
Virtual Consensus in Delos

Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri, Xiao Shi
Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming Liu, Filip Gruszczynski

Xianan Zhang, Huy Hoang, Ahmed Yossef, Francois Richard, Yee Jiun Song
Facebook, Inc.

Abstract
Consensus-based replicated systems are complex, mono-

lithic, and difficult to upgrade once deployed. As a result,
deployed systems do not benefit from innovative research,
and new consensus protocols rarely reach production. We
propose virtualizing consensus by virtualizing the shared log
API, allowing services to change consensus protocols without
downtime. Virtualization splits the logic of consensus into
the VirtualLog, a generic and reusable reconfiguration layer;
and pluggable ordering protocols called Loglets. Loglets are
simple, since they do not need to support reconfiguration
or leader election; diverse, consisting of different protocols,
codebases, and even deployment modes; and composable,
via RAID-like stacking and striping. We describe a produc-
tion database called Delos1 which leverages virtual consensus
for rapid, incremental development and deployment. Delos
reached production within 8 months, and 4 months later up-
graded its consensus protocol without downtime for a 10X
latency improvement. Delos can dynamically change its per-
formance properties by changing consensus protocols: we
can scale throughput by up to 10X by switching to a disaggre-
gated Loglet, and double the failure threshold of an instance
without sacrificing throughput via a striped Loglet.

1 Introduction

The last decade has seen significant research advances in
faster and more flexible consensus protocols. Unfortunately,
systems that use consensus to replicate state are monolithic,
complex, and difficult to evolve. As a result, deployed systems
rarely benefit from new research ideas (e.g., ZooKeeper [20]
still runs a decade-old protocol [22]); in turn, such ideas only
have real-world impact when entire new production systems
and applications are built from scratch around them (e.g.,
VMware’s CorfuDB [1] uses sharded acceptors [7, 16]; Face-
book’s LogDevice [3] implements flexible quorums [19];

1Delos is an island in the Cyclades, a few hundred miles from Paxos and
Corfu.

etcd [2] runs on Raft [39]). Contrast this state of affairs with
other areas such as OSes and networks, where modular de-
sign and clean layering allow plug-and-play adoption of new
mechanisms and incremental improvement of existing ones:
for example, a new type of SSD, a new filesystem layout, or
a new key-value store like RocksDB can each be deployed
with no modification to the layers above or below it.

Recently, the shared log has gained traction as an API for
consensus in research [7–9, 16, 37] and industry [1, 3, 23, 47].
Applications can replicate state via this API by appending
updates to the shared log, checking its tail, and reading back
updates from it. The consensus protocol is hidden behind the
shared log API, allowing applications to bind to any imple-
mentation at deployment time.

Unfortunately, an API on its own is not sufficient to en-
able incremental evolution. First, new implementations of
the shared log are difficult to deploy and operate: no support
exists for upgrading and migrating applications to different
implementations without downtime, which is untenable for
highly available services. Second, new implementations are
difficult to develop: the consensus protocol implementing the
shared log is itself a complex distributed system containing a
data plane (for ordering and storing commands durably) and a
control plane (for reconfiguring leadership, roles, parameters,
and membership). Existing protocols such as Raft aggres-
sively combine both planes into a single protocol; in doing so,
they give up the ability to incrementally change the data plane
(i.e., the ordering mechanism) without reimplementing the
entire control plane. As a result of these two limitations, sys-
tems have to be written and deployed from scratch around new
consensus protocols (e.g., ZooKeeper cannot be upgraded to
run over Raft [39] or CORFU [7]); and protocols have to be
rewritten around new ordering mechanisms (e.g., Raft cannot
be changed easily to support sharded acceptors).

In this paper, we virtualize consensus by virtualizing the
shared log API. We propose the novel abstraction of a virtu-
alized shared log (or VirtualLog). The VirtualLog exposes a
conventional shared log API; applications above it are oblivi-
ous to its virtualized nature. Under the hood, the VirtualLog

VirtualLog

Loglets

Database

NativeLoglet

BackupLoglet ZKLoglet

append
checkTail
readNext

append
checkTail
readNext
seal

Figure 1: Virtual consensus: servers replicate state via a
VirtualLog, which is mapped to underlying Loglets.

chains multiple shared log instances (called Loglets) into a
single shared log. Different Loglets in a VirtualLog can be
instances of the same ordering protocol with different pa-
rameters, leadership, or membership (e.g., different instances
of MultiPaxos [45]); they can be entirely distinct log imple-
mentations (e.g., Raft [39], LogDevice [3], Scalog [16], or
CORFU [7]); or they can be simple log shims over external
storage systems (e.g., ZooKeeper [20] or HDFS [43]). Vir-
tualization enables heterogeneous reconfiguration: a single
VirtualLog can span different types of Loglets and dynami-
cally switch between them.

We implemented virtual consensus in Delos, a database
that stores control plane state for Facebook. Delos has been in
production for over 18 months and currently processes over
1.8 billion transactions per day across all our deployments.
One of its use cases is Twine’s Resource Broker [44], which
stores metadata for the fleet of servers in Facebook; each
Delos deployment runs on 5 to 9 machines and manages
server reservations for a fraction of the fleet. Internally, Delos
is a shared log database [7, 8, 33]; it replicates state across
servers by appending and playing back commands on the
VirtualLog. Delos supports multiple application-facing APIs;
we have a Table API in production, while a second ZooKeeper
API is under development.

Virtual consensus in Delos simplified the deployment
and operation of consensus implementations. Virtualization
slashed time to deployment since we had the ability to de-
ploy the system rapidly with an initial Loglet implementation,
and later upgrade it without downtime. We reached produc-
tion within eight months with a simple Loglet implemented
as a shim over ZooKeeper (ZKLoglet); later, we obtained a
10X improvement in end-to-end latency in production by mi-
grating online to a new, custom-built Loglet implementation
(NativeLoglet). We also enabled seemingly infinite capacity
for the VirtualLog by migrating older segments to a Loglet
layered on cold storage (BackupLoglet); in turn, this allowed

Delos to provide operators with a point-in-time restore capa-
bility. Loglets can be converged (i.e., collocated on the same
machines as the database) or disaggregated (i.e., running on
an entirely different set of machines), allowing operators to
switch the Delos deployment mode on the fly to obtain differ-
ent performance and fault-tolerance properties.

Virtual consensus also simplifies the development of new
consensus implementations. Virtualization splits the complex
functionality of consensus into separate layers: a control plane
(the VirtualLog) that provides a generic reconfiguration capa-
bility; and a data plane (the Loglet) that provides critical-path
ordering. While the VirtualLog’s reconfiguration mechanism
can be used solely for migrating between entirely different
Loglet implementations, it can also switch between different
instances of the same Loglet protocol with changes to lead-
ership, roles, parameters, and membership. As a result, the
Loglet itself can be a statically configured protocol, without
any internal support for reconfiguration. In fact, the Loglet
does not even have to implement fault-tolerant consensus (i.e.,
be highly available for appends via leader election), as long as
it provides a fault-tolerant seal command, which is theoreti-
cally weaker and practically simpler to implement. When a
Loglet fails for appends, the VirtualLog seals it and switches
to a different Loglet, providing leader election and reconfig-
uration as a separate, reusable layer that can work with any
underlying Loglet.

Accordingly, new Loglets are simple to design and imple-
ment since they are not required to implement fault-tolerant
consensus or reconfiguration. To demonstrate this point, we
describe the Delos NativeLoglet, which uses a primary-driven
protocol that is unavailable for appends if the primary fails, but
can support seals as long as a quorum is alive. New Loglets
are also easy to construct via RAID-like composition; for
example, we describe StripedLoglet, a thin shim layer that
stitches together multiple Loglets to enable behavior equiva-
lent to rotating sequencers [35] and sharded acceptors [7, 16].

Virtual consensus has some limitations. The reusability of
VirtualLog-driven reconfiguration comes with a latency hit
for certain types of reconfigurations such as planned leader
changes. Loglets can optimize for specific cases by relying on
their own in-band reconfiguration instead of the VirtualLog.
A second limitation relates to generality: since we virtualize a
specific API for consensus that captures a total order of com-
mands, we do not currently support protocols that construct
partial orders based on operation commutativity [26, 36]. In
future work, we plan to extend virtual consensus to partially
ordered shared logs [33].

We are the first to propose a virtualized shared log
composed from heterogeneous log implementations. Prior
work composes a logical shared log directly from storage
servers [7, 9, 16, 47]; or virtualizes in the opposite direc-
tion, multiplexing homogenous streams over a single shared
log [8, 48]. Delos is the first replicated database that can
switch its consensus implementation on the fly to different

protocols, deployment modes, or codebases. While the theory
of consensus has always allowed learners and acceptors to be
disaggregated, Delos is also the first production system that
can switch between converged and disaggregated acceptors.

In this paper, we make the following contributions:

• We propose virtualizing consensus via the novel Vir-
tualLog and Loglet abstractions; and describe Delos, a
storage system that implements these abstractions.

• Using production data, we show Delos upgrading to
NativeLoglet without downtime for a 10X latency im-
provement.

