
Autoregressive Entity Generation for End-to-End Task-Oriented Dialog

Guanhuan Huang, Xiaojun Quan
School of Computer Science and Engineering

Sun Yat-sen University, Guangzhou, China
huanggh25@mail2.sysu.edu.cn
quanxj3@mail.sysu.edu.cn

Qifan Wang
Facebook AI

Menlo Park, CA, USA
wqfcr@fb.com

Abstract

Task-oriented dialog (TOD) systems are often
required to interact with an external knowl-
edge base (KB) to retrieve necessary entity
(e.g., restaurants) information to support their
response generation. Most current end-to-end
TOD systems either retrieve the KB informa-
tion explicitly or embed it into model parame-
ters for implicit access. While the first approach
demands scanning the KB at each turn of re-
sponse generation, which is inefficient when
the KB scales up, the second approach shows
higher flexibility and efficiency. In either ap-
proach, the systems may generate a response
with conflicting entity information. To address
this, we propose to generate the entity autore-
gressively before leveraging it to guide the re-
sponse generation in an end-to-end system. To
ensure entity consistency, we impose a trie con-
straint on the decoding of an entity. We also
introduce a logit concatenation strategy to facil-
itate gradient backpropagation for end-to-end
training. Experiments on MultiWOZ 2.1 single
and CAMREST show that our system can gen-
erate more high-quality and entity-consistent
responses in an end-to-end manner.

1 Introduction

Task-oriented dialog (TOD) systems (Young et al.,
2013; Budzianowski et al., 2018) have become
prominent and drawn much attention from both
academia and industries. They aim to help users
accomplish specific tasks such as booking restau-
rants and reserving hotels through natural language
conversations, where an external knowledge base
(KB) is usually needed to support the generation of
a system response. For example, when the systems
try to recommend a restaurant, they will retrieve its
address from the KB to generate a response.

Many recent state-of-the-art TOD systems
(Mehri et al., 2019; Hosseini-Asl et al., 2020; Li
et al., 2021) take a pipeline route that decomposes
the task into modules relying on intermediate an-

Hi, there. Have you heard of a hotel called
Warkworth House?

Yes. I have the Warkworth House guest house on
Warkworth Terrace, which is the east section of
the city. Can I help make a reservation for you?

[name] Warkworth House [area] east [type]
guesthouse [phone] 01223363682 [addr]
Warkworth Terrace [price] moderate

User

System

Figure 1: An example shows that task-oriented dialog
systems need to retrieve information (middle) from a
knowledge base (KB) to generate a qualified system
response. Entity values in the KB are distinguished by
different colors. Note that words are lowercased.

notations such as belief state and dialog act for su-
pervision. These modules are optimized separately
and then assembled into a dialog system, mitigat-
ing the difficulty of generating the desired response
directly from the dialog context and user utterance.
Another motivation for the pipeline is the necessity
of querying the KB with belief state, as shown in
Figure 1, which would otherwise be non-trivial to
realize in an end-to-end manner. However, these
annotations have to be crafted by human annota-
tors, which is hardly realistic in practical scenes
such as intelligent customer services where huge
amounts of unannotated natural language conversa-
tions have been accumulated. Besides, errors made
in upstream modules may propagate downstream
irreversibly if they are not optimized jointly.

There are mainly two approaches to eliminat-
ing the reliance on intermediate annotations and
generating system response in an end-to-end man-
ner. Firstly, entity information in the KB can be
accessed by soft attention (Madotto et al., 2018;
Reddy et al., 2019; Qin et al., 2020). To this end,
a memory network is usually used to encode the
KB, and attention and pointer are then utilized to
retrieve entity information from the memory. These
attention-based methods tend to become cumber-

some when the KB scales up. Secondly, the KB
information can be stored in model parameters to
avoid direct interaction with the KB at response
generation time. This is motivated by the observa-
tion that pre-trained models such as BERT (Devlin
et al., 2019) can carry certain relational and fac-
tual knowledge (Petroni et al., 2019). Roberts et al.
(2020) finetune T5 (Raffel et al., 2020) on only
question-answer pairs to answer questions without
external knowledge. To embed the KB into model
parameters, this approach first augments the orig-
inal training set with KB entries and then learns
a response generation model end-to-end from the
augmented dataset (Madotto et al., 2020).

Despite the success in end-to-end TOD sys-
tems, one of the remaining problems is entity
inconsistency during response generation (Qin
et al., 2019), which means that the systems usu-
ally generate conflicting entity information in sys-
tem responses. For example, they may generate
a response “Gourmet Burger Kitchen is
an Italian restaurant” while Burger
Kitchen is actually a North American
restaurant. In this work, we aim to address this
issue in a more scalable way. Following GPT-KE
(Madotto et al., 2020), we first insert the KB into
natural language dialogs by data augmentation. By
doing this, the KB can be embedded into model
parameters whose size does not scale with the KB.
Then, we predict the entity that will appear in the re-
sponse autoregressively. To avoid generating an in-
consistent entity, we impose a trie constraint on the
decoding to ensure that the generated entity truly
belongs to the KB. The generated entity is taken
as an extra input to generate an entity-consistent
system response. Besides, since tokens in the entity
are integers, which hinders gradient backpropaga-
tion, we propose a logit concatenation strategy for
end-to-end optimization.

