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Abstract

Continuous word representations, trained on
large unlabeled corpora are useful for many
natural language processing tasks. Popular
models that learn such representations ignore
the morphology of words, by assigning a dis-
tinct vector to each word. This is a limitation,
especially for languages with large vocabular-
ies and many rare words. In this paper, we pro-
pose a new approach based on the skipgram
model, where each word is represented as a
bag of character n-grams. A vector represen-
tation is associated to each character n-gram;
words being represented as the sum of these
representations. Our method is fast, allow-
ing to train models on large corpora quickly
and allows us to compute word representations
for words that did not appear in the training
data. We evaluate our word representations on
nine different languages, both on word sim-
ilarity and analogy tasks. By comparing to
recently proposed morphological word repre-
sentations, we show that our vectors achieve
state-of-the-art performance on these tasks.

1 Introduction

Learning continuous representations of words has a
long history in natural language processing (Rumel-
hart et al., 1988). These representations are typ-
ically derived from large unlabeled corpora using
co-occurrence statistics (Deerwester et al., 1990;
Schütze, 1992; Lund and Burgess, 1996). A large
body of work, known as distributional semantics,
has studied the properties of these methods (Turney
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et al., 2010; Baroni and Lenci, 2010). In the neural
network community, Collobert and Weston (2008)
proposed to learn word embeddings using a feed-
forward neural network, by predicting a word based
on the two words on the left and two words on the
right. More recently, Mikolov et al. (2013b) pro-
posed simple log-bilinear models to learn continu-
ous representations of words on very large corpora
efficiently.

Most of these techniques represent each word of
the vocabulary by a distinct vector, without param-
eter sharing. In particular, they ignore the internal
structure of words, which is an important limitation
for morphologically rich languages, such as Turk-
ish or Finnish. For example, in French or Spanish,
most verbs have more than forty different inflected
forms, while the Finnish language has fifteen cases
for nouns. These languages contain many word
forms that occur rarely (or not at all) in the training
corpus, making it difficult to learn good word rep-
resentations. Because many word formations follow
rules, it is possible to improve vector representations
for morphologically rich languages by using charac-
ter level information.

In this paper, we propose to learn representations
for character n-grams, and to represent words as the
sum of the n-gram vectors. Our main contribution
is to introduce an extension of the continuous skip-
gram model (Mikolov et al., 2013b), which takes
into account subword information. We evaluate this
model on nine languages exhibiting different mor-
phologies, showing the benefit of our approach.



2 Related work

Morphological word representations. In recent
years, many methods have been proposed to incor-
porate morphological information into word repre-
sentations. To model rare words better, Alexan-
drescu and Kirchhoff (2006) introduced factored
neural language models, where words are repre-
sented as sets of features. These features might in-
clude morphological information, and this technique
was succesfully applied to morphologically rich lan-
guages, such as Turkish (Sak et al., 2010). Re-
cently, several works have proposed different com-
position functions to derive representations of words
from morphemes (Lazaridou et al., 2013; Luong
et al., 2013; Botha and Blunsom, 2014; Qiu et
al., 2014). These different approaches rely on a
morphological decomposition of words, while ours
does not. Similarly, Chen et al. (2015) introduced
a method to jointly learn embeddings for Chinese
words and characters. Cui et al. (2015) proposed
to constrain morphologically similar words to have
similar representations. Soricut and Och (2015)
described a method to learn vector representations
of morphological transformations, allowing to ob-
tain representations for unseen words by applying
these rules. Word representations trained on mor-
phologically annotated data were introduced by Cot-
terell and Schütze (2015). Closest to our approach,
Schütze (1993) learned representations of character
four-grams through singular value decomposition,
and derived representations for words by summing
the four-grams representations. Very recently, Wi-
eting et al. (2016) also proposed to represent words
using character n-gram count vectors. However, the
objective function used to learn these representa-
tions is based on paraphrase pairs, while our model
can be trained on any text corpus.