• Using experiments, we show that Delos can: A) switch
to a disaggregated Loglet for a 10X improvement in
throughput under a 15ms p99 SLA; B) double its failure
threshold without lowering throughput via a Striped-
Loglet that rotates sequencers. Further, we show that
StripedLoglet can support over a million 1KB appends/s
on a log-only workload by sharding acceptors.

2 The Path to Virtual Consensus

Virtualization for faster deployment: In 2017, Facebook
needed a table store for its core control plane services with
strong guarantees on durability, consistency, and availability.
Two practical imperatives drove the design and development
of this system: fast deployment (it had to reach production
within 6-9 months) and incremental evolution (it had to sup-
port better performance over time).

At the time, Facebook already operated four different stor-
age systems: a ZooKeeper service; a shared log service based
on LogDevice [3]; a key-value service called ZippyDB [5];
and a replicated MySQL service [13]. None of these systems
fit the exact use case, either due to a mismatch in API (e.g.,
ZooKeeper does not provide a table API) or fault-tolerance
guarantees (e.g., the MySQL service provided inadequate
availability).

Further, these systems could not be easily modified to pro-
vide the required API or guarantees. Each of them was a mono-
lith: the database API could not be easily changed, nor could
the underlying consensus protocol be re-used. In some sys-
tems, no abstraction boundary existed between the database
and the consensus protocol. In other systems, an abstraction
boundary did exist in the form of a shared log API, allowing
the underlying consensus protocol to be reused; however, no
support existed to migrate from one implementation of the
abstraction to another.

Building yet another monolithic system from scratch – in-
cluding a new consensus implementation – was not feasible
since we had to hit deployment within 6-9 months. Layering
the system over an existing shared log such as LogDevice
would allow us to reach production quickly, but also tie us for

perpetuity to the fault-tolerance and performance properties
of that consensus implementation.

Our solution was to virtualize consensus. In the remainder
of this paper, we describe how virtual consensus allowed us
to reach production quickly with an existing implementation
of consensus, and then migrate without downtime to new
implementations.

Virtualization for faster development: Beyond fast ini-
tial deployment and online migration, virtualization also en-
abled faster development of new consensus implementations.
On its own, the shared log abstraction simplifies consensus-
based systems, separating applications from the logic of con-
sensus via a data-centric API. Virtualizing the shared log
further splits the consensus protocol into two layers: a control
plane, which includes the logic for reconfiguration, and a data
plane, which orders commands on the critical path.

In practice, such separation allowed us to incrementally
improve the system by re-implementing just the data plane of
the consensus protocol via new Loglets, while reusing the Vir-
tualLog control plane for features such as leader election and
membership changes. In the process, we completely changed
the operational characteristics and performance of the system,
as we describe later.

Importantly, such a separation also enables diversity in the
data plane. The last few years have seen a number of consen-
sus protocols with novel ordering mechanisms [3, 7, 14–16,
22, 24, 31, 35, 37, 39, 42], providing vastly different trade-offs
between performance and fault-tolerance. By making it easier
to implement such protocols and deploy them within running
systems, virtualization lowers the barrier to innovation.

3 Abstractions for Virtual Consensus

In this paper, we propose virtualizing consensus by virtual-
izing the shared log abstraction. We have three design goals
for virtualization. First, virtualization should be transparent
to applications, which should be unmodified and oblivious to
the virtualized nature of the log. Second, virtualization should
allow underlying logs to be simple and diverse, lowering
the barrier to new log implementations. Third, virtualization
should allow for migration between implementations without
downtime. We obtain these properties via two core abstrac-
tions.

In virtual consensus, the application operates above a Virtu-
alLog, which stitches together multiple independent Loglets.
The VirtualLog and Loglets expose a conventional shared log
API (see Figure 2). Applications can append an entry, receiv-
ing back a log position; call checkTail to obtain the first
unwritten position; call readNext to read the first entry in the
passed-in range; and call prefixTrim to indicate that a prefix
of the log can be trimmed. Virtualization requires two addi-
tions to this basic API: a seal command, which ensures that
any new appends fail; and an augmented checkTail response

class ILoglet {
logpos_t append(Entry payload);
pair<logpos_t,bool> checkTail();
Entry readNext(logpos_t min, logpos_t

max);
logpos_t prefixTrim(logpos_t trimpos);
void seal();

}
class IVirtualLog : public ILoglet {

bool reconfigExtend(LogCfg newcfg);
bool reconfigTruncate();
bool reconfigModify(LogCfg newcfg);

}

Figure 2: Loglet and VirtualLog APIs.

that indicates via a boolean whether the log is sealed. In ad-
dition, the VirtualLog also implements extra reconfiguration
APIs to add and remove Loglets.

The VirtualLog is the only required source of fault-tolerant
consensus in the system, providing a catch-all mechanism
for any type of reconfiguration. The Loglet does not have to
support fault-tolerant consensus, instead acting as a pluggable
data plane for failure-free ordering. Existing systems typically
struggle to implement monolithic consensus protocols that
are simple, fast, and fault-tolerant. In virtual consensus, we
divide and conquer: consensus in the VirtualLog is simple
and fault-tolerant (but not necessarily fast, since it is invoked
only on reconfigurations), while consensus in the Loglet is
simple and fast (but not necessarily fault-tolerant). We now
describe these abstractions and their interaction in detail.

3.1 The VirtualLog abstraction
The VirtualLog implements a logical shared log by chaining
a collection of underlying Loglets. In this section, we use the
term ‘client’ to refer to an application process that accesses
the VirtualLog. Clients accessing the VirtualLog see a shared,
append-only virtual address space that is strongly consistent
(i.e., linearizable [18]), failure-atomic, and highly available.
Internally, this address space is mapped to the individual
address spaces of different Loglets in a chain. Operations
to the VirtualLog are translated to operations on underlying
Loglets based on this chain-structured mapping.

The simplest possible VirtualLog is a trivial singleton chain:
[0,•) of the VirtualLog is mapped to [0,•) of a single Loglet.
In this case, commands to the VirtualLog are passed through
unmodified to the underlying Loglet. A more typical chain
consists of multiple Loglets, mapping different segments of
the virtual address space to each log: for example, [0,100)
is mapped to [0,100) of Loglet A; [100,150) is mapped to
[0,50) of Loglet B; [150,•) to [0,•) of C. We use the follow-

0 1 2

0 1 2

0 1 2 3 4 5

0 1 2 0 1 2

0 1 2

0 1 2

0 1 2 3 4 5

0 1 2

{trimmed}

II: during reconfigExtend III: after reconfigExtend

IV: after reconfigTruncateI: before reconfig

VL

SL

VL

SL

VL

SL

VL

SL SL

Figure 3: The VirtualLog reconfigures from a single Loglet
(I) by first sealing the Loglet (II) and installing a new Loglet
(III). Later, the old Loglet is removed (IV).

ing notation for such a chain: [0 A�! 100 B�! 150 C�! •].
Any append and checkTail commands on a VirtualLog

are directed to the last Loglet in the chain, while readNext
commands on a range are routed to the Loglet storing that
range. In the process, log positions are translated from the
virtual address space to each Loglet’s individual address space
(for example, in the chain described above, if an append that is
routed to Loglet C returns position 10, we map it to position
160 on the VirtualLog). Log positions can be contiguous
(i.e., every position has an entry) or sparse (i.e., positions
can be left unoccupied), depending on the underlying Loglet.
Importantly, only the last log in the chain is appendable (we
call this the active segment); the other logs are sealed and
return errors on appends (we call these sealed segments).

The VirtualLog can be reconfigured to a new chain via its
API (see Figure 2). The reconfigExtend call changes the
active segment of the VirtualLog so that new appends are
directed to an entirely different Loglet. Reconfigurations can
also modify sealed segments via the reconfigModify call
(e.g., to replace failed servers within a sealed Loglet). The
reconfigTruncate call is used to remove the first sealed
segment from the chain (e.g., when the VirtualLog’s address
space is trimmed).

3.2 VirtualLog design
The VirtualLog is composed of two distinct components: a
client-side layer exposing the shared log API, which routes op-
erations to underlying Loglets based on the chain-structured
mapping; and a logically centralized metadata component
(MetaStore) that durably stores the chain. Each client main-
tains a local (potentially stale) cached copy of the chain.

The MetaStore component has a simple API: it is a single
versioned register supporting a conditional write. Reading the
MetaStore returns a value with an attached version. Writing

to it requires supplying a new value and an expected existing
version.

The primary technical challenge for the VirtualLog is pro-
viding clients with a shared, strongly consistent, and highly
available virtual address space. In steady-state, when the chain
remains unchanged, this task is trivial: the client-side layer
can use its locally cached copy of the chain to route opera-
tions. However, the chain can be changed via the VirtualLog
reconfiguration APIs shown in Figure 2.

Any client can initiate a reconfiguration, or complete a
reconfiguration started by some other client. Reconfigura-
tion involves three steps: sealing the old chain, installing
the new chain on the MetaStore, and fetching the new chain
from the MetaStore. The following reconfiguration protocol
is expressed entirely in the form of data-centric operations
against the Loglet and MetaStore; it assumes nothing about
the internal implementation of either component.