We evaluate our system on MultiWOZ 2.1 single
(Budzianowski et al., 2018) and CAMREST (Wen
et al., 2017), which are two task-oriented dialog
benchmarks widely used in the literature. Exper-
imental results show that it compares favorably
with all the baselines. Particularly, it outperforms
GPT-KE, a strong end-to-end TOD system that we
follow, by a large margin. By ablation studies, we
demonstrate that the autoregressive entity genera-
tion assists in producing entity-consistent system
responses in an end-to-end manner.

To our knowledge, this work is the first attempt

to explore generating entities as extra input for re-
sponse generation. Empirical evidence shows that
it alleviates entity inconsistency substantially by
imposing a trie constraint on the generation of enti-
ties. The system can be trained end-to-end without
accessing a KB during response generation.

2 Related Work

End-to-end task-oriented dialog systems have
drawn increasing attention in recent years. In one
line of work, researchers propose to train the mod-
ules of a pipeline system jointly in an end-to-end
framework, though they still require intermediate
annotations for supervision. Among these works,
SimpleTOD (Hosseini-Asl et al., 2020), SOLOIST
(Peng et al., 2020), and UBAR (Yang et al., 2021)
attempt to concatenate the dialog history, user utter-
ance, belief state, dialog act, and system response
into a long sequence, which is then modeled by a
sequence-to-sequence generation model. HyKnow
(Gao et al., 2021) extends the belief state to handle
both structured and unstructured knowledge and
trains the dialog state tracking and response gener-
ation modules jointly. Nevertheless, these systems
are not the end-to-end solutions we pursue in this
work since they still need intermediate annotations.

There are mainly two approaches to implement-
ing intermediate annotations free end-to-end TOD
systems. First, entity information in the KB can
be accessed by soft attention. Mem2Seq (Madotto
et al., 2018) combines the ideas of multi-hop atten-
tion over memory and pointer network to incorpo-
rate KB information. Wen et al. (2018) proposed to
compute a dialogue state representation from the di-
alog history and use it to interact with KB represen-
tations to retrieve entity information for response
generation. GLMP (Wu et al., 2019) encodes the
representations of dialog history and structural KB
with memory network and then passes the result to
a decoder for response generation. DF-Net (Qin
et al., 2020) includes a dynamic fusion module to
generate a fused representation that explicitly cap-
tures the correlation between domains and uses it
to query the KB. When the KB scales up, however,
attention-based methods become less efficient.

Second, the KB information can be stored in
model parameters to avoid further interaction with
the KB during response generation. The motivation
comes from the observation that pre-trained lan-
guage models such as BERT (Devlin et al., 2019)
and T5 (Raffel et al., 2020) can already carry cer-

tain relational and factual knowledge (Petroni et al.,
2019). GPT-KE (Madotto et al., 2020) is the sem-
inal dialog system towards this goal. It first aug-
ments the training set with KB entries and then
learns a response generation model from the aug-
mented set in an end-to-end fashion, abandoning
the KB during response generation.

3 Methodology

As shown in Figure 2, our Entity-COnsistent end-
to-end (ECO) task-oriented dialog system begins
by embedding the KB into training dialogs (Section
3.2). We follow GPT-KE (Madotto et al., 2020) to
augment the original training set with KB infor-
mation and abandon the KB afterward. Unlike
GPT-KE, which conducts data augmentation in
data pre-processing and fixes then during training,
ECO conducts augmentation for each batch of train-
ing samples, which reduces the size of augmented
training samples while maintaining high coverage
of the KB. We then predict the entity (Section 3.3)
that may appear in the response and incorporate
it into response generation (Section 3.4) to ensure
entity consistency, where LogitConcat is proposed
to facilitate end-to-end optimization.

3.1 Notations

Given a training set Dtr = {D1, D2, . . . , DN} of
dialogs, where Di = {Ui,1, Ri,1, . . . , Ui,T , Ri,T }
contains T turns of user utterance and sys-
tem response, we denote the conversational
context of the t-th turn in dialog Di as
Ci,t = {Ui,1, Ri,1, . . . , Ui,t−1, Ri,t−1}. A struc-
tured knowledge base is given in the form of a
set of entities KB = {E1, E2, . . . , EM}, each
of which is represented as a sequence Ei =
{a1, vi,1, a2, vi,2, . . . , aK , vi,K} in which aj and
vi,j denote the jth attribute and its value for en-
tity Ei, respectively. For simplicity, we assume
each turn of dialog only relates to one entity and
reformulate it as {Ui,t, Ri,t, Ei,t}. A user goal
(Schatzmann et al., 2007) is defined for each di-
alog as Gi = (Gi,c, Gi,r), where Gi,c specifies the
constrained information (e.g., {location=center,
price=cheap}) and Gi,r denotes the required in-
formation (e.g., address, name).