Character level features for NLP. Another area
of research closely related to our work are character-
level models for natural language processing. These
models discard the segmentation into words and aim
at learning language representations directly from
characters. A first class of such models are recur-
rent neural networks, applied to language model-
ing (Mikolov et al., 2012; Sutskever et al., 2011;
Graves, 2013; Bojanowski et al., 2015), text nor-
malization (Chrupała, 2014), part-of-speech tag-

ging (Ling et al., 2015) and parsing (Ballesteros et
al., 2015). Another family of models are convolu-
tional neural networks trained on characters, which
were applied to part-of-speech tagging (dos San-
tos and Zadrozny, 2014), sentiment analysis (dos
Santos and Gatti, 2014), text classification (Zhang
et al., 2015) and language modeling (Kim et al.,
2016). Sperr et al. (2013) introduced a language
model based on restricted Boltzmann machines, in
which words are encoded as a set of character n-
grams. Finally, recent works in machine translation
have proposed using subword units to obtain repre-
sentations of rare words (Sennrich et al., 2016; Lu-
ong and Manning, 2016).

3 Model

In this section, we propose our model to learn word
representations while taking into account morphol-
ogy. We model morphology by considering subword
units, and representing words by a sum of its charac-
ter n-grams. We will begin by presenting the general
framework that we use to train word vectors, then
present our subword model and eventually describe
how we handle the dictionary of character n-grams.

3.1 General model
We start by briefly reviewing the continuous skip-
gram model introduced by Mikolov et al. (2013b),
from which our model is derived. Given a word vo-
cabulary of size W , where a word is identified by
its index w 2 {1, ...,W}, the goal is to learn a
vectorial representation for each word w. Inspired
by the distributional hypothesis (Harris, 1954), word
representations are trained to predict well words that
appear in its context. More formally, given a large
training corpus represented as a sequence of words
w1, ..., wT

, the objective of the skipgram model is to
maximize the following log-likelihood:
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One possible choice to define the probability of a
context word is the softmax:
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However, such a model is not adapted to our case as
it implies that, given a word w

t

, we only predict one
context word w

c

.
The problem of predicting context words can in-

stead be framed as a set of independent binary clas-
sification tasks. Then the goal is to independently
predict the presence (or absence) of context words.
For the word at position t we consider all context
words as positive examples and sample negatives at
random from the dictionary. For a chosen context
position c, using the binary logistic loss, we obtain
the following negative log-likelihood:
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is a set of negative examples sampled
from the vocabulary. By denoting the logistic loss
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), we can re-write the
objective as:
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A natural parameterization for the scoring function
s between a word w

t

and a context word w

c

is to use
word vectors. Let us define for each word w in the
vocabulary two vectors u

w

and v

w

in Rd. These two
vectors are sometimes referred to as input and out-
put vectors in the literature. In particular, we have
vectors u

wt and v
wc , corresponding, respectively, to

words w

t

and w

c

. Then the score can be computed
as the scalar product between word and context vec-
tors as s(w

t

, w

c

) = u>
wt
v
wc . The model described

in this section is the skipgram model with negative
sampling, introduced by Mikolov et al. (2013b).

3.2 Subword model
By using a distinct vector representation for each
word, the skipgram model ignores the internal struc-
ture of words. In this section, we propose a different
scoring function s, in order to take into account this
information.

Each word w is represented as a bag of character
n-gram. We add special boundary symbols < and >
at the beginning and end of words, allowing to dis-
tinguish prefixes and suffixes from other character
sequences. We also include the word w itself in the
set of its n-grams, to learn a representation for each
word (in addition to character n-grams). Taking the
word where and n = 3 as an example, it will be
represented by the character n-grams:

<wh, whe, her, ere, re>

and the special sequence
<where>.

Note that the sequence <her>, corresponding to the
word her is different from the tri-gram her from the
word where. In practice, we extract all the n-grams
for n greater or equal to 3 and smaller or equal to 6.
This is a very simple approach, and different sets of
n-grams could be considered, for example taking all
prefixes and suffixes.

Suppose that you are given a dictionary of n-
grams of size G. Given a word w, let us denote by
G
w

⇢ {1, . . . , G} the set of n-grams appearing in
w. We associate a vector representation z

g

to each
n-gram g. We represent a word by the sum of the
vector representations of its n-grams. We thus ob-
tain the scoring function:

s(w, c) =

X

g2Gw

z>
g

v
c

.

This simple model allows sharing the representa-
tions across words, thus allowing to learn reliable
representation for rare words.