Step 1: Sealing the current chain by sealing its last
Loglet: The first step of a reconfiguration involves sealing
the current chain (Ci) to stop new appends from succeeding
within it. To seal the current chain, the reconfiguring client
simply calls seal on the active segment, since this is the only
segment that receives appends, and all other segments are
already sealed. Seals on a Loglet are idempotent; accordingly,
multiple clients can concurrently seal the current chain. Once
the current chain is sealed by the reconfiguring client, any
subsequent append on the current chain by a client returns
an error. After sealing the active segment, the client calls
checkTail to retrieve its tail; this determines the start of the
new active segment.

Step 2: Installing the new chain in the MetaStore: Once
the old chain Ci is sealed, the reconfiguring client writes a
new chain Ci+1 to the MetaStore. The MetaStore is simply a
versioned register supporting a conditional write; accordingly,
it only accepts the new chain Ci+1 if the existing chain is
Ci. In effect, multiple reconfiguring clients – after running
step 1 idempotently – can race to install the new chain in the
MetaStore, with at most one guaranteed to win. The chain
is stored as a list of segments with start/stop positions, each
with an opaque Loglet-specific configuration.

Step 3: Fetching the new chain from the MetaStore: In
the final step, the reconfiguring client fetches the latest chain
from the MetaStore. In the common case, this step can be
omitted if the reconfiguring client succeeded in installing its
candidate chain in Step 2. Alternatively, if the write in Step 2
failed, some other client may have won the race and installed
a different chain, which we have to fetch.
Concurrency: After a client seals a chain in Step 1, it is
possible that other clients continue operating within it. An
append to the VirtualLog using the sealed chain will be routed
to its last Loglet, which is now sealed in the new chain. As
a result, a client issuing appends in the old chain will obtain
an error code indicating that the Loglet is sealed; it will then
fetch the latest chain from the MetaStore and retry.

A checkTail to the VirtualLog using the sealed chain also
gets routed to the last Loglet in the chain. In response, the
Loglet returns not just its tail position, but also a bit indicating
whether or not it is sealed. If the Loglet has been sealed, then
the client knows that it is operating on a stale chain, which
means in turn that the computed tail is likely to not be the true
tail of the VirtualLog. In this case, it fetches the latest chain
from the MetaStore and retries.
Failure Atomicity: When a client encounters a sealed chain,
it is possible that it does not find a newer chain in the MetaS-
tore. This can happen if the reconfiguring client (which sealed
the chain) either failed or got delayed after the seal step but
before installing the new chain. In this case, after a time-out
period, the client ‘rolls forward’ the reconfiguration by in-
stalling its own new chain. Note that the client completing the
reconfiguration does not know the original intention of the
failed client (e.g., if it was reconfiguring to a different Loglet
type); hence, it creates a default new chain by cloning the
configuration of the previous active segment.
Reconfiguration Policy: The protocol above provides a
generic mechanism for reconfiguration. However, it has to
be invoked based on some policy. There are three primary
drivers of reconfiguration. First, planned reconfigurations
(e.g., upgrading to a faster Loglet) are driven via a com-
mand line tool by operators. Second, the VirtualLog calls
reconfigTruncate on itself when it trims the entirety of
its first sealed Loglet while servicing a prefixTrim. For ex-
ample, if the application calls prefixTrim(100) on chain
[0 A�! 100 B�! •]; the VirtualLog trims all of A and then re-
configures to chain [100 B�! •]. Third, individual Loglets that
do not implement their own leader election or reconfigura-
tion are responsible for detecting failures and requesting a
reconfigExtend on the VirtualLog, as we describe later.

A subtle point is that an old chain only has to be sealed
if it conflicts with a newer chain: i.e., the new chain remaps
some unwritten virtual address to a different Loglet. Recon-
figurations for sealed segments (e.g., to rebuild failed servers
in a sealed Loglet, or to copy and remap a sealed segment to a
different Loglet) do not change the locations of unwritten vir-
tual addresses. As a result, they do not necessarily require the
old chain to be sealed first before the new chain is installed;
different clients can concurrently operate in the old and new
chains. Similarly, truncation (i.e., removing the first segment)
does not require the old chain to be sealed; if a client with
the old chain tries to access an address on a truncated Loglet,
it may succeed or receive an error saying the entry has been
deleted. In practice, this means rebuild and GC activity on
sealed segments does not interfere with appends at the tail of
the VirtualLog.

3.3 The VirtualLog MetaStore
As described above, the VirtualLog stores a mapping – its
chain of constituent Loglets – in a MetaStore: a single ver-

sioned register supporting a conditional write predicated on
the current version. We now discuss the requirements and
design space for this component.

The VirtualLog MetaStore is a necessary and sufficient
source of fault-tolerant consensus in our architecture; as we
describe later, Loglets are not required to implement con-
sensus. The MetaStore has to be highly available for writes;
accordingly, it requires a fault-tolerant consensus protocol
like Paxos. Since the VirtualLog (and its MetaStore) is a sep-
arate, reusable layer, we need to implement this fault-tolerant
consensus protocol only once. Further, the MetaStore is not
required to be particularly fast, since it is accessed by the
VirtualLog only during reconfigurations.

Why does the VirtualLog require its own MetaStore? Ex-
isting reconfigurable systems often store similar information
(e.g., the set of servers in the next configuration) inline with
the same total order as other commands (within the last con-
figuration [34] or a combination of the old and new configu-
rations [39]). In this case, the steps of sealing the old chain
and writing the membership of the new chain can be done in
a single combined operation. In the VirtualLog, this would be
equivalent to storing the identity of the next Loglet within the
current active Loglet while sealing it. However, such a design
requires the Loglet itself to be highly available for writes (i.e.,
implement fault-tolerant consensus), since reconfiguring to
a new Loglet would require a new entry to be written to the
current Loglet. With a separate MetaStore, we eliminate the
requirement of fault-tolerant consensus for each Loglet. Since
one of our design goals is to make Loglets simple and diverse,
we choose to use a separate MetaStore.

Using a separate MetaStore means the common-case la-
tency of a reconfiguration consists of a seal, a checkTail,
and a write to the MetaStore. In our current setting (con-
trol plane applications running within a single data center),
reconfiguration latencies of 10s of ms are tenable. If recon-
figuration is driven by failure, the latency of failure detection
is typically multiple seconds in any case, to avoid false posi-
tives [30]. In the future, when we run across regions, it may
be important to optimize for planned reconfiguration (e.g., re-
placing servers); since the Loglet is still available in this case,
we can potentially reconfigure by storing inline commands
within the Loglet itself, borrowing existing techniques such
as a-windows [25, 34].

3.4 The Loglet abstraction
The Loglet is the data plane abstraction in virtual consensus:
a shared log designed to operate as a segment of the Virtual-
Log. The requirements for a Loglet are minimal: it provides
totally ordered, durable storage via the shared log API. Sig-
nificantly, the Loglet can operate within a static configuration;
it does not have to provide support for role or membership
changes. It does not have to support leader election, either;
i.e., it is not required to provide high availability for append

calls. Instead, the Loglet provides a highly available seal
command that prevents new appends from being successfully
acknowledged. The VirtualLog uses such a sealing capability
to support highly available append calls via reconfiguration,
as described earlier in this section.

A seal bit does not require fault-tolerant consensus. Com-
pared to similar data types that are equivalent to consensus, it
differs from a write-once register [42], since only one ‘value’
can be proposed (i.e., the bit can be set); and a sticky bit [40],
since it has only two states (undefined and set) rather than
three. It can be implemented via a fault-tolerant atomic regis-
ter that stores arbitrary values [6, 11], which in turn is weaker
than consensus and not subject to the FLP impossibility re-
sult [17]. As we describe later, a seal is also much simpler
to implement than a highly available append.

In addition to supporting seal, the Loglet provides an
augmented checkTail to return its sealed status along with
the current tail (i.e., checkTail returns a (tail pos,sealbit)
tuple rather than a single tail position). To lower the burden
of implementing this extra call on each Loglet, it is designed
to have weak semantics: the tail position and seal status do
not need to be checked atomically. Instead, the checkTail
call is equivalent to a conventional checkTail and a checkSeal
executed in parallel, combined in a single call for efficiency.

In similar vein, a successful seal call ensures that any new
append call will not be successfully acknowledged to the ap-
pending client; however, these failed appends can become
durable and be reflected by future checkTail calls on the
Loglet due to specific failure scenarios. As a result, calling
checkTail on a sealed log can return increasing values for
the tail position even after the log is successfully sealed. These
‘zombie’ appends on a sealed log do not appear on the Vir-
tualLog’s address space, which maps to fixed-size segments
of the Loglet’s address space (i.e., if the VirtualLog chain
is [0 A�! 100 B�! •], appends on log A can become durable
beyond 100 without any impact on the VirtualLog). These
semantics are sufficient to implement a linearizable Virtual-
Log: all we need is that any append on a sealed log throws
an exception, and that any checkTail returns the seal status
correctly.