3.2 Knowledge Base Embedding

To embed the KB into the training set, we first
extract all mentioned entity values in both user
utterances and ground truth responses based on

Shared Encoder

Entity Decoder

Shared Encoder

Response Decoder

Context Utterance Entity

Entity Response

Entity Generation Response Generation

Trie
Constraint

LogitConcat

… … …

… …

…

… … …

…

Figure 2: The architecture of our ECO system. The
entity generation module takes the context and user
utterance as input to generate a relevant entity. The
response generation module takes the context, user ut-
terance, and the generated entity as input to generate
a system response. The two modules share the same
encoder but have separate decoders. A trie constraint is
imposed when generating the entity, and LogitConcat is
used to facilitate end-to-end optimization.

given span annotations in the original training set.
Then, we match entity values with the KB to iden-
tify which entity is mentioned in the current turn
of conversation. Templates are then constructed
by replacing entity-related tokens in the utterance
with special attribute placeholders. For example,
north american in Figure 3 is replaced with
the corresponding attribute placeholder [food].
This template generation function is denoted as
DELEX(·), which is used to generate a set Dtm of
templates from the original training set Dtr:

Dtm = DELEX(Dtr). (1)

Next, we generate new dialog samples using
the templates in Dtm, which is referred to as data
augmentation. To begin with, we obtain a set of en-
tities, Gmt = {E1, E2, . . . , EG}, matched with the

Original dialog:

Template:

New dialog:

i am sorry but gourmet burger kitchen was the only

north american restaurant in the centre area .

i am sorry but [name] was the only [food] restaurant

in the [area] area .

i am sorry but da vinci pizzeria was the only italian

restaurant in the north area .

Figure 3: An example to show how to construct a tem-
plate from the original training sample and generate a
new sample from the template. Attributes are distin-
guished by different colors.

predefined user goals. Then, we randomly select
an entity Ei from Gmt and replace the placeholders
with the corresponding values in Ei. For instance,
we replace [food] and [area] in Figure 3 with
italian and north, respectively. The function
of generating utterances from templates is defined
as RELEX(·), which is executed P times to insert
P KB entities and produce a new set Dau:

Dau =
P⋃

p=1

RELEX(Dtm). (2)

Note that usually only a subset of samples in Dtr

can successfully match with entities in KB during
data augmentation, making Dau not cover all the
samples of Dtr. For this reason, we join Dtr and
Dau to get our final training set Dfn.

Dfn = Dtr

⋃
Dau (3)

The selected entities during the above augmenta-
tion process are treated as ground truth entities for
the corresponding dialog samples. This means that
only the samples in Dau have entity labels while
the samples in Dtr do not. Since all placeholders
in the template are replaced with values from the
same entity, this data augmentation procedure en-
sures that the augmented training samples contain
consistent entity information.

3.3 Autoregressive Entity Generation
To predict which entity will appear in the response,
we propose to generate the entity autoregressively.
For brevity, we use Ct and Ut to represent the cur-
rent dialog context and user utterance, respectively.
Then, we take the concatenation of Ct and Ut as
input for entity generation and encode them into a
vector representation:

gt = Enc(Emb([Ct;Ut])), (4)

where Emb(·) is the embedding function imple-
mented by a global embedding matrix We. Enc(·)
denotes the encoder which is shared with response
generation (Section 3.4).

To generate an entity Êt autoregressively, the
decoder iteratively predicts a token êt,k based on
the already generated sequence Êt,<k and vector
representation gt:

P̂ (êt,k) = Dece(êt,k|Êt,<k, gt). (5)

Since the gold entity of a sample in Dau is
known, the cross-entropy loss of entity generation

on Dau is defined as:

Len = −
∑

D∈Dau

∑
Et∈D

CELoss(Êt, Et), (6)

where Et denotes the ground truth entity for the
current turn.

For the samples in Dtr, which have no entity
labels, we do not calculate their loss during en-
tity generation, but calculate their loss in response
generation (Section 3.4) to realize end-to-end opti-
mization like DualTKB (Dognin et al., 2020).

3.3.1 Trie Constraint
Inspired by GENRE (Cao et al., 2021), we con-
struct a trie tree to ensure the generated en-
tity truly belongs to the KB. For each entity
in the KB, we construct a sequence as fol-
lows. For each value in an entity, we put its
attribute placeholder to precede it and concate-
nate all pairs of attribute and value to form a se-
quence such as [name] cityroomz [area]
centre [type] hotel. As depicted in Fig-
ure 4, a node in the trie tree denotes a token, and
its child nodes denote all the succeeding tokens.

When decoding the k-th token êt,k during the
generation of entity Êt, we have the decoded se-
quence Êt,<k = {êt,1, êt,2, . . . , êt,k−1} in hand
and walk through the trie tree along the path of
Êt,<k to generate the next token. We use Et,k to
represent the set of possible tokens at this time step
and re-compute P̂ (êt,k) as:

P (êt,k) =

{
P̂ (êt,k)

Z , êt,k ∈ Et,k
0, else

(7)

where
Z =

∑
êt,k∈Et,k

P̂ (êt,k). (8)

Since only tokens from Et,k have non-zero prob-
abilities in P (êt,k), the model always samples a
token from Et,k, and the generated entity is guaran-
teed to be valid.

