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Abstract— In this study we investigated the use of simple
vibrotactile signals to simulate contact with a virtual object.
In particular we explored the relation between properties of
the signal and the perceived hardness of the object. The space
of stimuli is large, and we have no plausible a priori model
for the relationship of parameters to percept. Thus we made
use of non-parametric Bayesian methods, in particular utilizing
Gaussian process priors. We show that this method both gives
insight into the phenomenon of interest and well-predicts a
second, separate data set collected via the method of constant
stimuli. Thus we argue that it could be a fruitful approach for
attacking a variety of perceptual problems.

I. INTRODUCTION

Within the haptic domain, how hard an object is perceived
to be is driven by many different factors (force, position,
stiffness, damping, etc.), in a complex manner [1], [2]. Visual
cues can also be highly relevant, [3], [4]. A popular method
for simulating contact with virtual objects, for instance for
use in VR applications, is the use of vibrations at the moment
of contact. Several groups have previously investigated this
phenomenon, e.g.; Kuchenbecker [5] and Okamura [6] used
vibration signals built from mechanically motivated models
to augment the feeling of contact through a stylus with force
feedback, and showed that these improved the realism of
virtual contact.

In this study, we investigate similar vibratory signals, but
we used them to simulate passive contact directly on the
fingertip. We did no provide force feedback, but did use
high-quality virtual reality visuals: a virtual sphere falling
onto the upturned finger. While previous studies have derived
vibration parameters from measurements of real vibrations
resulting from contact with a small set of objects of varying
stiffness, we attempted to directly map the relationship of
vibration properties to their perceptual consequences. In
particular, we studied the perception of hardness, over a large
portion of the space of possible parameter values.

We took decaying sinusoids as in [6], determined by
frequency f and decay constant d, as our vibrotactile cues.
To determine how these parameters relate to the perception
of hardness of a virtual object, we presented participants with
two stimuli and asked them to report which one was ‘harder’
using a two-alternative forced-choice (2AFC) task.

In the classic psychophysical paradigm, a ‘reference’ or
‘standard’ stimulus would be fixed, and compared against a
collection of ‘comparison’ stimuli. Often the next step is to
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fit a psychometric function, of the form

P(“harder than reference”) = Ψ(aX +b), (1)

where Ψ is some sigmoid curve (generally a cumulative
density function), and X is some measure of the ‘hardness’
of the comparison, or at least a parameter of the comparison
stimulus that we expect to be linearly related to hardness
(perhaps after a transformation such as taking the logarithm)
[7].

However, we have no reason to expect perceived hardness
to be even monotonically related to the parameters of our
vibrotactile signals, let alone linearly related. Further, this
method allows us only to relate a single point in stimulus
space (the standard) to a one-dimensional subspace (the com-
parisons parametrized by X); mapping out any significant
portion of our 2-dimensional stimulus space in this manner
would require a very large amount of data.

Thus we instead take an approach in which we test many
different pairs of stimuli, and model a single function that
determines the probability of the judgment between any two
stimuli:

P(“A harder than B”) = Ψ(F(A)−F(B)), (2)

where F is a latent function we wish to estimate. We we do
not assume F to be linear. Instead, we use Gaussian process
priors to model F , which allows us to learn the shape of F
while enforcing only weak assumptions on that shape.

We believe this method has wide applicability in the
field of haptic perception, since there are many areas where
determining mappings of multi-dimensional stimulus spaces
to haptic percepts would be of great interest, but models for a
mapping are lacking (especially when working with artificial
stimuli).

Thus we begin with an explanation of our framework in
the general case of modeling two-alternative forced choice
data in a Bayesian manner and fitting with Gaussian process
priors. We then demonstrate the use of the method on an
experimental data set investigating virtual contact (described
herein). We validate the approach by comparing it to a second
experimental data set; using the same task but with data
collected via the method of constant stimuli — comparing
a set of comparison stimuli to a fixed reference, with each
comparison repeated several times. We show that this data
is well predicted by the non-parametric model.