The Loglet API provides a common denominator interface
for different log implementations. Such implementations may
provide availability for appends via internal leader election
protocols; they may even support their own reconfiguration
protocols for adding and removing storage servers. In such
cases, the VirtualLog can be used to reconfigure across dif-
ferent Loglet types, while each Loglet can perform its own
leader election and membership changes. To draw an analogy
with storage stacks, Loglets can be functionally simple (e.g.,
like hard disks) or rich (e.g., like SSDs).

The log positions returned by a Loglet can be contiguous
or sparse, depending on its internal implementation. Loglets
that implement their own leader election or reconfiguration
protocols typically expose sparse address spaces, since the log

Delos
runtime

VirtualLog

Table API

(converged)
NativeLoglet

local storage
(RocksDB)

ZK API

MetaStore

(disagg)
ZKLoglet

client

append/read/…

append/read/…

propose/sync

more APIs

more Loglets

API

Core

Loglet (disagg)
LDLoglet

apply

experimental

production

Figure 4: Delos design: multiple APIs can run over a Core
platform, which in turn can switch dynamically between mul-
tiple Loglet implementations.

position often embeds some notion of a membership epoch.
In the case where the Loglet operates within a static con-

figuration and relies on the VirtualLog for any form of recon-
figuration, it reacts to failures by invoking reconfigExtend
on the VirtualLog, which seals it and switches to a different
Loglet. In this case, each Loglet is responsible for its own fail-
ure detection, and for supplying a new Loglet configuration
minus the failed servers. In other words, while the Virtual-
Log provides the mechanism for reconfiguration, Loglets are
partially responsible for the policy of reconfiguration.

4 Delos: Design and Implementation

Delos is a replicated storage system for control plane services.
The design of Delos is driven by a number of requirements
unique to control plane services: low dependencies on other
services; strong guarantees for durability, availability, and
consistency; and rich and flexible storage APIs. Delos is a
fully replicated ACID database providing strict serializability.
It does not implement transparent sharding or multi-shard
transactions, but can be layered under other systems that pro-
vide these capabilities. Delos occupies a similar role in the
Facebook stack to Google’s Chubby [12], or the open-source
etcd [2] and ZooKeeper [20].

The Delos database is similar to Tango [8]. Each Delos
server maintains a local copy of state in RocksDB and keeps
this state synchronized via state machine replication (SMR)
over the VirtualLog. When a server receives a read-write trans-
action, it serializes and appends it to the VirtualLog without
executing it. The server then synchronizes with the Virtual-
Log; when it encounters a transaction in the log (whether
appended by itself or other servers), it executes the operation
within a single thread as a failure-atomic transaction on its
local RocksDB. The transaction returns when the appending
server encounters it in the VirtualLog and applies it to the

local RocksDB store. To perform a read-only transaction, the
server first checks the current tail of the VirtualLog (obtaining
a linearization position); it then synchronizes its local state
with the VirtualLog until that position. The read-only trans-
action is then executed on the local RocksDB snapshot. For
efficiency, Delos borrows a technique from Tango, queuing
multiple read-only transactions behind a single outstanding
synchronization with the VirtualLog.

As Figure 4 shows, the logic described above is separated
into three layers on each Delos server: an API-specific wrap-
per at the top; a common Core consisting of a runtime that
exposes an SMR interface, which in turn interacts with the
VirtualLog; and individual Loglets under the VirtualLog. This
layered design provides extensibility in two dimensions. First,
Delos can support multiple Loglets under the VirtualLog,
which is the focus of this paper. Second, Delos can support
multiple application-facing APIs on a single platform. Each
API wrapper is a thin layer of code that interacts with the De-
los runtime and provides serialization logic against RocksDB.
We support a Table API in production, with support for trans-
actions, range queries, and secondary indices; we are currently
deploying a second API identical to ZooKeeper. The ability
to support multiple APIs on a common base is not novel:
most state machine replication libraries treat the application
as a black box. However, Delos provides a larger subset of
application-agnostic functionality within the common Core,
including local durable storage, backups, and state transfer
when new servers join.

4.1 The Delos VirtualLog
In Delos, the VirtualLog is implemented via a combination
of a client-side library and a MetaStore implementation. The
library code implements the protocol described in Section
3.2, interacting with underlying Loglet implementations and
the MetaStore. Initially, Delos went to production with the
MetaStore residing on an external ZooKeeper service as a
single key/value pair. Later, to remove this external depen-
dency, we implemented an embedded MetaStore that runs
on the same set of Delos servers as the database layer and
VirtualLog library code.

To implement this embedded MetaStore, we used Lam-
port’s construction of a replicated state machine from the orig-
inal Paxos paper [25], which uses a sequence of independent
Paxos instances. Each such instance is a simple, unoptimized
implementation of canonical single-slot Paxos, incurring two
round-trips to a quorum for both writes and reads. As in Lam-
port’s description, each Paxos instance stores the membership
of the next instance. We further simplify the protocol by dis-
allowing pipelined writes at each proposer, and removing
liveness optimizations such as leader election across multiple
slots.

Such a protocol has inadequate latency and throughput to be
used in the critical path of ordering commands, which is why

Loglet Consensus Deployment Prod Use
ZK Yes Disagg Yes Bootstrap
Native No Conv/Disagg Yes Primary
Backup Yes Disagg Yes Backup
LogDevice Yes Disagg No Perf
Striped No Conv/Disagg No Perf

Figure 5: Different Loglet implementations in Delos.

so many (complex) variants of Multi-Paxos exist. However,
it is more than sufficient for a control plane protocol that is
invoked only for reconfigurations.

4.2 The Delos Loglet(s)
Loglets can be converged, running on the Delos database
servers; or disaggregated, as shims on the Delos servers ac-
cessing an external service. Each deployment model has its
benefits: a converged log allows Delos to operate without a
critical path service dependency, and without incurring the
extra latency of accessing an external service. Disaggrega-
tion enables higher throughput by placing the log on a stor-
age tier that can be independently scaled and I/O-isolated
from the database servers. Delos currently supports three
disaggregated Loglets (see Figure 5): ZKLoglet stores log
entries on a ZooKeeper namespace; LogDeviceLoglet is a
pass-through wrapper for a LogDevice service; BackupLoglet
layers over an HDFS-like filesystem service used for cold
storage. All three backing systems – ZooKeeper, LogDevice,
and the HDFS-like filesystem – internally implement fault-
tolerant consensus, including leader election and reconfigu-
ration; Delos uses the VirtualLog solely to switch to/from
them.

4.2.1 Loglets sans consensus: NativeLoglet

We argued earlier that Loglets can be simple since they do
not require fault-tolerant consensus (i.e., highly available ap-
pends) or any form of reconfiguration. We now describe the
NativeLoglet, which illustrates this point. A NativeLoglet
can be either converged or disaggregated; we describe its
converged form, which is how we use it in production.

Each Delos server – in addition to running the materializa-
tion logic and the VirtualLog code – runs a NativeLoglet client
and a NativeLoglet server (or LogServer). One of the Delos
servers also runs a sequencer component. The NativeLoglet
is available for seal and checkTail as long as a majority of
LogServers are alive; and for append if the sequencer is also
alive. Each LogServer stores a local on-disk log, along with
a seal bit; once the seal bit is set, the LogServer rejects new
appends to its local log. The local log stores commands in a
strictly ascending order that can have gaps (i.e., it may not
store every command).

We first define some terms before describing the protocol.
A command is locally committed on a particular LogServer
after it has been written and synced to its local log. The local
tail for a particular LogServer is the first unwritten position
in its local log. A command is globally committed once it is
locally committed on a majority of LogServers and all pre-
vious commands have been globally committed. The global
tail of the NativeLoglet is the first globally uncommitted log
position. The NativeLoglet does not have gaps; i.e., every
position from 0 up to the global tail stores a globally com-
mitted command. Each component (i.e., LogServers, clients,
and the sequencer) maintains a knownTail variable: the global
tail it currently knows about, which can trail the actual global
tail. Components piggyback knownTail on the messages they
exchange, updating their local value if they see a higher one.
append: To append commands to the NativeLoglet, Delos
servers send requests to the sequencer. The sequencer assigns
a position to each command and forwards the request to all
LogServers. It considers the append globally committed (and
acknowledges to the client) once it receives successful re-
sponses from a majority of unsealed LogServers. If a majority
of LogServers report that they have been sealed, an error is
returned indicating that the NativeLoglet is sealed. In all other
cases where a majority of LogServers respond negatively or
fail to respond before a timeout, the sequencer retries the
append. Retries are idempotent (i.e., the same command is
written to the same position), and the sequencer continues to
retry until the append succeeds or the NativeLoglet is sealed.