3.4 Response Generation

During training, for each sample in Dau, the model
generates a response based on the context, user
utterance, and the corresponding ground truth en-
tity by concatenating and encoding them with the
shared encoder defined in Eq. (4):

ht = Enc(Emb([Ct;Ut;Et])). (9)

[day]

saturday

friday

[departure]

[departure]

cambridge

kings lynn

peterborough

Figure 4: An example of trie tree, which contains three
entity sequences: [day] saturday [departure]
cambridge, [day] saturday [departure]
kings lynn, and [day] friday [departure]
peterborough.

For each sample in Dtr which has no ground
truth entity label, the generated entity is used in-
stead:

ht = Enc(Emb([Ct;Ut; Êt])). (10)

The response decoder then takes the vector ht as
input and generates the system response R̂t token
by token as:

P (r̂t,k) = Decr(r̂t,k|R̂t,<k,ht). (11)

The cross-entropy loss is calculated between
the generated response R̂t and the ground truth
response Rt:

Lre =
∑

D∈D
fn

∑
Rt∈D

CELoss(R̂t, Rt). (12)

3.4.1 Logit Concatenation
For those samples in Dtr, the tokens in each gener-
ated entity are integers and cannot pass the gradi-
ents of response generation directly to the encoder
during training. To address this, we modify Eq.
(10) and input the distributions of generated entity
tokens to the encoder. Specifically, for the k-th
token êt,k of a generated entity Êt, its output dis-
tribution P (êt,k) over vocabulary from the entity
decoder is first computed using Eq. (7) and used
to approximate êt,k for gradient propagation. Then,
P (êt,k) can be encoded as:

ht,k = P (êt,k)WT
e , (13)

where We is the global embedding matrix intro-
duced above.

However, if both P (êt,k) and We receive gradi-
ents during propagation, the training may collapse
since it is much easier to update We than P (êt,k),
which needs to understand the context and utter-
ance to obtain relevant information. Therefore, we
alter the equation by stopping gradients on We:

ĥt,k = P (êt,k) · StopGrad(WT
e), (14)

ĥt = {ĥt,1, . . . , ĥt,|Êt|}. (15)

We use ĥt as the representation of entity Êt and
concatenate it with the embeded context Ct and
user utterance Ut, which is then encoded to replace
Eq. (10) during training:

ht = Enc(Emb([Ct;Ut]); ĥt]). (16)

Since P (êt,k) is a distribution vector rather than
an integer, gradients can be backpropagated to the
encoder during training. At inference time, we take
the generated entity tokens rather than P (êt,k) as
input for response generation, as described in Eq.
(10). This brings a gap between training and infer-
ence, which will be studied in Section 4.5.

3.5 Joint Training
The overall system is optimized by minimizing the
sum of entity loss Len on Dau and response loss
Lre on Dfn:

L = Len + Lre. (17)

4 Experiments

4.1 Dataset
We conduct experiments on MultiWOZ 2.1 single
(Budzianowski et al., 2018) and CAMREST
(Wen et al., 2017). CAMREST consists of
one domain of Cambridge restaurant booking
and MultiWOZ 2.1 single consists of five do-
mains: Attraction, Hotel, Restaurant,
Taxi, and Train. Following previous work
(Qin et al., 2020; Madotto et al., 2020), we select
only the dialogues with a single domain from
MultiWOZ 2.1 to form the MultiWOZ 2.1 single
dataset. We follow the same pre-processing and
augmentation procedures as GPT-KE (Madotto
et al., 2020). Note that not all dialogs in the
original training set can be successfully used to
generate templates due to the diversity of entity
values. On MultiWOZ 2.1 single, 63/116/289/59
templates are respectively generated for domains
Attraction/Hotel/Restaurant/Train,
and no template is generated for the Taxi domain
since MultiWOZ 2.1 single does not provide KB
for this domain. On CAMREST, 161 templates are
constructed for data augmentation.

Following previous works (Qin et al., 2020;
Madotto et al., 2020), we adopt BLEU, Inform,
Success and F1 as metrics to evaluate model per-
formance on MultiWOZ 2.1 single, and employ

BLEU Inform Success Score F1 Consistency

Mem2Seq (Madotto et al., 2018) 6.60 - - - 21.62 -
DSR (Wen et al., 2018) 9.10 - - - 30.00 -
GLMP (Wu et al., 2019) 6.90 - - - 32.40 -
DF-Net (Qin et al., 2020) 9.40 - - - 35.10 -
GPT2 (Radford et al., 2019) 14.33 64.60 51.77 72.52 30.38 -
GPT-KE (Madotto et al., 2020) 15.05 72.57 64.16 83.42 39.58 54.46

BART-KE 12.80±0.22 70.94±2.05 61.36±2.12 78.95±2.05 39.31±0.22 52.96±0.48
ECO (ours) 12.61±0.20 83.63±0.63 75.37±0.21 92.11±0.20 40.87±0.24 56.84±0.36

Table 1: Main results on MultiWOZ. Scores of baselines except BART-KE are from the original work and “-”
means the scores are originally missing. BART-KE is the baseline we implement by replacing GPT-2 in GPT-KE
with BART. The unit of standard deviation is 1.

BLEU, F1, and Success on CAMREST. Inform
and Success are calculated based on the given user
goal of a dialog session, and inconsistent entity
information will lower the two metrics. Mean-
while, an overall score is also calculated: Score =
BLEU + (Inform + Success)/2.