In order to bound the memory requirements of our
model, we use a hashing function that maps n-grams
to integers in 1 to K. We hash character sequences
using the Fowler-Noll-Vo hashing function (specifi-
cally the FNV-1a variant).1 We set K = 2.10

6 be-
low. Ultimately, a word is represented by its index
in the word dictionary and the set of hashed n-grams
it contains.

4 Experimental setup

4.1 Baseline
In most experiments (except in Sec. 5.3), we
compare our model to the C implementation

1
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of the skipgram and cbow models from the
word2vec

2 package.

4.2 Optimization
We solve our optimization problem by perform-
ing stochastic gradient descent on the negative log
likelihood presented before. As in the baseline
skipgram model, we use a linear decay of the step
size. Given a training set containing T words and
a number of passes over the data equal to P , the
step size at time t is equal to �0(1 � t

TP

), where
�0 is a fixed parameter. We carry out the optimiza-
tion in parallel, by resorting to Hogwild (Recht et
al., 2011). All threads share parameters and update
vectors in an asynchronous manner.

4.3 Implementation details
For both our model and the baseline experiments, we
use the following parameters: the word vectors have
dimension 300. For each positive example, we sam-
ple 5 negatives at random, with probability propor-
tional to the square root of the uni-gram frequency.
We use a context window of size c, and uniformly
sample the size c between 1 and 5. In order to sub-
sample the most frequent words, we use a rejection
threshold of 10�4 (for more details, see (Mikolov et
al., 2013b)). When building the word dictionary, we
keep the words that appear at least 5 times in the
training set. The step size �0 is set to 0.025 for the
skipgram baseline and to 0.05 for both our model
and the cbow baseline. These are the default values
in the word2vec package and work well for our
model too.

Using this setting on English data, our model with
character n-grams is approximately 1.5⇥ slower
to train than the skipgram baseline. Indeed,
we process 105k words/second/thread versus 145k
words/second/thread for the baseline. Our model is
implemented in C++, and is publicly available.3

4.4 Datasets
Except for the comparison to previous
work (Sec. 5.3), we train our models on Wikipedia
data.4 We downloaded Wikipedia dumps in nine
languages: Arabic, Czech, German, English,

2
https://code.google.com/archive/p/word2vec

3
https://github.com/facebookresearch/fastText

4
https://dumps.wikimedia.org

Spanish, French, Italian, Romanian and Russian.
We normalize the raw Wikipedia data using Matt
Mahoney’s pre-processing perl script.5 All the
datasets are shuffled, and we train our models by
doing five passes over them.

5 Results

We evaluate our model in five experiments: an eval-
uation of word similarity and word analogies, a com-
parison to state-of-the-art methods, an analysis of
the effect of the size of training data and of the size
of character n-grams that we consider. We will de-
scribe these experiments in detail in the following
sections.

5.1 Human similarity judgement

We first evaluate the quality of our representations
on the task of word similarity / relatedness. We do
so by computing Spearman’s rank correlation co-
efficient (Spearman, 1904) between human judge-
ment and the cosine similarity between the vector
representations. For German, we compare the dif-
ferent models on three datasets: GUR65, GUR350
and ZG222 (Gurevych, 2005; Zesch and Gurevych,
2006). For English, we use the WS353 dataset in-
troduced by Finkelstein et al. (2001) and the rare
word dataset (RW), introduced by Luong et al.
(2013). We evaluate the French word vectors on
the translated dataset RG65 (Joubarne and Inkpen,
2011). Spanish, Arabic and Romanian word vectors
are evaluated using the datasets described in (Hassan
and Mihalcea, 2009). Russian word vectors are eval-
uated using the HJ dataset introduced by Panchenko
et al. (2016).