Each LogServer locally commits a particular log position
n only after the previous position n� 1 has either (1) been
locally committed on the same server, or (2) has been globally
committed on a majority of servers (i.e., knownTail > n�1).
The sequencer maintains an outgoing queue of appends for
each LogServer, and omits sending a command to a particular
LogServer if it knows the command has already been globally
committed. As a result, slow LogServers do not block appends
from completing on other LogServers and a trailing LogServer
can catch up more easily because it is allowed to omit storing
commands that are already globally committed.
seal: Any client can seal the NativeLoglet by contacting each
LogServer to set its seal bit. If the seal completes successfully
– i.e., a majority of LogServers respond – future appends are
guaranteed to return an error code indicating the NativeLoglet
is sealed. Note that a successful seal operation can leave
different LogServers with different local tails.
checkTail: This call returns both the current global tail of
the NativeLoglet, as well as its current seal status. Any client
can issue a checkTail by sending a command to all the
LogServers and waiting for a majority to respond. Once a ma-
jority responds, the checkTail call follows a simple 5-state
state machine, as described in Figure 6. For ease of exposition,
we assume that no more than a majority responds; if this is not
true, the protocol below can work trivially by discarding the
extra responses, though in practice we use the additional infor-

none-sealed
diff-tail

some-sealed all-sealed
diff-tail

none-sealed
max-tail

all-sealed
max-tail

wait for
max tail

wait for
max tail

repair

seal +
retry

seal +
retry

seal +
retry

Figure 6: NativeLoglet checkTail state machine.

mation for better performance. Three outcomes are possible
for the returned seal bits:

1. all-sealed: In the case where all responding LogServers
are sealed and they all return the same local tail X, the return
value is (X, true). However, it is possible that the LogServers
can have different local tails (e.g., if a seal arrives while an
append is ongoing). In this case, the client ‘repairs’ the re-
sponding LogServers to the maximum returned position Xmax,
copying over entries from the LogServers that have them (and
bypassing the seal bit). It then returns Xmax to the application.
Note that repair is safe: the single sequencer ensures that there
can never be different entries for the same position on differ-
ent LogServers. This repair activity can result in the ‘zombie’
appends described in Section 3.4, where appends on a sealed
Loglet are not acknowledged but can complete later due to
repairs.

2. some-sealed: In the case where the responding
LogServers have a mix of sealed and unsealed status bits,
the client issues a seal first and then reissues the checkTail.
In the absence of an adversarial failure pattern (e.g., where the
seal continually lands on a different majority), the subsequent
checkTail should return the all-sealed case above where all
responding LogServers are sealed.

3. none-sealed: In the case where none of the respond-
ing LogServers are sealed, the client picks the maximum
position Xmax and then waits for its own knownTail to reach
this position. While waiting, if the client discovers that some
LogServer is sealed, the checkTail is in the some-sealed
state described above, and proceeds accordingly. If the se-
quencer fails, the client’s knownTail may never reach Xmax;
in this case, the Loglet will eventually be sealed, putting the
client in the some-sealed or all-sealed state.

The latency of the checkTail in the none-sealed case
depends on how quickly the client’s knownTail is updated,
along with its knowledge of the seal status of a majority
of LogServers. Clients quickly and efficiently discover this
information via an extra API exposed by each LogServer,
which allows them to ask for notification when the local tail
reaches a particular position or the LogServer is sealed.
readNext: Loglet semantics dictate that readNext behavior
is defined only for log positions before the return value of a

previous checkTail call from the same client. As a result, a
readNext call translates to a read on a particular log position
that is already known to exist. This simplifies the readNext
implementation: the client first checks the locally collocated
LogServer to find the entry. If it can’t find the entry locally, it
issues a read to some other LogServer. Note that a quorum is
not required for reads, since we already know that the entry
has been committed; we merely have to locate a copy.

To reiterate, the NativeLoglet does not implement fault-
tolerant consensus: it becomes unavailable for appends if the
sequencer fails. As a result, the append path has no complex
leader election logic. Instead, the NativeLoglet implements
a highly available seal, which is a trivial operation that sets
a bit on a quorum of servers. The checkTail call follows
a compact state machine for determining the seal status and
global tail of the NativeLoglet. Practically, we found this
protocol much easier to implement than fault-tolerant consen-
sus: it took just under 4 months to implement and deploy a
production-quality NativeLoglet.

When the sequencer or one of the LogServers fails, the
NativeLoglet is responsible for detecting this failure and in-
voking reconfiguration on the VirtualLog (which in turn seals
it and switches to a new NativeLoglet). In our implementation,
we use a combination of in-band detection (e.g., the sequencer
detecting that it has rebooted, or that other servers are per-
sistently down) and out-of-band signals (via a gossip-based
failure detector, as well as information from the container
manager) to trigger reconfiguration. In other words, the Vir-
tualLog provides the mechanism of reconfiguration / leader
election, while the NativeLoglet handles the policy by select-
ing the LogServers and sequencer of the new NativeLoglet
instance.

4.2.2 Loglets via composition: StripedLoglet

The StripedLoglet stripes a logical address space across multi-
ple underlying Loglets. The mapping between address spaces
is a simple and deterministic striping: logical position L0
maps to position A0 on stripe A; L1 maps to position B0; L2
to C0; L3 to A1; and so on (see Figure 7).

Incoming append calls to the StripedLoglet are routed to
individual stripe Loglets in round-robin order. This routing
is done independently at each StripedLoglet client (i.e., the
Delos database servers). When the append on an individual
Loglet returns with a stripe-specific position (e.g., A1), we
map it back to a logical position (e.g., L3). However, we do
not acknowledge the append to the StripedLoglet client im-
mediately; instead, we wait until all prior logical positions
have been filled, across all stripes. This ensures linearizability
for the StripedLoglet: if an append starts after another append
completes, it obtains a greater logical position. For example,
in Figure 7, an append is routed to stripe B at position B2
or L7; but it is not acknowledged or reflected by checkTail
until L6 appears on stripe A at position A2.

L0 L1 L2 L3 L4 L5 L7

L0 L3 L1 L4 L7 L2 L5

Stripe A Stripe B Stripe C

StripedLoglet

A0 A1 A2 B0 B1 B2 C0 C1 C2

Stripe A Stripe B

(sharded acceptors)

Stripe A

Stripe B

(rotating sequencer)

Figure 7: The StripedLoglet stripes over underlying Loglets.
Loglets can be disjoint (sharded acceptors) or have over-
lapping membership but different sequencers (rotating se-
quencer).

A checkTail call fans out to all stripes and returns the first
unfilled logical position, while readNext calls are directed
to the corresponding stripe. For this protocol to work, the
StripedLoglet requires the stripe Loglets to have contiguous
log positions. While the NativeLoglet provides this property,
LogDeviceLoglet does not: LogDevice embeds an epoch num-
ber (generated by its own internal reconfiguration mechanism)
within the log position, so that positions are typically contigu-
ous but can skip forward if an internal reconfiguration takes
place.

We found composition to be a simple and effective way to
create protocols with new properties. The StripedLoglet is a
shim layer with only around 300 lines of code and consists
entirely of invocations on the underlying Loglets; yet it pro-
vides a versatile building block for scaling throughput. We
experimented with two uses of it (shown in Figure 7):
Rotating sequencer: A StripedLoglet can be composed from
NativeLoglets with identical LogServers but different se-
quencers. For instance, a 9-node NativeLoglet will bottleneck
on the single sequencer, which has to transmit each entry 8
times. Instead, a StripedLoglet can be layered over two Na-
tiveLoglet stripes, each of which uses the same LogServers
but a different sequencer.
Sharded acceptors: A StripedLoglet can be layered over
multiple disaggregated Loglets, achieving a linear scaling
of throughput similar to CORFU [7] or Scalog [16], albeit via
a design that doesn’t require a centralized sequencer or sepa-
rate ordering layer. StripedLoglet also differs by relying on
virtualization: it implements a Loglet API over other Loglets.
As a result, StripedLoglet can scale any existing Loglet while
inheriting its fault-tolerance properties (i.e., the StripedLoglet
fails if any of its stripes fail).

Note that the StripedLoglet code is identical for both these
use cases: what changes is the composition of the individual

Loglets. These Loglets can have different memberships (and
even entirely different Loglet implementations) in the sharded
acceptor case; or identical membership (and the same Loglet
implementation) but different sequencers in the rotating se-
quencer case.

From the viewpoint of the VirtualLog, the StripedLoglet is
like any other Loglet; it has to be sealed as a whole (i.e., every
stripe has to be sealed) even if only one of its stripes needs to
be changed via the VirtualLog reconfiguration mechanism. In
the future, we plan to explore schemes for selectively sealing
and replacing a single stripe.

5 Evaluation

We use two hardware setups for evaluating Delos. The first
is the production hardware that most of our instances run on,
which consists of 5 servers with shared boot SSDs. Since De-
los has to run in a variety of data centers, we cannot assume
specific or dedicated storage hardware. The second is bench-
mark hardware with dedicated NVMe SSDs. In both setups,
we run within Twine [44] containers, and have production-
grade debug logging and monitoring enabled.

We show numbers for two workloads. The first is real pro-
duction traffic. For a representative deployment, the workload
consists of 425 queries/sec and 150 puts/sec on the Delos
Table API. Write size has a median of 500 bytes and a max
of 150KB. Each deployment stores between 1GB and 10GB.
In production, Delos takes local snapshots every 10 minutes
and ships them to a backup service every 20 minutes.

The second workload is a synthetic one consisting of single-
key puts and gets. The value consists of a single 1KB blob.
The keys are chosen from an address space of 10M keys; we
select keys randomly with a uniform distribution and generate
random values, since this provides a lower bound for perfor-
mance by reducing caching and compression opportunities,
respectively. We pre-write the database before each run with
10GB; this matches our production data sizes.