4.2 Measuring Entity Consistency

Measuring entity consistency of the given system
responses remains a problem in task-oriented dia-
log systems. Ci-TOD (Qin et al., 2021) annotates
three kinds of inconsistency by human experts on
the KVRET (Eric et al., 2017) dataset, i.e., user
query inconsistency, dialog history inconsistency,
and knowledge base inconsistency. They then train
models to classify which kind of inconsistency ap-
pears in system responses and try to use these mod-
els as automatic metrics. However, CI-TOD is
trained on KVRET, and there is no evidence that
CI-TOD can also be used to measure inconsistency
on other datasets. Furthermore, the first few turns
may provide irrelevant entity information, such as
giving several hotels for the user to choose from,
which makes it more difficult to identify whether
the response is dialog history consistent or not.

Based on the above analysis, we propose a con-
sistency metric that focuses on user query consis-
tency and knowledge base consistency. It is a con-
versation turn level metric, and requires all entity
information in the user utterance and the system
response to belong to the same entity in KB. To
be specific, we first extract all entity information
in the user utterance and the system response, and
then search the knowledge base. If there is an entity
that contains all extracted information, this conver-
sation turn scores 1, and 0 otherwise. The final
metric Consistency is calculated as the average of
scores over all conversation turns. The method to

obtain entity information from user utterances and
system responses is the same as in calculating F1.

4.3 Experiment Settings
Different from GPT-KE, we use BART (Lewis
et al., 2020) as our backbone model due to the limi-
tation of computation power. We also replace GPT-
2 (Radford et al., 2019) in GPT-KE with BART to
form a new baseline, BART-KE. We set the max
input sequence length to 256, the repeat times P in
RELEX to 12, and batch size to 12. Experiments
are conducted on a single NVIDIA 2080ti and costs
about 11G GPU RAM. We conduct ablation studies
on MultiWOZ 2.1 single as it is a more challenging
dataset with multiple domains of dialogs. For most
variants of our method, we run 30 epochs and do
the evaluation per 5 epochs, saving a model check-
point after each evaluation. We then select the best
checkpoint based on model performance on the de-
velopment set and finally report the test results. For
the ablation setting w/ tr, which is more difficult to
train due to the lack of supervision from gold entity
labels, we run 50 epochs to select the best.

4.4 Main Results
The overall results are shown in Table 1 and Ta-
ble 2. We observe that ECO outperforms GPT-KE
and other baselines by a large margin in all met-
rics except BLEU, showing that ECO can reach
the user goals of this dialog dataset more effec-
tively. The improvement of ECO over BART-KE
suggests that ECO’s success mainly comes from
the model design rather than BART itself. Specif-
ically, by generating an entity with trie constraint
to help response generation, ECO obtains consis-
tent entity information and improves entity consis-
tency of generated response. On the other hand,
we note that BART-based methods (BART-KE and
ECO) achieve relatively lower BLEU scores than

BLEU F1 Success

KB-Trs 14.80 45.30 -
MLMN 13.61 54.85 -
BoSsNet 15.20 43.10 -
KBRet 18.64 55.76 62.03
GPT-KE 18.00 54.85 74.68

BART-KE 17.84±0.28 70.42±0.37 75.06±1.52
ECO (ours) 18.42±0.27 71.56±0.39 78.77±1.85

Table 2: Main results on CAMREST. KB-Trs (E.
et al., 2019), MLMN (Reddy et al., 2019), BoSsNet
(Raghu et al., 2019), KBRet (Qin et al., 2019), GPT-KE
(Madotto et al., 2020).

the GPT-2 family baselines (GPT-2 and GPT-KE)
on MultiWOZ. The main reason should be that we
do not post-train BART with language modeling
objectives on the training set, which affects the flu-
ency of generated responses, while responses in
MultiWOZ are more diverse across domains.

We also analyse why the improvement on F1
is much smaller than Inform and Success on Mul-
tiWOZ. Inform and Success are calculated based
on user goal, and in some circumstances there are
multiple entities matched with user goal. However,
only one mentioned in the ground truth response
is counted as correct in F1. Therefore, a large
improvement on Inform and Success means ECO
provides information and achieves user goal better,
but the entity mentioned in generated response may
still be different from the one in ground truth. As
shown in Table 3, over 50% of test samples have
multiple matched entities when calculating Inform,
and 15.5% when calculating Success. Multiple
matched entities reduce model performance on all
metrics, especially on F1.

4.5 Ablation Studies

4.5.1 End-to-End Optimization and Entity
Labels

Unlike samples from Dtr, samples from Dau con-
tain extra ground truth entity labels, so their train-
ing objectives are different. As shown in Table
4, ECO w/tr means the training set only contains
samples from Dtr for end-to-end optimization, and
ECO w/au means training set only contains samples
from Dau. We observe that ECO w/tr has draw-
backs of 5.02 on Inform, 9.29 on Success, 3.13 on
F1, and 4.41 on Consistency compared to GPT-KE.
Without entity labels, the entity generation is hard
to converge, which results in the lack of necessary
information as input of response generation and

