strings are as far apart as possible, which is attractive
when computing spelling vectors. For experiments, we use
hyperparameters from the model in Mikolov et al. (2013a)
and Mikolov et al. (2013b) when learning word embeddings.
One is the size of the context window, and other inherited
hyperparameters include the size of the hidden layer, learn-
ing rate, batch size, and the number of epochs. The hyper-
parameter c controls early stopping: if the loss does not de-
crease for c training epochs in a row, then we stop training.
A hyperparameter inherited from Mikolov et al. (2013b) is
t, the amount by which we subsample frequent words when
selecting them for input into the neural network; to balance
the effects of common and uncommon words on the learned
parameters, we include each word wi in the training set with
probability 1−

√
t

f(wi)
where f(wi) is the frequency of wi

in the training corpus.

Word Vector Validation
To verify that our embeddings encode both spelling and con-
text, we measure distances between embeddings while vary-
ing both. We measure cosine distances between pairs of em-
beddings (one minus cosine similarity), which range from 0
to 2; orthogonal embeddings have distance 1.

For these results, we train embeddings on a set of 40K ran-
domly selected, publicly available, and de-identified Face-
book posts, passed through the Alternating Characters De-
fense and Unicode Canonicalization. The posts are lower-
cased and tokenized, after which punctuation and emoji are
dropped. We compare with FastText embeddings trained on
the same preprocessed corpus with the same hyperparame-
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Figure 2: Continuous Word2Vec (CW2V). Given a set of training documents, we first build a vocabulary of available words.
We then choose a subset of the vocabulary, give it an ordering, and use string similarity to the words in this index as the elements
of the spelling vectors. We then use the spelling vectors of words in the training documents that are within a context window
of each other as the training input and output of a neural network and learn the parameters in the Embedding layer and Dense
layer. We can then infer the embedding of any word by multiplying its spelling vector by the Embedding layer matrix.

Facebook posts English dictionary
CW2V 0.718 0.772
FastText 0.005 0.046

Table 2: Correlation between Levenshtein and cosine dis-
tances for FastText and our method CW2V. Embeddings are
trained on a corpus of Facebook posts. Results are based on
100 words from Facebook posts and 100 dictionary words.

ters; the hidden sizes and embedding dimensions for both
methods are 200. The spelling vectors for our embeddings
are 0.005 of the vocabulary size, about 385.

Correlation with spelling To confirm that words with
similar spelling have similar embeddings, Table 2 shows the
correlation between word pairs’ Levenshtein distances and
their embeddings’ cosine distances. We compare results be-
tween CW2V and prior high-quality embeddings from Fast-
Text. For CW2V, for a randomly selected set of 100 words
from the English dictionary, this correlation is 0.772, and
for a randomly selected set of 100 words from the Facebook
post training corpus, this correlation is 0.718. These correla-
tions are much higher than respective numbers for FastText
embeddings trained on the same corpus — 0.005 and 0.046.

Effects of text perturbation on embeddings In addition
to comparing embeddings of dictionary words with simi-
lar spelling, a major motivation for CW2V was to ensure
that word perturbations do not alter embedding vectors by
large amounts. Table 3 shows the average distances between
the embeddings of words and their perturbed versions, di-
vided by the average distance between embeddings of ran-
dom words; a smaller number indicates that the perturba-
tion embeddings are closer for the perturbation than random
words, and 1 would indicate that the embeddings are just as
different for perturbations as for random words. Distances
are measured using 500 randomly selected dictionary words
and 500 randomly selected words from the training corpus,
as indicated. We show average distances between an original
word and the word perturbed by the Neighboring Key pertur-
bation, the Transposition perturbation, the Vowel Repetition

and Deletion perturbation, and the Random Spaces perturba-
tion. For Random Spaces, we randomly add spaces, and then
average the embeddings for the resulting “words”; the Fake
Punctuation perturbation will likely show the same effect.

The scores in Table 3 show that for words perturbed by the
Neighboring Key and Transposition perturbations, the em-
beddings are closer to the original word embeddings with
CW2V than with FastText. For the Vowel Repetition and
Deletion perturbation, the embeddings are closer when the
embeddings are trained and tested on the same dictionary.
For the Random Spaces perturbation (and therefore also
Fake Punctuation perturbation), the FastText-trained embed-
dings are closer than the CW2V embeddings, so FastText
may be the preferred method when these two perturbations
are the majority. Because the Neighboring key, Transposi-
tion, and Vowel Repetition and Deletion perturbations are
more common organically than the Random Spaces pertur-
bation, and because typical use cases for these embeddings
involve training and testing on the same dictionary, we con-
clude that the embedding computation proposed in this pa-
per is more robust to text perturbation.