Delos runs with two Loglets in production: ZKLoglet and
NativeLoglet. In our experiments, we additionally use LogDe-
viceLoglet (or LDLoglet) and StripedLoglet. The external
ZooKeeper service used by ZKLoglet lives on a set of 5
servers similar to our production hardware, running on shared
boot SSDs and collocated with other jobs. LDLoglet uses a
LogDevice service deployed on a set of 5 servers similar to
our benchmark hardware, with dedicated NVMe SSDs.

In all the graphs, we report 99th percentile latency over
1-minute windows. We assume a p99 SLA of 15ms, which
matches our production requirements.

5.1 The Benefit of Virtualization
Virtual consensus allowed Delos to upgrade its consensus
protocol in production without downtime. In Figure 8, we
show the actual switch-over happening from ZKLoglet to

 0.1
 1

 10
 100

La
te

nc
y

(m
s)

Multi-Puts

 0.1
 1

 10
 100

La
te

nc
y

(m
s)

Multi-Gets

 0.1
 1

 10
 100

La
te

nc
y

(m
s)

Queries

 0.1
 1

 10
 100

 0 50 100 150 200 250 300 350 400

La
te

nc
y

(m
s)

Time (minutes)

Indexed
Queries

Figure 8: Production upgrade from ZKLoglet to NativeLoglet
(log-scale y-axis).

a converged NativeLoglet for the first time on a Delos pro-
duction instance on April 2nd 2019. Switching to a different
log implementation provides substantially lower latency for a
production workload. The graph shows p99 latencies for four
categories of Table operations: we see 10X improvements
for multi-gets and indexed queries, and a 5X improvement
for multi-puts. Additionally, the switch-over happens with-
out downtime: p99 latency spikes for indexed queries during
reconfiguration, but otherwise service availability is not dis-
rupted. The latency improvement is largely due to the unopti-
mized nature of our ZKLoglet implementation, which simply
writes a new sequential ZooKeeper key on each append.

Interestingly, the graph shows two reconfigurations: the
first is a reconfigExtend that seals the ZKLoglet and
switches the active segment to a NativeLoglet, causing the
visible shift in performance; the second, which happens a few
minutes later, is a reconfigTruncate that removes the old
ZKLoglet segment from the VirtualLog, but does not require
a seal (as described in Section 3.2) and hence does not cause
any disruption. The hourly spikes in multi-puts are due to
periodic large writes from the application.

Delos can scale throughput by running over a disaggre-
gated Loglet. In Figure 9, we plot throughput on the x-axis and
p99 latency on the y-axis, for the synthetic workload with 90%
gets and 10% puts. We compare the converged NativeLoglet
vs. the disaggregated LDLoglet. In the top two graphs, the
Delos database runs on production HW with shared SSDs; la-

0
10
20
30
40
50 Prod HW

15ms SLA

La
te
nc
y
(m
s) Puts (NativeLoglet)

Puts (LDLoglet)

0
10
20
30
40
50 Prod HW

La
te
nc
y
(m
s) Gets (NativeLoglet)

Gets (LDLoglet),

0
10
20
30
40
50 Bench HW

La
te
nc
y
(m
s) Puts (NativeLoglet)

Puts (LDLoglet)

0
10
20
30
40
50

0 50 100 150 200

Bench HW

La
te
nc
y
(m
s)

Tput (KOps/s): 10% Puts 90% Gets

Gets (NativeLoglet)
Gets (LDLoglet),

Figure 9: Delos can scale throughput between 10X (top) and
33% (bottom) for different HW types with a disaggregated
LDLoglet instead of a converged NativeLoglet.

tency with NativeLoglet starts rising at 15K ops/s for puts due
to contention between the Loglet and the database. With a dis-
aggregated LDLoglet running on 5 other machines, through-
put scales 10X higher at 150K ops/s without breaching 15ms
p99 latency for either puts or gets. This 10X improvement
is partly due to more HW (twice the machines); better HW
for the log (LDLoglet runs over dedicated NVMe SSDs); and
less I/O contention (the database and log are on different
machines).

In the bottom two graphs, Delos runs on benchmark HW
with dedicated SSDs; the performance hit for the converged
NativeLoglet is less stark due to more IOPS to share between
the log and database, with latency rising for both puts and gets
at around 139K ops/s. The disaggregated LDLoglet provides
33% higher throughput at 190k ops/s. For both types of HW,
disaggregation allows the shared log to utilize a separate,
dedicated set of resources. We get similar results running
against a disaggregated NativeLoglet instead of LDLoglet,
but wanted to highlight Delos’ ability to run over different
consensus implementations.

Delos can switch dynamically between converged and dis-
aggregated modes without downtime. Figure 10 (Left) demon-
strates the ability of Delos to change dynamically between
converged and disaggregated modes, and the utility of doing
so in order to handle workload shifts. In this experiment, we
run the synthetic workload on the high-contention production
HW. We want to maintain a 15ms p99 latency SLA.

1

10

100

1000

0 100200300400500600700

La
te
nc
y
(m
s)

Time (secs)

Put p99
Put p50

0
5
10
15
20
25
30
35

5 7 9

Th
ro
ug
hp
ut
(K
O
ps
/s)

Number of Replicas

NativeLoglet
StripedLoglet

0
200
400
600
800
1000
1200

1 10 20 30 40

Th
ro
ug
hp
ut
(K
O
ps
/s)

Number of 3-node Stripes

StripedLoglet

Figure 10: Left: Delos can dynamically switch from converged (NativeLoglet) to disaggregated (LDLoglet) logging to handle
workload shifts (log-scale y-axis). Middle: StripedLoglet (rotating sequencer) alleviates the sequencer bottleneck as Delos
scales. Right: StripedLoglet (sharded acceptors) scales to 1M+ appends/s for a log-only workload.

For the first 180 secs, we run a constant, low workload of
100 puts/sec; after that, we increase the workload to 2500 put-
s/sec. Delos initially runs over the NativeLoglet, which meets
the 15ms SLA for the low workload. But when the workload
switches, Delos+NativeLoglet is no longer able to keep up
due to I/O contention for the SSDs, with p99 latency degrad-
ing to over a second. At around 530 secs, we reconfigure to
use LDLoglet; this reduces I/O pressure on the local SSDs,
allowing p99 latencies to drop back to under 15ms (after a
60-second lag due to the 1-minute sliding window).

If a disaggregated log provides better throughput and lower
latency, why not always use one? First, disaggregation is inef-
ficient from a resource standpoint for low workloads, using
10 machines compared to 5 with a converged log. Second,
converged Delos does not depend on any external service in
the critical path, which is important for some control plane
applications.

New protocols with useful properties can be implemented
via Loglet composition. In the NativeLoglet, all appends are
routed via the sequencer node. For a 100% 1KB put workload
on a 5-node cluster, Delos is bottlenecked by the IOPS of the
NativeLoglet LogServers. However, when we run Delos over
9 LogServers for higher fault-tolerance, the bottleneck shifts
to the NativeLoglet sequencer, which now has to send out
each entry 8 times. If we instead use a StripedLoglet over 2
NativeLoglets (each with the same set of LogServers but dif-
ferent sequencers), we rotate the sequencing load across two
servers. As Figure 10 (Middle) shows, Delos+StripedLoglet
runs 25% faster than Delos+NativeLoglet with 9 nodes on the
benchmark HW.

We also ran log-only experiments with StripedLoglet in
Figure 10 (Right). We created a StripedLoglet over multi-
ple 3-node NativeLoglets, and appended 1KB payloads from
20 VirtualLog clients. We see linear scaling of throughput
as we go from 1 stripe (3 LogServers) to 30 stripes (i.e.,
90 LogServers); beyond that, our clients became the bottle-
neck. The LogServers run on shared NVMe SSDs, which
provide 30K IOPS with a p99 of 75ms; we report the maxi-

mum throughput for each configuration with a p99 latency of
under 75ms. We obtained similar results with 4KB payloads
(750K appends/s with 30 shards); this is the highest reported
single-log throughput in a non-emulated experiment, exceed-
ing CORFU (570K/s) and Scalog (255K/s). Delos cannot
leverage such a high-throughput log, since it bottlenecks on
log playback; we plan to explore selective playback [8], as
well as compare against Scalog’s higher emulated numbers.

5.2 The Cost of Virtualization

Virtualization is inexpensive in terms of critical path latency.
In most cases, the VirtualLog acts as a simple pass-through
layer. Figure 11 (Left) shows the p99 latency of VirtualLog
and NativeLoglet operations; this data is measured over a
one-hour time period on a production cluster running over
the NativeLoglet. For append and checkTail, virtualization
adds 100-150 µseconds to p99 latency; this is largely due
to the overhead of an asynchronous Future-based API. In
contrast, readNext is a synchronous pass-through call and
adds only a few µseconds.