% Inform Success F1

single inform 46.0 91.67±1.63 83.01±1.98 61.09±0.81
multi inform 54.0 76.78±1.55 68.85±1.77 31.03±0.73
single success 84.5 83.60±1.23 77.49±0.43 42.74±0.10
multi success 15.5 83.81±2.69 63.81±1.35 33.62±1.28
total 100.0 83.63±0.63 75.37±0.21 40.87±0.24

Table 3: Results of insight into how multiple matched
entities affect evaluation metrics, where single/multi
inform/success refer to the situation with single/multiple
matched entities when calculating Inform/Success, and
% means the proportion of samples in the test set for
corresponding situation.

low model performance.
ECO w/au outperforms GPT-KE on Inform by

6.63 but has large drawbacks on Success and F1.
The improvement suggests that supervised learning
on samples with entity labels can help the model
to give more informative responses. However, Dau

does not includes the Taxi domain, therefore it is
not surprising that ECO w/au has poor performance
on success and F1.

4.5.2 Trie Constraint for Entity Generation
Trie Constraint is our key design to guarantee the
consistency of the generated entity sequence. Fig-
ure 5 gives an example of decoding entity on trie
tree. Through filtering out non-kid nodes, the de-
coding path is restricted to paths on the trie tree,
which might result in a different decoding path
from decoding without trie constraint. From Ta-
ble 4, ECO outperforms ECO w/o trie by 2.95 on
Inform, 3.25 on Success, 1.06 on F1, and 0.53 on
Consistency. We argue that the model can generate
more informative responses with the help of con-
sistently generated entity sequences, which brings
improvement.

4.5.3 LogitConcat vs. Direct Concatenation
In Table 4, ECO shows a promising result, an im-
provement of 5.31 on Inform, 4.87 on Success,
0.99 on F1, and 1.69 on Consistency over ECO
w/o LogitConcat. LogitConcat enables gradients
backpropagation in the concatenation of context,
user utterance, and the generated entity. Without
LogitConcat, the gradients will stop in the concate-
nation and fail to update model parameters in entity
generation when training on samples from Dtr.

4.5.4 Gap between Training and Evaluation
using LogitConcat

During evaluation, ECO concatenates sequences
as input of response generation, which is differ-

BLEU Inform Success Score F1 Consistency

GPT-KE 15.05 72.57 64.16 83.42 39.58 54.46
BART-KE 12.80±0.22 70.94±2.05 61.36±2.12 78.95±2.05 39.31±0.22 52.96±0.48
ECO 12.61±0.20 83.63±0.63 75.37±0.21 92.11±0.20 40.87±0.24 56.84±0.36

w/au 8.94±0.06 79.20±2.26 56.34±0.55 76.71±0.94 30.38±1.67 55.49±0.33
w/tr 11.21±0.37 67.55±4.41 54.87±4.38 72.42±4.07 36.45±1.17 52.43±1.89
w/o trie 12.40±0.36 80.68±0.91 72.12±1.25 88.80±0.81 39.81±0.25 56.31±0.62
w/o LogitConcat 12.52±0.11 78.32±0.96 70.50±2.46 86.93±1.64 39.88±0.40 55.15±0.84
w/ LogitEval 12.85±0.28 71.98±0.55 65.04±0.96 81.36±1.00 40.58±0.46 53.62±0.81

Table 4: Results of ablation studies. ECO w/au only contains samples from Dau in the training set, and ECO w/tr
only contains samples from Dtr. ECO w/o trie does not include trie contraint during entity generation, and ECO w/o
LogitConcat does not include LogitConcat during training. ECO w/o StopGrad removes StopGrad in LogitConcat.
ECO w/ LogitEval means using LogitConcat in inference. The unit of standard deviation is 1.

[name]

[day]

[fee]

arbury

restaurant

curry

lodge

hotel

lodging

guesthouse

bussiness

house

[address]

[food]

[area]

52

82

328a

gilbert

histon

chesterton route

street

road

road

street

passage

High(1)

Low(0)

arbury

chest

rose

Figure 5: An example of decoding entity with trie constraint, and different colors represents different probability.
Trie constraint filters out some tokens while decoding and results in a different decoding path, avoiding the red path
which generates inconsistent entity information.

50 100 200 400 full
74
78
82
86
90

Inform

50 100 200 400 full

66
70
74
78
82

Success

50 100 200 400 full
37
38
39
40
41

F1

number of templates

Figure 6: Ablation of how the number of templates
affects model performance on MuitiWOZ, where full
means we include all available templates to conduct
knowledge base embedding.

ent from using LogitConcat in training. In Tabel 4,
ECO has an inprovement of 12.65 on Inform, 10.33
on Success, 0.29 on F1, and 3.22 on Consistency
against ECO w/ LogitEval, which uses LogitCon-
cat during evaluation. Using LogitConcat during
evaluation weakens the consistency of generated se-
quence since the probability distribution sequence
in LogitConcat is not an entity from KB.

4.5.5 Number of Templates for Data
Augmentation

We show how the number of templates affects
model performance in Figure 6. In general, all
metrics increase when the number of templates
grows, but there are some fluctuations when the

number grows from 100 to 400. The reason may be
the random nature of down-sampling on templates.