II. MODELING

A. Set Up

We will suppose for the following that we have collected
data by presenting participants with two stimuli, S and S′,
and requiring the participant to choose one over the other on
some criteria (e.g., which is harder). We note, however, that
the general method is useful, with appropriate modifications,
for a wide variety of applications.

We will assume that our stimuli can be parametrized as
real vectors, S,S′ ∈ RD (some of these could be categorical
variables encoded as real numbers). We will denote by S� S′

the event that S is chosen over S′, so our data takes the
form of a set of n such relations, one for each trial: D =
{Si � S′i}n

i=1. We are interested in estimating the probability
of choices dependent on the values of the stimuli, P(S� S′),
which we will model by

P(S� S′) = Φ(F(S)−F(S′)), (3)

where Φ is the cumulative distribution function of N(0,1)
and F is an unknown ‘latent function’ which must be
estimated. To arrive at this model (which could also simply
be accepted on purely pragmatic grounds), consider the
following:

Imagine that each stimulus S has some perceived ‘amount’
of the property on which it is being judged, which we call
F(S). However, noise in the perceptual system means that
what is actually perceived when S is presented is

F̂(S) = F(S)+ ε, (4)

where ε ∼ N(0,σ2). When presented with two stimuli, a
participant makes the judgment by comparing F̂(S) and
F̂(S′), so that S� S′ exactly when F̂(S)> F̂(S′). Then

P(S� S′) = P(0 < F̂(S)− F̂(S′)

= P(0 < F(S)+ ε−F(S′)− ε
′)

= P(ε ′− ε < F(S)−F(S′))

= P
(

ε ′− ε√
2σ

<
F(S)−F(S′)√

2σ

)
= Φ

(
F(S)−F(S′)√

2σ

)
,

since ε ′−ε√
2σ
∼ N(0,1). Now, since only the relative values of

F are meaningful for the model, we can replace F with the
equivalent function F√

2σ
. In other words, we require that the

‘units’ of F be standard deviations of the noise on a single
comparison. Our model then reduces to (3).

While this is a useful and generally plausible model, one
should be cognizant of its consequences and limitations. One
is ‘symmetry’: it is not aware of any ordering of the stimuli
(say, that one is presented first, or that they are presented at
different hands). Another is a kind of transitivity: for any S, S′

and S∗, P(S� S′) and P(S′� S∗) completely determine P(S�
S∗), since F(S)−F(S∗) = F(S)−F(S′)+F(S′)−F(S∗).

If one suspects these properties fail in a significant way the
model should be modified. For example, if you think there
may be a bias due to the order of stimulus presentation, you

may add a term for this in the model, considering the pairs
now as ordered.

B. A Bayesian Approach

The question now is how we should estimate F . In
principal F could be any function RD→R, but without any
further assumptions we will grossly overfit. One approach
is to require F to have a certain parametric form, so that
fitting F requires only estimating a finite set of parameters;
for example we might assume it is linear in S, so that the
parameters are the linear coefficients (if we then require that
there is a ‘standard’ stimulus S that appears in each pair in the
data set, and D = 1, we reduce to the familiar psychometric
curve common in the literature). But there are cases when
we do not have good, theory driven models for F . To attack
these, we propose a non-parametric Bayesian approach.

Recall that by Bayes’s theorem,

P(F |D) ∝ P(D |F)P(F). (5)

Assuming our trials are independent, we obtain from (3) our
likelihood

P(D |F) =
n

∏
i=1

Φ(F(Si)−F(S′i)). (6)

It is through our prior, P(F), that we will impose structure
on our functions. To do so, we model P(F) as a Gaussian
Process (GP). (For further details and a much broader
exploration of Gaussian processes, see, e.g., [8].)