Reconfigurations occur within 10s of ms. In Figure 11
(Middle), we show a histogram of all reconfigurations
in a 1-month period on our production clusters. Since
reconfigTruncate does not call seal, it has lower latency
than reconfigExtend. For our applications, reconfiguration
latencies of 10s of ms are tenable. The vast majority of these
reconfigurations are triggered by 1) continuous deployment of
software upgrades; and 2) machine preemptions for hardware
maintenance, kernel upgrades, etc. Actual failures constitute a
small percentage of the reconfigurations. In practice, clusters
see a few reconfigurations per day; for example, one of our
production clusters was reconfigured 98 times in the 1-month
period.

Virtualization does not affect peak throughput. We
performed an apples-to-apples comparison of Delos to
ZooKeeper on our benchmark HW. We translate puts into
SetData commands and gets into GetData commands on the

1
10
100
1000
10000
100000

�rea
dr�
x

chr
ckT
eil

epp
rna

p9
9
La
te
nc
y
(m
ic
ro
se
cs
)

NativeLoglet
VirtualLog

0
50
100
150
200
250
300

0 20 40 60 80 100120140160

N
um
be
ro
fR
ec
on
�g
s

Latency (ms)

reconfgTruncate
reconfgExtend

0.1

1

10

100

1000

0 5 10 15 20 25 30 35 40 45

15ms SLA

La
te
nc
y
(m
s)

Tput (KOps/s): 100% Puts

Delos
ZooKeeper

Delos InMem

Figure 11: Left: virtualization overhead is low in production: 6 µs for readNext and 100 to 150 µs for append / checkTail p99.
Middle: reconfigurations take tens of ms in production. Right: Delos+NativeLoglet matches ZooKeeper performance.

ZooKeeper API. Since ZooKeeper does not support more
than a few GB of data, we ran with a 1GB database. Figure 11
(Right) shows that ZooKeeper can provide over 30K puts/sec
before p99 latency degrades beyond 15ms. In contrast, De-
los+NativeLoglet manages around 26K puts/sec. The primary
reason for the performance difference is that ZooKeeper stores
its materialized state in memory while Delos uses RocksDB.
We also ran a version of Delos where the materialized state
lives in memory; this prototype hit 40K puts/sec. While stor-
ing state in RocksDB causes a performance hit at small sizes,
it enables us to scale; the Delos+NativeLoglet curve for a 100
GB database (not shown in the graph) is nearly identical to
the 1GB case. These results show that Delos performance is
comparable to unvirtualized systems.

6 Discussion

Virtual consensus provided a number of ancillary benefits for
the operation of Delos.

Fate-sharing... but only when my fate is good: In produc-
tion, Delos typically runs as a converged database with no
external dependencies, where all logic and state (including the
database and the log) resides on a set of 5 machines. However,
the database / learner layer is simultaneously more fragile
than the log / acceptor layer (since it is updated frequently
to add features) and requires lower fault-tolerance (only one
learner needs to survive, compared to a quorum of acceptors).
If two converged replicas crash out of five, another failure can
cause unavailability and data loss for the log. In this situation
(which was not uncommon), we found it valuable to reconfig-
ure the system to a disaggregated log, temporarily decoupling
the fate of the database and the log. Once the database was
restored to five replicas, we reconfigured back. This style
of temporary decoupling also proved valuable when we dis-
covered latent bugs in the NativeLoglet; we reconfigured to
ZKLoglet, rolled out hotfixes, and then reconfigured back.
Currently, switching between converged and disaggregated
logs is a manual operation driven by operators; in the future,

we may explore automated switching.
Consensus is forever... until it’s not: Deletion of arbitrary

entries is typically quite difficult in conventional consensus
protocols. However, with virtual consensus, we can delete
an entry simply by changing the metadata of the VirtualLog.
Similarly, altering written entries is possible via remapping.
We found this kind of surgical editing capability useful when
faced with site-wide outages: on one occasion, a “poison”
entry caused hangs on all learners processing the log.

ZooKeeper over Delos... over ZooKeeper: Virtualization
often enables interesting and practically useful layerings; for
example, it is routine in storage stacks to run a filesystem
over a virtual block device that in turn is stored on a different
instance of the same filesystem. Virtual consensus brings sim-
ilar flexibility to replicated databases: in our current stack, we
have the ability to run our experimental ZooKeeper API over
the VirtualLog, which in turn can run over the ZooKeeper-
based ZKLoglet.

7 Related Work

Virtual consensus builds upon a large body of work in
fault-tolerant distributed systems. Most approaches to re-
configurable replication (including Viewstamped Replica-
tion [32, 38], ZAB [22], Raft [39], Vertical Paxos [27], and
SMART [34]) use protocols for leader election and reconfigu-
ration that are tightly intertwined with the ordering protocol.
Virtual Synchrony [10, 46] is an exception: it uses a unified
view change protocol for leader election and reconfiguration
that sits above the ordering mechanism used within each view.
This unified approach is also found in more recent systems
such as Derecho [21] and CORFU [7]. Reconfiguration has
been explored as a layer above a generic state machine by
Stoppable Paxos [28, 29]; unlike Loglets, the underlying state
machine has to implement fault-tolerant consensus.

Virtual consensus borrows many ideas from this literature,
combines them, and applies them to a production system:
for example, unified leader election and reconfiguration (Vir-

tual Synchrony); a segmented total order with potentially
disjoint configurations (SMART); an external auxiliary (Ver-
tical Paxos); and a generic ordering abstraction (Stoppable
Paxos). However, virtual consensus also differs from all this
prior work in several important aspects. First, we target and
demonstrate diversity in the ordering layer (e.g., deploying
new layers, switching to disaggregated mode, etc.). Second,
the ordering layer is only required to provide a highly avail-
able seal, which is weaker than fault-tolerant consensus and
easier to implement. Finally, virtual consensus applies and
extends these ideas to shared logs, which pose unique op-
portunities (e.g., data-centric APIs that hide complexity) and
challenges (e.g., application-driven trims and explicit reads).

To assess the generality of the Loglet abstraction, we did an
informal survey of recent replication protocols. The majority
of these protocols either directly expose a log API [3,7,16,37,
42] or can be wrapped as a Loglet [14, 15, 22, 24, 31, 35, 39].
Virtualization gives us the ability to easily experiment with
these protocols under Delos and deploy them to production.
Other work – such as protocols that exploit speculation [41]
or commutativity [4, 26, 36] – does not currently fit under the
Loglet API.

Virtual consensus is based on the shared log approach for
building replicated systems; we leverage the existence of
the shared log API as a boundary between the database and
consensus mechanism. Shared logs were first introduced by
CORFU [7] and Hyder [9] as an API for consensus. Subse-
quently, CorfuDB [1] was the first production database to be
deployed over a shared log API. Along similar lines, systems
such as Kafka [23] and LogDevice [3] have become popular in
industry, exposing large numbers of individual, independently
ordered logs. In contrast, research has largely focused on scal-
ing a single log, either via faster ordering protocols [16] or
different forms of selective playback [8,48]. Rather than build
a faster shared log or a more scalable database above it, virtual
consensus seeks to make such systems simpler to build and
deploy as they become commonplace in industry.

8 Conclusion

Virtual consensus enables faster deployment and development
of replicated systems. Reconfiguration and leader election is
encapsulated in a control plane (the VirtualLog) that can be
reused across any data plane (Loglets). Delos is the first sys-
tem that supports heterogeneous reconfiguration, allowing
changes to not just the leader or the set of servers in the sys-
tem, but also the protocol, codebase, and deployment model
of the consensus subsystem. As a result, new systems can
be developed and deployed rapidly (e.g., Delos hit produc-
tion within 8 months by leveraging an external service for its
Loglet); and upgraded without downtime to provide signif-
icantly different performance and fault-tolerance properties
(e.g., we hot-swapped Loglets in production for a 10X latency
reduction).

Acknowledgments

We would like to thank our shepherd, Jay Lorch, and the
anonymous OSDI reviewers. Many people contributed to the
Delos project, including Adrian Hamza, Mark Celani, Andy
Newell, Artemiy Kolesnikov, Ali Zaveri, Ben Reed, Denis
Samoylov, Grace Ko, Ivailo Nedelchev, Mingzhe Hao, Maxim
Khutornenko, Peter Schuller, Suyog Mapara, Rajeev Nagar,
Russ Arun, Soner Terek, Terence Feng, and Vidhyashankar
Venkataraman. Marcos Aguilera, Jose Faleiro, Dahlia Malkhi,
and Vijayan Prabhakaran provided valuable feedback on early
iterations of this work.

References

[1] CorfuDB. https://github.com/corfudb.

[2] etcd. https://etcd.io/.

[3] LogDevice. https://logdevice.io/.

[4] AILIJIANG, A., CHARAPKO, A., DEMIRBAS, M., AND
KOSAR, T. WPaxos: Wide Area Network Flexible Con-
sensus. IEEE Transactions on Parallel and Distributed
Systems 31, 1 (2019), 211–223.

[5] ANNAMALAI, M., RAVICHANDRAN, K., SRINIVAS,
H., ZINKOVSKY, I., PAN, L., SAVOR, T., NAGLE, D.,
AND STUMM, M. Sharding the Shards: Managing Data-
store Locality at Scale with Akkio. In Proceedings of
USENIX OSDI 2018.

[6] ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing
Memory Robustly in Message-Passing Systems. Journal
of the ACM (JACM) 42, 1 (1995), 124–142.