Engagement Bait Classifier Performance
How well our embeddings encode word context is evaluated
through the accuracy of downstream classifiers. We propose
a classification pipeline that addresses all perturbations clas-
sified in Table 1. First, it performs the two defenses: Alter-
nating Characters Defense and Unicode Canonicalization.
After tokenizing the text, it computes the continuous word
embeddings for individual words, and uses them as features
to train a classifier. We test our pipelines with and without
artificial perturbation and our two defenses, and compare the
performance with state-of-the-art methods.

Engagement Bait Classifier For evaluation, we choose
a downstream ML model based on logistic regression that
classifies Facebook posts as engagement bait or not. En-
gagement bait is content asking for likes, comments, etc. We
train CW2V embeddings on a random sample of 40K pub-
licly available Facebook posts in English. The classifier is
trained and tested on a random de-identified sample of pub-



Neighboring key Transposition Vowel rep & del Random spaces
CW2V Facebook posts 0.015 0.175 0.045 0.502
FastText Facebook posts 0.230 0.351 0.172 0.320
CW2V English dictionary 0.110 0.043 0.217 1.036
FastText English dictionary 0.224 0.320 0.140 0.391

Table 3: Average cosine distances between embeddings of words and their perturbed versions, divided by average distances
between embeddings of random words. Smaller numbers indicate that embeddings are closer for perturbations than random
words; the scores where perturbations make less difference are in bold. CW2V (our method) and FastText embeddings are
trained on Facebook posts. We show results on words from the English dictionary and from Facebook posts.

Original Perturbed
AUC AUC

ACD, UC, and CW2V 0.704± 0.011 0.673± 0.012
ACD, UC, and BERT 0.714± 0.015 0.649± 0.016
BERT 0.713± 0.014 0.612± 0.009
ACD, UC, and FastText (5K) 0.763± 0.003 0.723± 0.003
FastText (5K) 0.761± 0.003 0.632± 0.003
ACD, UC, and FastText (10K) 0.792± 0.002 0.751± 0.003
FastText (10K) 0.790± 0.002 0.635± 0.003
ACD, UC, and Adv.Tr. FastText 0.787± 0.002 0.750± 0.003
Adv.Tr. FastText 0.786± 0.002 0.649± 0.004

Table 4: Effects of perturbations and defenses on downstream classifiers. Original AUC and Perturbed AUC are the areas under
the ROC curve for the original test set and perturbed test set, respectively. ACD and UC indicate that the training and test
sets were passed through our respective rule-based defense mechanisms. CW2V indicates classification based on our CW2V
embeddings. Adv.Tr. FastText is a FastText model adversarially trained with 5K original posts and 5K perturbed posts.

licly available Facebook posts. The train and test sets for the
classifier are manually annotated for engagement bait.6 For
this classifier, the features were only based on the text as
described here; most industry production classifiers likely
use other features such as engagement metrics, images, and
user-based features to increase accuracy.

Classification Pipelines Tested Table 4 shows the area
under the ROC curve for the downstream classifier with
and without defenses and added perturbations. Our proposed
pipeline includes ACD and UC, and we use the elementwise
average of the CW2V word embeddings in each post as fea-
tures for the downstream classifier. For comparison to state-
of-the-art models, we finetune a BERT (base, uncased) clas-
sifier (Devlin et al. 2019) on the training set, and train a clas-
sifier that uses the elementwise average of FastText embed-
dings as features. We train FastText embeddings on 5K and
10K posts. For each result, the embeddings are trained 10
times, and each set of trained embeddings is used to train and
test 10 classifier models, resulting in 100 runs. For compari-
son to adversarial training, we train FastText embeddings on
a set of 5K perturbed and 5K original posts, also with 100
runs over 10 FastText embedding sets. For a fair comparison,
all CW2V and FastText embeddings have 200 elements.

Word embeddings are trained on organic unperturbed
Facebook posts in English, passed through the ACD and UC
defenses when indicated (with the exception of the adver-

6Each post was independently annotated by two annotators. If
they disagreed, a third annotation was used for a majority vote.

sarially trained FastText embeddings, which are trained on
5K perturbed posts and 5K unperturbed posts). Using a per-
turbation selected randomly from Table 1, we perturb each
word (longer than two characters) in the test set. When ACD
and UC are applied, they are applied to both the train set and
test set. When perturbations and defenses are both applied,
the perturbations happen before the defenses.