Consider the set of values of F as an infinite col-
lection of random variables, {F(S)}S∈RD . Such a collec-
tion is defined to be a Gaussian process if for any fi-
nite subset S1,S2, . . . ,Sk ∈ RD, the joint distribution of
F(S1),F(S2), . . . ,F(Sk) is Gaussian:

F(S1)
F(S2)

...
F(Sk)

∼ N ([µ(Si)]i, [K(Si,S j)]i, j) ,

where the vector [µ(Si)] is the mean vector and the matrix
[K(Si,S j)]i, j] is a covariance matrix; the entries of these
depend on the points Si, and thus may be considered as
functions µ : RD → R and K : RD×RD → R, respectively.
We denote this Gaussian process GP(µ,K).

For the discussion that follows, we will take µ ≡ 0 (for
reasons we will see, this is a reasonable choice in most
of our applications). The function K is called either the
covariance function or kernel, and must be chosen so that
for any selection of points Si, the resulting matrix is positive
semi-definite. This function tells us the (prior) covariance
between the values of the function F at various points, and
thus encodes our assumptions on the shape of F .

One popular, and useful, choice of covariance function is
the square-exponential covariance function,

K(S,S′) = α
2e
−∑

D
j=1

(S j−S′ j)2

2ρ2
j ,



where S j and S′ j denote the jth components of S and S′,
respectively. Note that under this covariance function, the
covariance between F(S) and F(S′) is large when S and
S′ are close, and decreases exponentially as the distance
between them increases. Thus, F is likely to take similar
values at points that are close together. In fact, draws from a
GP with this covariance function will be smooth (infinitely
differentiable) with probability 1. This makes it a good
choice for many applications (though there are a variety of
covariance functions that can be used, some with weaker
smoothness assumptions that may be more appropriate to an
application).

The constant α determines the ‘magnitude’ of draws from
the GP (note that K(S,S) = α2, so α2 is the variance of
single values about the mean).

The constant ρ j determines the rate with which the covari-
ance declines with increase in distance in the jth component
of S, and thus how quickly the function varies in the jth

direction. The larger ρ j, the less functions drawn from the
Gaussian process vary with the jth component of S, and thus
the less relevant this component is to determining the value of
F . Thus the process of learning ρ j from the data is sometimes
called ‘automatic relevance determination.’

The function F is determined by infinitely many values
(one for each possible S), but note that the likelihood only
depends on the value of F at the sampled data points. Thus,
in practice, when we estimated the posterior for F , what we
do is select a finite set of points S1,S2, . . . ,Sm that includes
all of our sampled points (and any other points we wish to
investigate), and take the posterior of F evaluated at these
points:

P([F(Si)]
m
i=1|D) ∝ P(D |[F(Si)]

m
i=1)P([F(Si)]

m
i=1) (7)

where the likelihood is again given by (6) and, by the defi-
nition of a Gaussian process, P([F(Si)]

m
i=1) is a multivariate

Gaussian,

P([F(Si)]
m
i=1)∼ N(0, [K(Si,S j)]i, j). (8)

To estimate our length-scale and magnitude parameters
from the data, we include priors for them, so our full
Bayesian model becomes

P(F |D) ∝ P(D |F)P(F |α,ρ)P(α,ρ). (9)

III. VIBRATION FOR CONTACT

A. Methods

We had 17 healthy participants, aged 18-61, 8 male and 9
female. All but one were right-handed. All participants gave
written informed consent prior to taking part in the study and
were naı̈ve to the purpose of the experiment. None of them
had any history of neurological disorders. All experimental
protocols were approved by WIRB.

Participants wore a head mounted display (the Oculus Rift)
and sat with their right arm set in an arm rest, their palm
facing up and their right index outstretched. They wore a
powermesh glove with fidicuals, allowing their hand to be
tracked by OptiTrack motion tracking cameras and to be

(a) Subjects wore an opti-
cally tracked fiducial glove
with vibrotactor strapped
over the fingertip.