We report results for our method and baselines
for all datasets in Table 1. Some words from these
datasets do not appear in our training data, and
thus, we cannot obtain word representation for these
words using the cbow and skipgram baselines. In
order to provide comparable results, we propose by
default to use null vectors for these words. Since our
model exploits subword information, we can also
compute valid representations for out-of-vocabulary
words. We do so by taking the sum of its n-gram
vectors. When OOV words are represented using

5
http://mattmahoney.net/dc/textdata

https://code.google.com/archive/p/word2vec
https://github.com/facebookresearch/fastText
https://dumps.wikimedia.org
http://mattmahoney.net/dc/textdata


sg cbow sisg- sisg

AR WS353 51 52 54 55

DE
GUR350 61 62 64 70

GUR65 78 78 81 81
ZG222 35 38 41 44

EN
RW 43 43 46 47

WS353 72 73 71 71

ES WS353 57 58 58 59

FR RG65 70 69 75 75

RO WS353 48 52 51 54

RU HJ 59 60 60 66

Table 1: Correlation between human judgement and
similarity scores on word similarity datasets. We
train both our model and the word2vec baseline on
normalized Wikipedia dumps. Evaluation datasets
contain words that are not part of the training set,
so we represent them using null vectors (sisg-).
With our model, we also compute vectors for unseen
words by summing the n-gram vectors (sisg).

null vectors we refer to our method as sisg- and
sisg otherwise (Subword Information Skip Gram).

First, by looking at Table 1, we notice that the pro-
posed model (sisg), which uses subword informa-
tion, outperforms the baselines on all datasets except
the English WS353 dataset. Moreover, computing
vectors for out-of-vocabulary words (sisg) is al-
ways at least as good as not doing so (sisg-). This
proves the advantage of using subword information
in the form of character n-grams.

Second, we observe that the effect of using char-
acter n-grams is more important for Arabic, Ger-
man and Russian than for English, French or Span-
ish. German and Russian exhibit grammatical de-
clensions with four cases for German and six for
Russian. Also, many German words are compound
words; for instance the nominal phrase “table ten-
nis” is written in a single word as “Tischtennis”. By
exploiting the character-level similarities between
“Tischtennis” and “Tennis”, our model does not rep-
resent the two words as completely different words.

Finally, we observe that on the English Rare
Words dataset (RW), our approach outperforms the

sg cbow sisg

CS
Semantic 25.7 27.6 27.5
Syntactic 52.8 55.0 77.8

DE
Semantic 66.5 66.8 62.3
Syntactic 44.5 45.0 56.4

EN
Semantic 78.5 78.2 77.8
Syntactic 70.1 69.9 74.9

IT
Semantic 52.3 54.7 52.3
Syntactic 51.5 51.8 62.7

Table 2: Accuracy of our model and baselines on
word analogy tasks for Czech, German, English and
Italian. We report results for semantic and syntactic
analogies separately.

baselines while it does not on the English WS353
dataset. This is due to the fact that words in the En-
glish WS353 dataset are common words for which
good vectors can be obtained without exploiting
subword information. When evaluating on less fre-
quent words, we see that using similarities at the
character level between words can help learning
good word vectors.

5.2 Word analogy tasks

We now evaluate our approach on word analogy
questions, of the form A is to B as C is to D,
where D must be predicted by the models. We use
the datasets introduced by Mikolov et al. (2013a)
for English, by Svoboda and Brychcin (2016) for
Czech, by Köper et al. (2015) for German and by
Berardi et al. (2015) for Italian. Some questions con-
tain words that do not appear in our training corpus,
and we thus excluded these questions from the eval-
uation.

We report accuracy for the different models in
Table 2. We observe that morphological informa-
tion significantly improves the syntactic tasks; our
approach outperforms the baselines. In contrast,
it does not help for semantic questions, and even
degrades the performance for German and Italian.
Note that this is tightly related to the choice of the
length of character n-grams that we consider. We
show in Sec. 5.5 that when the size of the n-grams
is chosen optimally, the semantic analogies degrade



DE EN ES FR

GUR350 ZG222 WS353 RW WS353 RG65

Luong et al. (2013) - - 64 34 - -
Qiu et al. (2014) - - 65 33 - -

Soricut and Och (2015) 64 22 71 42 47 67
sisg 73 43 73 48 54 69

Botha and Blunsom (2014) 56 25 39 30 28 45
sisg 66 34 54 41 49 52

Table 3: Spearman’s rank correlation coefficient between human judgement and model scores for different
methods using morphology to learn word representations. We keep all the word pairs of the evaluation set
and obtain representations for out-of-vocabulary words with our model by summing the vectors of character
n-grams. Our model was trained on the same datasets as the methods we are comparing to (hence the two
lines of results for our approach).

less. Another interesting observation is that, as ex-
pected, the improvement over the baselines is more
important for morphologically rich languages, such
as Czech and German.