5 Case Study

Table 5 presents an example of generated responses
by ECO and GPT-KE. ECO successfully copies the
correct phone number from the generated entity,
while GPT-KE generates a wrong phone number
which has a higher generation probability without
constraint. The Trie Constraint helps ECO gener-
ate a consistent entity, and then ECO utilizes the
powerful copy ability of BART to copy the correct
phone number from the generated entity to the gen-
erated response. Such design in ECO relieves the
inconsistency in model generated responses and
brings performance improvement.

6 Conclusion

We proposed an end-to-end task-oriented dialog
system by encoding external knowledge into model
parameters. To address entity inconsistency, we
proposed to generate the entity autoregressively
and took it as input to response generation. A trie
constraint was imposed on the generation of an
entity and a logit concatenation strategy was in-

User will you give me the phone number, address, and postcode for graffiti,
please?

Generated Entity [name] graffiti [area] west [phone] 01223277977 [addr] hotel felix
whitehouse lane huntingdon road [price] expensive [post] cb30lx
[food] british

Ground-truth Response yes, the phone number is 01223277977. the address is hotel felix
whitehouse lane huntingdon road, and the post code is cb30lx. want
to book?

ECO graffiti is located at hotel felix whitehouse lane huntingdon road,
phone number is 01223277977 and the postcode is cb30lx. is there
anything i can help you with?

GPT-KE sure, graffiti is located at hotel felix whitehouse lane huntingdon road
with postcode cb30lx. their phone number is 01223323737. is there
anything else i can help you with?

Table 5: Case study of responses generated by our ECO and GPT-KE (Madotto et al., 2020).

troduced to facilitate gradient backpropagation for
end-to-end training. Experiments demonstrate that
this system can generate more high-quality and
entity-consistent responses end-to-end. For future
work, we plan to extend this system to address
the issue of multiple entities that may involve in a
conversation turn.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (No. 62176270) and
the Program for Guangdong Introducing Innovative
and Entrepreneurial Teams (No. 2017ZT07X355).

References
Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz - A
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. In Proceedings of
EMNLP 2018, pages 5016–5026. ACL.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In ICLR 2021. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT 2019,
pages 4171–4186. ACL.

Pierre L. Dognin, Igor Melnyk, Inkit Padhi,
Cícero Nogueira dos Santos, and Payel Das.
2020. Dualtkb: A dual learning bridge between text
and knowledge base. In Proceedings of EMNLP
2020, pages 8605–8616. ACL.

Haihong E., Wenjing Zhang, and Meina Song. 2019.
Kb-transformer: Incorporating knowledge into end-
to-end task-oriented dialog systems. In 2019 15th
International Conference on Semantics, Knowledge
and Grids (SKG), pages 44–48.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-value retrieval
networks for task-oriented dialogue. In Proceedings
of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, pages 37–49, Saarbrücken, Germany.
Association for Computational Linguistics.

Silin Gao, Ryuichi Takanobu, Wei Peng, Qun Liu, and
Minlie Huang. 2021. Hyknow: End-to-end task-
oriented dialog modeling with hybrid knowledge
management. In Findings of ACL/IJCNLP 2021,
pages 1591–1602. ACL.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A sim-
ple language model for task-oriented dialogue. In
NeurIPS 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of ACL 2020, pages
7871–7880. ACL.

Yunhao Li, Yunyi Yang, Xiaojun Quan, and Jianxing
Yu. 2021. Retrieve & memorize: Dialog policy
learning with multi-action memory. In Findings of
ACL/IJCNLP 2021, pages 447–459. ACL.

Andrea Madotto, Samuel Cahyawijaya, Genta Indra
Winata, Yan Xu, Zihan Liu, Zhaojiang Lin, and Pas-
cale Fung. 2020. Learning knowledge bases with
parameters for task-oriented dialogue systems. In
Findings of EMNLP 2020, pages 2372–2394. ACL.

https://aclanthology.org/D18-1547/
https://aclanthology.org/D18-1547/
https://aclanthology.org/D18-1547/
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.694
https://doi.org/10.18653/v1/2020.emnlp-main.694
https://doi.org/10.1109/SKG49510.2019.00016
https://doi.org/10.1109/SKG49510.2019.00016
https://doi.org/10.18653/v1/W17-5506
https://doi.org/10.18653/v1/W17-5506
https://doi.org/10.18653/v1/2021.findings-acl.139
https://doi.org/10.18653/v1/2021.findings-acl.139
https://doi.org/10.18653/v1/2021.findings-acl.139
https://proceedings.neurips.cc/paper/2020/hash/e946209592563be0f01c844ab2170f0c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e946209592563be0f01c844ab2170f0c-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.findings-acl.39
https://doi.org/10.18653/v1/2021.findings-acl.39
https://doi.org/10.18653/v1/2020.findings-emnlp.215
https://doi.org/10.18653/v1/2020.findings-emnlp.215

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung.
2018. Mem2seq: Effectively incorporating knowl-
edge bases into end-to-end task-oriented dialog sys-
tems. In Proceedings of ACL 2018, pages 1468–1478.
ACL.