(b) Virtual Ball Dropping
on Finger in VR. The ball
deforms slightly as it makes
contact.

Fig. 1

rendered in virtual reality co-localized with their real hand.
A commericially available TDK Piezo Haptic Actuator —
PowerHap 7G Type (12mm x 12mm x 1mm), encased in a
silicone layer — was attached to the tip of their right index
finger, with minimal pressure, using an adjustable latex strap,
Figure 1a. A pressure sensor (Tekscan FlexiForce ESS301
Sensor) was used to ensure the pressure was adequate. Pink
noise was played in the participant’s ears through the Rift,
to ensure they could not hear the motor vibrations. A virtual
gray ball was shown dropping onto the participant’s finger
(Figure 1b), and at the moment of contact a short signal
was played. On each trial, two ball drops were presented in
sequence, and the participant was asked “Which sphere was
Harder?”, and responded using an Oculus touch controller
held in their other hand. Across all trials, the ball displayed
had the same, slightly soft, NVIDIA FleX physics engine
properties, but the vibrations generated at contact were
different.

Our signals were simple decaying sinusoids, of the form

Ae−dt sin(2π f t),

where t is time and A, d and f , the amplitude, decay
constant and frequency, respectively, are adjustable parame-
ters. To avoid perceived intensity contributing to participant
responses, we first ran a short study in which we used two
interleaving staircases to determine at which amplitudes the
various frequency and decay constant combinations were
perceived to have approximately equal intensity. We used
those values of A when presenting each (d, f ) pair in our
experiment (Table 2).

We sampled at 108 distinct stimuli, represented as two-
dimensional vectors (d, f ). Values of d ranged from 10
to 200 s−1 and values of f from 25 to 250 Hz. Due to
limitations of the vibrotactor we could not sample a full grid
in this range (at certain values the vibrotactor could not reach
sufficient amplitudes). The sampled points are plotted over
the heatmap in Figure 3a. Each of the 17 participants was



Decay 20 60 100 120 170 200
10 Hz 21 168 967
25 Hz 1.45 6.43 11.42
50 Hz 1.36 3.01 4.66
75 Hz 0.32 2.24 4.16 10.36

100 Hz 0.81 1.70 2.58 6.81 17.55
150 Hz 0.24 1.51 2.78 5.31 12.78
200 Hz 0.37 1.24 2.10 3.90 11.73 16.42
250 Hz 0.24 1.09 1.93 4.10 13.25 18.70

Fig. 2: Amplitudes (V) for stimuli at various frequency and
decay constants. Values for decay constants not shown are
linearly interpolated from shown values at the corresponding
frequency.

presented with a random selection of pairs of vectors, chosen
so that each vector (d, f ) was displayed to each participant
in exactly two trials, once presented first and once presented
second.

In the same session we collected an additional data set
from the same 17 participants, to test against our Gaussian
process model. In these trials, we fixed a reference stimulus
at d = 100 s−1, f = 150 Hz, roughly in the center of the
space. We had participants compare this stimulus to 8 points
on the line f = 150 Hz and eight points on the line d = 100
s−1. Each trial was presented 14 times per participant, in
random order, with the comparison presented first on half
the trials and second on the other half.

B. Model and Fitting

We modeled our data as in (9), with likelihood as in (6),
using as a prior for F a Gaussian process with mean 0 and
square-exponential covariance function

K(( f ,d),( f ′,d′)) = α
2e
− ( f− f ′)2

2ρ2
f
− (d−d′)2

2ρ2
d .

Recall that hyperparameter α controls the magnitude of
draws from the process, while ρ f and ρd determine how
quickly functions drawn from the prior vary with f and d,
respectively. We used a N(0,1) prior for α and an inverse
Gamma prior for both ρ f and ρd . Before fitting we scaled
both f and d to have mean 0 and standard deviation 1,
thus ensuring our scale priors covered a reasonable range
of values.