5.3 Comparison with morphological
representations

We also compare our approach to previous work on
word vectors incorporating subword information on
word similarity tasks. The methods used are: the
recursive neural network of Luong et al. (2013),
the morpheme cbow of Qiu et al. (2014) and the
morphological transformations of Soricut and Och
(2015). In order to make the results comparable, we
trained our model on the same datasets as the meth-
ods we are comparing to: the English Wikipedia
data released by Shaoul and Westbury (2010), and
the news crawl data from the 2013 WMT shared
task for German, Spanish and French. We also
compare our approach to the log-bilinear language
model introduced by Botha and Blunsom (2014),
which was trained on the Europarl and news com-
mentary corpora. Again, we trained our model on
the same data to make the results comparable. Us-
ing our model, we obtain representations of out-of-
vocabulary words by summing the representations
of character n-grams. We report results in Table 3.
We observe that our simple approach performs well
relative to techniques based on subword information
obtained from morphological segmentors. We also
observe that our approach outperforms the Soricut

and Och (2015) method, which is based on prefix
and suffix analysis. The large improvement for Ger-
man is due to the fact that their approach does not
model noun compounding, contrary to ours.

5.4 Effect of the size of the training data
Since we exploit character-level similarities between
words, we are able to better model infrequent words.
Therefore, we should also be more robust to the size
of the training data that we use. In order to as-
sess that, we propose to evaluate the performance
of our word vectors on the similarity task as a func-
tion of the training data size. To this end, we train
our model and the cbow baseline on portions of
Wikipedia of increasing size. We use the Wikipedia
corpus described above and isolate the first 1, 2, 5,
10, 20, and 50 percent of the data. Since we don’t
reshuffle the dataset, they are all subsets of each
other. We report results in Fig. 1.

As in the experiment presented in Sec. 5.1, not
all words from the evaluation set are present in the
Wikipedia data. Again, by default, we use a null
vector for these words (sisg-) or compute a vec-
tor by summing the n-gram representations (sisg).
The out-of-vocabulary rate is growing as the dataset
shrinks, and therefore the performance of sisg-
and cbow necessarily degrades. However, the pro-
posed model (sisg) assigns non-trivial vectors to
previously unseen words.

First, we notice that for all datasets, and all sizes,
the proposed approach (sisg) performs better than



(a) DE-GUR350 (b) EN-RW

Figure 1: Influence of size of the training data on performance. We compute word vectors following the
proposed model using datasets of increasing size. In this experiment, we train models on a fraction of the
full Wikipedia dump.

the baseline. However, the performance of the base-
line cbow model gets better as more and more data
is available. Our model, on the other hand, seems
to quickly saturate and adding more data does not
always lead to improved results.

Second, and most importantly, we notice that the
proposed approach provides very good word vectors
even when using very small training datasets. For in-
stance, on the German GUR350 dataset, our model
(sisg) trained on 5% of the data achieves better
performance (66) than the cbow baseline trained on
the full dataset (62). On the other hand, on the En-
glish RW dataset, using 1% of the Wikipedia corpus
we achieve a correlation coefficient of 45 which is
better than the performance of cbow trained on the
full dataset (43). This has a very important practi-
cal implication: well performing word vectors can
be computed on datasets of a restricted size and still
work well on previously unseen words. In gen-
eral, when using vectorial word representations in
specific applications, it is recommended to retrain
the model on textual data relevant for the applica-
tion. However, this kind of relevant task-specific
data is often very scarce and learning from a reduced
amount of training data is a great advantage.

5.5 Effect of the size of n-grams
The proposed model relies on the use of character n-
grams to represent words as vectors. As mentioned
in Sec. 3.2, we decided to use n-grams ranging from
3 to 6 characters. This choice was arbitrary, moti-

vated by the fact that n-grams of these lengths will
cover a wide range of information. They would in-
clude short suffixes (corresponding to conjugations
and declensions for instance) as well as longer roots.
In this experiment, we empirically check for the in-
fluence of the range of n-grams that we use on per-
formance. We report our results in Table 4 for En-
glish and German on word similarity and analogy
datasets.