[7] BALAKRISHNAN, M., MALKHI, D., PRABHAKARAN,
V., WOBBER, T., WEI, M., AND DAVIS, J. D. CORFU:
A Shared Log Design for Flash Clusters. In USENIX
NSDI 2012.

[8] BALAKRISHNAN, M., MALKHI, D., WOBBER, T., WU,
M., PRABHAKARAN, V., WEI, M., DAVIS, J. D., RAO,
S., ZOU, T., AND ZUCK, A. Tango: Distributed Data
Structures over a Shared Log. In Proceedings of ACM
SOSP 2013.

[9] BERNSTEIN, P. A., DAS, S., DING, B., AND PILMAN,
M. Optimizing Optimistic Concurrency Control for
Tree-Structured, Log-Structured Databases. In Proceed-
ings of ACM SIGMOD 2015.

[10] BIRMAN, K. P., AND JOSEPH, T. A. Reliable Commu-
nication in the Presence of Failures. ACM Transactions
on Computer Systems (TOCS) 5, 1 (1987), 47–76.

[11] BURKE, M., CHENG, A., AND LLOYD, W. Gryff: Uni-
fying Consensus and Shared Registers. In Proceedings
of USENIX NSDI 2020.

[12] BURROWS, M. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of USENIX
OSDI 2006.

[13] CAO, Z., DONG, S., VEMURI, S., AND DU, D. H.
Characterizing, Modeling, and Benchmarking RocksDB
Key-Value Workloads at Facebook. In Proceedings of
USENIX FAST 2020.

[14] CHARAPKO, A., AILIJIANG, A., AND DEMIRBAS, M.
PigPaxos: Devouring the communication bottlenecks in
distributed consensus. arXiv preprint arXiv:2003.07760
(2020).

[15] DANG, H. T., CANINI, M., PEDONE, F., AND SOULÉ,
R. Paxos Made Switch-y. ACM SIGCOMM Computer
Communication Review 46, 2 (2016), 18–24.

[16] DING, C., CHU, D., ZHAO, E., LI, X., ALVISI, L.,
AND VAN RENESSE, R. Scalog: Seamless Reconfig-
uration and Total Order in a Scalable Shared Log. In
Proceedings of USENIX NSDI 2020.

[17] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S.
Impossibility of Distributed Consensus with One Faulty
Process. Journal of the ACM (JACM) 32, 2 (1985),
374–382.

[18] HERLIHY, M. P., AND WING, J. M. Linearizability:
A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492.

[19] HOWARD, H., MALKHI, D., AND SPIEGELMAN, A.
Flexible Paxos: Quorum intersection revisited. In Pro-
ceedings of OPODIS 2016.

[20] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,
B. ZooKeeper: Wait-free Coordination for Internet-
scale Systems. In Proceedings of USENIX ATC 2010.

[21] JHA, S., BEHRENS, J., GKOUNTOUVAS, T., MILANO,
M., SONG, W., TREMEL, E., RENESSE, R. V., ZINK,
S., AND BIRMAN, K. P. Derecho: Fast State Machine
Replication for Cloud Services. ACM Transactions on
Computer Systems (TOCS) 36, 2 (2019), 1–49.

[22] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M.
Zab: High-performance broadcast for primary-backup
systems. In Proceedings of IEEE DSN 2011.

[23] KLEPPMANN, M., AND KREPS, J. Kafka, Samza and
the Unix Philosophy of Distributed Data. IEEE Data
Engineering Bulletin, 38 (4) (2015).

[24] KOGIAS, M., AND BUGNION, E. HovercRaft: Achiev-
ing Scalability and Fault-tolerance for microsecond-
scale Datacenter Services. In Proceedings of ACM Eu-
roSys 2020.

[25] LAMPORT, L. The Part-Time Parliament. ACM Trans-
actions on Computer Systems (TOCS) 16, 2 (1998), 133–
169.

[26] LAMPORT, L. Generalized Consensus and Paxos. Mi-
crosoft Research Technical Report MSR-TR-2005-33
(2005).

[27] LAMPORT, L., MALKHI, D., AND ZHOU, L. Vertical
Paxos and Primary-Backup Replication. In Proceedings
of ACM PODC 2009.

[28] LAMPORT, L., MALKHI, D., AND ZHOU, L. Stoppable
Paxos. Microsoft Research Technical Report (unpub-
lished) (2008).

[29] LAMPORT, L., MALKHI, D., AND ZHOU, L. Recon-
figuring a State Machine. SIGACT News 41, 1 (2010),
63–73.

[30] LENERS, J. B., WU, H., HUNG, W.-L., AGUILERA,
M. K., AND WALFISH, M. Detecting failures in dis-
tributed systems with the FALCON spy network. In
Proceedings of ACM SOSP 2011.

[31] LI, J., MICHAEL, E., SHARMA, N. K., SZEKERES, A.,
AND PORTS, D. R. Just say NO to Paxos Overhead:
Replacing Consensus with Network Ordering. In Pro-
ceedings of USENIX OSDI 2016.

[32] LISKOV, B., AND COWLING, J. Viewstamped Replica-
tion Revisited. In MIT Technical Report (2012).

[33] LOCKERMAN, J., FALEIRO, J. M., KIM, J.,
SANKARAN, S., ABADI, D. J., ASPNES, J., SEN, S.,
AND BALAKRISHNAN, M. The FuzzyLog: a Partially
Ordered Shared Log. In Proceedings of USENIX OSDI
2018.

[34] LORCH, J. R., ADYA, A., BOLOSKY, W. J., CHAIKEN,
R., DOUCEUR, J. R., AND HOWELL, J. The SMART
Way to Migrate Replicated Stateful Services. In Pro-
ceedings of ACM EuroSys 2006.

[35] MAO, Y., JUNQUEIRA, F. P., AND MARZULLO, K.
Mencius: Building Efficient Replicated State Machines
for WANs. In Proceedings of USENIX OSDI 2008.

[36] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M.
There Is More Consensus in Egalitarian Parliaments. In
Proceedings of ACM SOSP 2013.

[37] NAWAB, F., ARORA, V., AGRAWAL, D., AND EL AB-
BADI, A. Chariots: A Scalable Shared Log for Data
Management in Multi-Datacenter Cloud Environments.
In Proceedings of EDBT 2015.

[38] OKI, B. M., AND LISKOV, B. H. Viewstamped Replica-
tion: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of ACM
PODC 1988.

[39] ONGARO, D., AND OUSTERHOUT, J. K. In Search of
an Understandable Consensus Algorithm. In Proceed-
ings of USENIX ATC 2014.

[40] PLOTKIN, S. A. Sticky Bits and Universality of Con-
sensus. In Proceedings of ACM PODC 1989.

[41] PORTS, D. R., LI, J., LIU, V., SHARMA, N. K., AND
KRISHNAMURTHY, A. Designing Distributed Systems
Using Approximate Synchrony in Data Center Net-
works. In Proceedings of USENIX NSDI 2015.

[42] SHIN, J.-Y., KIM, J., HONORÉ, W., VANZETTO, H.,
RADHAKRISHNAN, S., BALAKRISHNAN, M., AND
SHAO, Z. WormSpace: A Modular Foundation for Sim-
ple, Verifiable Distributed Systems. In Proceedings of
ACM SoCC 2019.

[43] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The Hadoop Distributed File System.
In Proceedings of IEEE MSST 2010.

[44] TANG, C., YU, K., VEERARAGHAVAN, K., KALDOR,
J., MICHELSON, S., KOOBURAT, T., ANBUDURAI, A.,
CLARK, M., GOGIA, K., CHENG, L., CHRISTENSEN,
B., GARTRELL, A., KHUTORNENKO, M., KULKARNI,
S., PAWLOWSKI, M., PELKONEN, T., RODRIGUES, A.,
TIBREWAL, R., PAWLOWSKI, M., PELKONEN, T., RO-
DRIGUES, A., TIBREWAL, R., VENKATESAN, V., AND
ZHANG, P. Twine: A Unified Cluster Management
System for Shared Infrastructure. In Proceedings of
USENIX OSDI 2020.

[45] VAN RENESSE, R., AND ALTINBUKEN, D. Paxos
Made Moderately Complex. ACM Computing Surveys
(CSUR) 47, 3 (2015), 1–36.

[46] VAN RENESSE, R., BIRMAN, K. P., AND MAFFEIS,
S. Horus: A Flexible Group Communication System.
Communications of the ACM 39, 4 (1996), 76–83.

[47] VERBITSKI, A., GUPTA, A., SAHA, D., BRAHMADE-
SAM, M., GUPTA, K., MITTAL, R., KRISHNAMURTHY,
S., MAURICE, S., KHARATISHVILI, T., AND BAO,
X. Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases. In
ACM SIGMOD 2017.

[48] WEI, M., TAI, A., ROSSBACH, C. J., ABRAHAM, I.,
MUNSHED, M., DHAWAN, M., STABILE, J., WIEDER,
U., FRITCHIE, S., SWANSON, S., ET AL. vCorfu: A
Cloud-Scale Object Store on a Shared Log. In USENIX
NSDI 2017.