Shikib Mehri, Tejas Srinivasan, and Maxine Eskénazi.
2019. Structured fusion networks for dialog. In
Proceedings of SIGdial 2019, pages 165–177. ACL.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin
Shayandeh, Lars Liden, and Jianfeng Gao. 2020.
SOLOIST: few-shot task-oriented dialog with A
single pre-trained auto-regressive model. CoRR,
abs/2005.05298.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models
as knowledge bases? In Proceedings of EMNLP-
IJCNLP 2019, pages 2463–2473. ACL.

Libo Qin, Yijia Liu, Wanxiang Che, Haoyang Wen,
Yangming Li, and Ting Liu. 2019. Entity-consistent
end-to-end task-oriented dialogue system with KB
retriever. In Proceedings of EMNLP-IJCNLP 2019,
pages 133–142. ACL.

Libo Qin, Tianbao Xie, Shijue Huang, Qiguang Chen,
Xiao Xu, and Wanxiang Che. 2021. Don’t be contra-
dicted with anything! ci-tod: Towards benchmarking
consistency for task-oriented dialogue system. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Repub-
lic, 7-11 November, 2021, pages 2357–2367. Associ-
ation for Computational Linguistics.

Libo Qin, Xiao Xu, Wanxiang Che, Yue Zhang, and
Ting Liu. 2020. Dynamic fusion network for multi-
domain end-to-end task-oriented dialog. In Proceed-
ings of ACL 2020, pages 6344–6354. ACL.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Dinesh Raghu, Nikhil Gupta, and Mausam. 2019.
Disentangling Language and Knowledge in Task-
Oriented Dialogs. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1239–1255, Minneapolis, Minnesota.
Association for Computational Linguistics.

Revanth Reddy, Danish Contractor, Dinesh Raghu, and
Sachindra Joshi. 2019. Multi-level memory for task
oriented dialogs. In Proceedings of NAACL-HLT
2019, pages 3744–3754. ACL.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 5418–5426. Association for
Computational Linguistics.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve J. Young. 2007. Agenda-based
user simulation for bootstrapping a POMDP dialogue
system. In Proceedings of NAACL-HLT 2007, pages
149–152. ACL.

Haoyang Wen, Yijia Liu, Wanxiang Che, Libo Qin,
and Ting Liu. 2018. Sequence-to-sequence learning
for task-oriented dialogue with dialogue state repre-
sentation. In Proceedings of COLING 2018, pages
3781–3792. ACL.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Mil-
ica Gasic, Lina Maria Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve J. Young. 2017. A network-
based end-to-end trainable task-oriented dialogue sys-
tem. In Proceedings of EACL 2017, pages 438–449.
ACL.

Chien-Sheng Wu, Richard Socher, and Caiming Xiong.
2019. Global-to-local memory pointer networks for
task-oriented dialogue. In Proceedings of ICLR 2019.
OpenReview.net.

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2021.
Ubar: Towards fully end-to-end task-oriented dia-
log system with gpt-2. Proceedings of AAAI 2021,
35(16):14230–14238.

Steve J. Young, Milica Gasic, Blaise Thomson, and
Jason D. Williams. 2013. Pomdp-based statistical
spoken dialog systems: A review. Proc. IEEE,
101(5):1160–1179.

https://doi.org/10.18653/v1/P18-1136
https://doi.org/10.18653/v1/P18-1136
https://doi.org/10.18653/v1/P18-1136
https://doi.org/10.18653/v1/W19-5921
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1013
https://doi.org/10.18653/v1/D19-1013
https://doi.org/10.18653/v1/D19-1013
https://doi.org/10.18653/v1/2021.emnlp-main.182
https://doi.org/10.18653/v1/2021.emnlp-main.182
https://doi.org/10.18653/v1/2021.emnlp-main.182
https://doi.org/10.18653/v1/2020.acl-main.565
https://doi.org/10.18653/v1/2020.acl-main.565
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/N19-1126
https://doi.org/10.18653/v1/N19-1126
https://doi.org/10.18653/v1/n19-1375
https://doi.org/10.18653/v1/n19-1375
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://aclanthology.org/N07-2038/
https://aclanthology.org/N07-2038/
https://aclanthology.org/N07-2038/
https://aclanthology.org/C18-1320/
https://aclanthology.org/C18-1320/
https://aclanthology.org/C18-1320/
https://doi.org/10.18653/v1/e17-1042
https://doi.org/10.18653/v1/e17-1042
https://doi.org/10.18653/v1/e17-1042
https://openreview.net/forum?id=ryxnHhRqFm
https://openreview.net/forum?id=ryxnHhRqFm
https://ojs.aaai.org/index.php/AAAI/article/view/17674
https://ojs.aaai.org/index.php/AAAI/article/view/17674
https://doi.org/10.1109/JPROC.2012.2225812
https://doi.org/10.1109/JPROC.2012.2225812

	Introduction
	Related Work
	Methodology
	Notations
	Knowledge Base Embedding
	Autoregressive Entity Generation
	Trie Constraint

	Response Generation
	Logit Concatenation

	Joint Training

	Experiments
	Dataset
	Measuring Entity Consistency
	Experiment Settings
	Main Results
	Ablation Studies
	End-to-End Optimization and Entity Labels
	Trie Constraint for Entity Generation
	LogitConcat vs. Direct Concatenation
	Gap between Training and Evaluation using LogitConcat
	Number of Templates for Data Augmentation

	Case Study
	Conclusion