We observe that for both English and German,
our arbitrary choice of 3-6 was a reasonable deci-
sion, as it provides satisfactory performance across
languages. The optimal choice of length ranges
depends on the considered task and language and
should be tuned appropriately. However, due to
the scarcity of test data, we did not implement any
proper validation procedure to automatically select
the best parameters. Nonetheless, taking a large
range such as 3 � 6 provides a reasonable amount
of subword information.

This experiment also shows that it is important to
include long n-grams, as columns corresponding to
n  5 and n  6 work best. This is especially true
for German, as many nouns are compounds made
up from several units that can only be captured by
longer character sequences. On analogy tasks, we
observe that using larger n-grams helps for seman-
tic analogies. However, results are always improved
by taking n � 3 rather than n � 2, which shows
that character 2-grams are not informative for that
task. As described in Sec. 3.2, before computing



2 3 4 5 6

2 57 64 67 69 69
3 65 68 70 70
4 70 70 71
5 69 71
6 70

(a) DE-GUR350

2 3 4 5 6

2 59 55 56 59 60
3 60 58 60 62
4 62 62 63
5 64 64
6 65

(b) DE Semantic

2 3 4 5 6

2 45 50 53 54 55
3 51 55 55 56
4 54 56 56
5 56 56
6 54

(c) DE Syntactic

2 3 4 5 6

2 41 42 46 47 48
3 44 46 48 48
4 47 48 48
5 48 48
6 48

(d) EN-RW

2 3 4 5 6

2 78 76 75 76 76
3 78 77 78 77
4 79 79 79
5 80 79
6 80

(e) EN Semantic

2 3 4 5 6

2 70 71 73 74 73
3 72 74 75 74
4 74 75 75
5 74 74
6 72

(f) EN Syntactic

Table 4: Study of the effect of sizes of n-grams considered on performance. We compute word vectors by
using character n-grams with n in {i, . . . , j} and report performance for various values of i and j. We eval-
uate this effect on German and English, and represent out-of-vocabulary words using subword information.

character n-grams, we prepend and append special
positional characters to represent the beginning and
end of word. Therefore, 2-grams will not be enough
to properly capture suffixes that correspond to con-
jugations or declensions, since they are composed of
a single proper character and a positional one.

5.6 Language modeling

In this section, we describe an evaluation of the word
vectors obtained with our method on a language
modeling task. We evaluate our language model
on five languages (CS, DE, ES, FR, RU) using the
datasets introduced by Botha and Blunsom (2014).
Each dataset contains roughly one million training
tokens, and we use the same preprocessing and data
splits as Botha and Blunsom (2014).

Our model is a recurrent neural network with 650

LSTM units, regularized with dropout (with proba-
bility of 0.5) and weight decay (regularization pa-
rameter of 10

�5). We learn the parameters using
the Adagrad algorithm with a learning rate of 0.1,
clipping the gradients which have a norm larger
than 1.0. We initialize the weight of the network in
the range [�0.05, 0.05], and use a batch size of 20.
Two baselines are considered: we compare our ap-

proach to the log-bilinear language model of Botha
and Blunsom (2014) and the character aware lan-
guage model of Kim et al. (2016). We trained word
vectors with character n-grams on the training set
of the language modeling task and use them to ini-
tialize the lookup table of our language model. We
report the test perplexity of our model without using
pre-trained word vectors (LSTM), with word vectors
pre-trained without subword information (sg) and
with our vectors (sisg). The results are presented
in Table 5.

We observe that initializing the lookup table of
the language model with pre-trained word represen-
tations improves the test perplexity over the base-
line LSTM. The most important observation is that
using word representations trained with subword in-
formation outperforms the plain skipgram model.
We observe that this improvement is most signifi-
cant for morphologically rich Slavic languages such
as Czech (8% reduction of perplexity over sg) and
Russian (13% reduction). The improvement is less
significant for Roman languages such as Spanish
(3% reduction) or French (2% reduction). This
shows the importance of subword information on the
language modeling task and exhibits the usefulness



CS DE ES FR RU

Vocab. size 46k 37k 27k 25k 63k

CLBL 465 296 200 225 304
CANLM 371 239 165 184 261

LSTM 366 222 157 173 262
sg 339 216 150 162 237

sisg 312 206 145 159 206

Table 5: Test perplexity on the language modeling
task, for 5 different languages. We compare to two
state of the art approaches: CLBL refers to the work
of Botha and Blunsom (2014) and CANLM refers
to the work of Kim et al. (2016).

of the vectors that we propose for morphologically
rich languages.