We see that applying ACD and UC helps mitigate dips
caused by perturbation in the test set. CW2V is less af-
fected by perturbation than BERT. However, FastText per-
forms the best overall, likely because it learns more pa-
rameters overall, leading to a relative increase in informa-
tion. Both methods produce 200-dimensional embeddings,
but FastText stores an embedding for each character ngram
while training (resulting in 200 ∗ an parameters, for a dis-
tinct characters and character ngrams up to n characters),
while CW2V stores no embeddings and calculates the test
set word embeddings using a learned matrix (which has
200 ∗ len(spellingembedding) parameters).

Window Size and Embedding Size Figure 4 shows the
performance of the pipeline with ACD, UC, and CW2V for
the original pipeline (1) as is and (2) with additionally per-
turbed data (defended through the pipeline). It compares the
AUC of the classifier with 200- and 300-dimensional em-
beddings, and varies the window size when training embed-
dings between 2 and 3 words. We see that the window size
and embedding dimensionality do not affect the score nearly
as much as the size of the spelling vector.
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Figure 3: Proposed deobfuscation and classification
pipelines. 40K randomly selected, publicly available, and
de-identified Facebook posts are passed through rule-based
defenses (ACD and UC), then used to train word embed-
dings according to CW2V, see Figure 2. Corresponding
pipelines for classifier training and prediction are described.

Future Work
We discuss modifying our technique to increase accuracy
with respective tradeoffs in computational complexity, loss
of information, and implementation difficulty.

First, we can add 26 “alphabet words” to the index sub-
set of the vocabulary for spelling vectors: “aaaa”, “bbbb”, ...
“zzzz”. This would distinguish spelling vectors at a finer-
grained level, i.e., without these 26 anchors, the words
“probable” and “provable” will likely map to the same
spelling vector. We could extend the idea by adding bigrams
most frequent in the text, such as “efefef” and “ghghgh”.
The tradeoff would be increased computational complexity.

Second, we could modify the distance metric for spelling-
index clustering to incorporate cosine distances between
FastText vectors to allow a tradeoff between variance in the
resulting vectors based on spelling and based on meaning.
However, we showed that perturbation affects distances be-
tween FastText vectors in an undesirable way, so we would
need to limit the spelling index clusters to only dictionary
words, a considerable tradeoff.

Third, instead of str sim, we could use one minus the
Jaccard distance to determine spelling vectors. However, this
does not account for the order of letters and therefore maps
anagrams to the same vectors; we could use a linear com-
bination of Jaccard distance and str sim in order to give
more weight to order-independent metrics.

Fourth, as mentioned earlier, we could use cluster centers
when selecting the spelling index, rather than a random ele-

Figure 4: Classifier performance with varying hyperparam-
eters, based on spelling vector size.

ment of each cluster. To implement this improvement, we
need an efficient method to find, within each cluster, the
word with the smallest total distance to other words.

Other future work includes combining our methods with
language models by changing the language model’s features
from discrete token IDs to continuous-valued vectors.

Conclusion
Classifying posts with adversarial text perturbation remains
a challenge. Rather than continue the line of work “fixing”
misspelled words in user input text (Zhou et al. 2019; Alshe-
mali and Kalita 2019; Fivez, Šuster, and Daelemans 2017),
we take inspiration from methods that modify context-based
word embeddings to address character substitution (Piktus
et al. 2019) and build word embeddings that reflect both the
meanings and spellings of words.

We classified adversarial text perturbation into ten com-
mon types and proposed mitigation strategies. We showed
the effectiveness of two rule-based string manipulations in
defending against five of the perturbations. We also pro-
posed a method of calculating word embeddings and mea-
sured the embeddings’ robustness to the other five pertur-
bations. We demonstrated that a downstream classifier is
less vulnerable to adversarial text perturbation when we use
these mitigation strategies.

Our work fits in with related efforts in the industry, which
include measuring the prevalence of adversarial text per-
turbations, measuring the effects of perturbation tools and
defenses, and improving model interpretability (Kokhlikyan
et al. 2019). The proposed defenses can be used in settings
where adversaries try to avoid detection through text per-
turbation, or when user-written text is susceptible to mis-
spellings. Our proposed classification pipeline is a step in
the direction of robust industry solutions.
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