We coded our model in the Bayesian modeling language
Stan [9], [10], and used its built-in MCMC sampler to obtain
4000 draws from our posterior for F , at a 19× 11 grid of
values including our sampled points. This posterior was fit
only using data from our first data set.

Note that F is unidentifiable; replacing F with F + k for
some constant k does not affect response probabilities, since
Φ((F(S)+ k)− (F(S′)+ k) = Φ(F(S)−F(S′)) — this why
we may safely set the mean of the prior to 0. We are only
interested in relative values of F . Thus we subtracted from
each draw of F its value at the central point d = 100, f = 150,

so that all values of the latent function are expressed relative
to the value at this point.

We compared the results of our fit to the response propor-
tions in our second data set, that is, the proportion of the time
each comparison was judged as ‘harder’ than the reference.

To make this comparison, we calculate the (point-wise)
posterior response quantiles from our posterior, observing
that, letting M be the number of ‘harder’ responses at a
particular level,

P(M ≤ K) =
K

∑
m=0

∫
P(M = m|F)P(F |D)d f . (10)

Recall P(F |D) is the posterior distribution for F , given our
Gaussian process prior and our data. Since we had 238 trials
at each level, for level comparison level S we have

P(M = m|F) =

(
238
m

)
pm(1− p)238−m, (11)

where p = Φ(F(S)−F(150,100)). We approximate the in-
tegral in each term of 10 by computing this value for each
of our 4000 draws from our posterior for F and taking the
mean. We then compute the cumulative sums and plot 80%
and 95% intervals (those between the .1 and .9 quantiles
and the .025 and .975 quantiles, respectively), along with
the median response (all scaled to proportions by dividing
by number of trials at a level).

IV. RESULTS AND DISCUSSION

We computed the posterior mean of the latent ‘hardness’
function at each point in our grid; a heat map of the results
is shown in Figure 3a.

The latent function is fairly flat, meaning differences in
perceived hardness were not large across most of the stimulus
space, but shows some interesting trends: stimuli seem to be
felt as most stiff when the frequency is around 200 Hz and
the decay constant is in the 40-50 s−1 range. The softest
stimuli occur when the frequency is low.

Because we have draws from a full posterior, it is also
simple to quantify the uncertainty of our predictions (up to
the assumptions of the model). For example, looking solely
at the mean of the posterior, we seem to see dips in the
latent function value from (30,150) to (20,150), and in fact
our posterior, even in the original model, has F(30,150) >
F(20,150) 89.5% of the time (we calculate this simply be
looking at the proportion of the 4000 draws in which this
ordering occurs), so we can be somewhat confident that this
trend really does exist in our data. On the other hand, we
would also see a small dip from (100,225) to (100,250),
but from our draws we only have around a 74% probability
of this ordering, so we are rather less confident (and indeed
in our second data set we will not see this trend).

1) Comparison to Second Data Set: We compare our
second data set to the posterior response quantiles predicted
by our Gaussian process model, Figures 4a and 4b. Note that
the plots show point-wise intervals, but the values of F in our
posterior are in fact highly correlated, so that for example if
we see response proportions in the low end of the interval at
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Fig. 3: Heat map of the mean of the posterior for the latent ‘hardness function’, relative to the value at (100 s−1,150 Hz)
(red diamond). Left: Fit with covariance stationary in d and f , white points show the locations of stimuli present in the data
set. Right: Fit with covariance stationary in 1

d and f . Values of F determine probabilities of stimuli being deemed harder
than one another, so if the value at (d, f ) is greater than that at (d′, f ′) by 1, the probability of (d, f ) being chosen as harder
than (d′, f ′) is Φ(1)≈ .84, if the difference is 1.5 the probability is Φ(1.5)≈ .93, etc.
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Fig. 4: Median posterior predictive response proportions when comparing against (100 s−1,150 Hz), as predicted by GP
model, with central intervals (80% in pink, 95% in light blue), plotted against actual response proportions. Left column:
Predictions on the line f = 150 Hz. Right Column: Predictions on the line d = 100 s−1. Top row: Predictions from model
with prior covariance stationary in f and d. Bottom row: Predictions from model with prior covariance stationary in f and
1
d .