6 Qualitative analysis

6.1 Nearest neighbors.
We report sample qualitative results in Table 7. For
selected words, we show nearest neighbors accord-
ing to cosine similarity for vectors trained using the
proposed approach and for the skipgram base-
line. As expected, the nearest neighbors for com-
plex, technical and infrequent words using our ap-
proach are better than the ones obtained using the
baseline model.

6.2 Character n-grams and morphemes
We want to qualitatively evaluate whether or not
the most important n-grams in a word correspond
to morphemes. To this end, we take a word vector
that we construct as the sum of n-grams. As de-
scribed in Sec. 3.2, each word w is represented as
the sum of its n-grams: u

w

=

P
g2Gw

z

g

. For each
n-gram g, we propose to compute the restricted rep-
resentation u

w\g obtained by omitting g:

u

w\g =

X

g

02G�{g}

z

g

0
.

We then rank n-grams by increasing value of cosine
between u

w

and u

w\g. We show ranked n-grams for
selected words in three languages in Table 6.

For German, which has a lot of compound nouns,
we observe that the most important n-grams cor-

word n-grams

autofahrer fahr fahrer auto
freundeskreis kreis kreis> <freun

DE grundwort wort wort> grund
sprachschule schul hschul sprach

tageslicht licht gesl tages

anarchy chy <anar narchy
monarchy monarc chy <monar
kindness ness> ness kind

politeness polite ness> eness>
EN unlucky <un cky> nlucky

lifetime life <life time
starfish fish fish> star

submarine marine sub marin
transform trans <trans form

finirais ais> nir fini
FR finissent ent> finiss <finis

finissions ions> finiss sions>

Table 6: Illustration of most important character n-
grams for selected words in three languages. For
each word, we show the n-grams that, when re-
moved, result in the most different representation.

respond to valid morphemes. Good examples in-
clude Autofahrer (car driver) whose most important
n-grams are Auto (car) and Fahrer (driver). We also
observe the separation of compound nouns into mor-
phemes in English, with words such as lifetime or
starfish. However, for English, we also observe that
n-grams can correspond to affixes in words such as
kindness or unlucky. Interestingly, for French we ob-
serve the inflections of verbs with endings such as
ais>, ent> or ions>.

6.3 Word similarity for OOV words
As described in Sec. 3.2, our model is capable of
building word vectors for words that do not appear
in the training set. For such words, we simply aver-
age the vector representation of its n-grams. In or-
der to assess the quality of these representations, we
analyze which of the n-grams match best for OOV
words by selecting a few word pairs from the En-
glish RW similarity dataset. We select pairs such
that one of the two words is not in the training vo-
cabulary and is hence only represented by its n-
grams. For each pair of words, we display the cosine
similarity between each pair of n-grams that appear



in the words. In order to simulate a setup with a
larger number of OOV words, we use models trained
on 1% of the Wikipedia data as in Sec. 5.4. The re-
sults are presented in Fig. 2.

We observe interesting patterns, showing that sub-
words match correctly. Indeed, for the word chip,
we clearly see that there are two groups of n-grams
in microcircuit that match well. These roughly cor-
respond to micro and circuit, and n-grams in be-
tween don’t match well. Another interesting ex-
ample is the pair rarity and scarceness. Indeed,
scarce roughly matches rarity while the suffix -ness
matches -ity very well. Finally, the word preado-
lescent matches young well thanks to the -adolesc-
subword. This shows that we build robust word rep-
resentations where prefixes and suffixes can be ig-
nored if the grammatical form is not found in the
dictionary.

7 Conclusion

In this paper, we investigate a simple method to
learn word representations by taking into account
subword information. Our approach, which incor-
porates character n-grams into the skipgram model,
is related to an idea that was introduced by Schütze
(1993). Because of its simplicity, our model trains
fast and does not require any preprocessing or super-
vision. We show that our model outperforms base-
lines that do not take into account subword informa-
tion, as well as methods relying on morphological
analysis. We will open source the implementation
of our model, in order to facilitate comparison of fu-
ture work on learning subword representations.
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