one point, it is more likely that we will see low proportions
also at neighboring points. We see that our Gaussian Process
model has done a pretty good job of predicting our second
data set. At the same time, Figure 4b reveals something
interesting: the sharp dip from d = 40 s−1 to d = 20 s−1.
Our fit reflects this dip, which is good, but shows it is as
substantially smaller than what we see in the second data
set. The Gaussian process has perhaps over-smoothed the
effect.

In fact, it is easy to guess why. The square exponential
covariance function is what we call ‘stationary’: the covari-
ance between F(S) and F(S′) depends only on S−S′. This
means the function should vary at the same rate with d and
f everywhere in stimulus space. In many contexts this is
a safe assumption (even if we do not exactly believe it to
be true, small violations should be overcome by the data).
But here we might expect it to be violated rather badly: We
have expressed our points in (d, f ) space, so the covariance
between, say, (20 s−1,150 Hz) and (40 s−1,150 Hz) is the
same as between (180 s−1,150 Hz) and (200 s−1,150 Hz).
But the duration of a signal (defined as time to fall below a
fixed amplitude threshold) is proportional to 1

d . So a signal
with d = 20 s−1 is twice as long as one with d = 40 s−1,
while a signal with d = 180 s−1 is only 1.1 times as long
as a signal with d = 200 s−1 (and also in absolute terms
the difference in duration will be much smaller in the latter
case). So we should not be surprised to see F vary more
quickly with d when d is small.

With this in mind, we fit a new posterior, replacing d
with 1

d . Results (plotted in the original d for comparison)
are shown in figures 4c, 4d and 3b. As expected, our new
fit shows a sharper behaviour at low values of d (very
long stimuli appear to be experienced as softer), while the
modest changes with f are not effected. This illustrates the
importance of posterior checks, and careful examination of
even the modest assumptions of in our model.

2) Further directions: These results should not be taken
as the end of the story, but as a guide towards future
investigations. For example, it seems it would be wise to
investigate the dip with small d in more detail. The shape
of the latent function could also be taken as a starting point
for hypothesizing parametrized models.

We also note that the analysis above is only the tip of
the iceberg in terms of what can be done with Gaussian
processes. For example, different covariance functions can
encode different assumptions about the shape of F (perhaps
encoding periodicity or underlying monotonic trends). We
can also take different likelihoods; for example we get
an actually simpler model if the probability of our binary
outcome is Φ(F(S)). This could be used when we have a
single yes/no outcome dependent on a single stimulus, or
two stimuli with a fixed ordering encoded as a single vector,
which would allow the above analysis without the symmetry
condition.

Finally, we note that in addition to quantifying uncertainty
of inferences, possession of a full posterior allows the
development of efficient or adaptive sampling strategies that

attempt to find the most informative points at which to collect
new data.

V. CONCLUSIONS

Bayesian techniques with Gaussian process priors can be a
useful tool for exploring perceptual data where the underly-
ing relationship between stimuli and responses has unknown
form. In our experiment, it reveals a distinct relationship
between vibration parameters and perceived hardness of
virtual contact, which, while not large in magnitude, is borne
out by a posterior check against a second data set. In large
portions of the space participants seem largely insensitive to
changes in d and f , with values of the latent function varying
only slightly. Still, we appear to see peak hardness (from a
decaying sinusoid) when the frequency is around 200 Hz and
the decay constant is relatively small (∼ 40 s−1).

These methods could be applied to a range of haptic
phenomenon; for example we could expand the current study
by integrating visual hardness features as further parameters
of our stimuli. We hope to pursue these lines of inquiry in
future research.
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