
LEAD2GOLD: TOWARDS EXPLOITING THE FULL POTENTIAL OF NOISY
TRANSCRIPTIONS FOR SPEECH RECOGNITION

Adrien Dufraux1,2, Emmanuel Vincent2, Awni Hannun1, Armelle Brun2, Matthijs Douze1

1Facebook AI Research, 2Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

ABSTRACT

The transcriptions used to train an Automatic Speech Recog-
nition (ASR) system may contain errors. Usually, either a
quality control stage discards transcriptions with too many
errors, or the noisy transcriptions are used as is. We introduce
Lead2Gold, a method to train an ASR system that exploits
the full potential of noisy transcriptions. Based on a noise
model of transcription errors, Lead2Gold searches for better
transcriptions of the training data with a beam search that
takes this noise model into account. The beam search is
differentiable and does not require a forced alignment step,
thus the whole system is trained end-to-end. Lead2Gold can
be viewed as a new loss function that can be used on top
of any sequence-to-sequence deep neural network. We con-
duct proof-of-concept experiments on noisy transcriptions
generated from letter corruptions with different noise lev-
els. We show that Lead2Gold obtains a better ASR accuracy
than a competitive baseline which does not account for the
(artificially-introduced) transcription noise.

Index Terms— ASR, label noise, beam search, noise
model, weakly supervised learning

1. INTRODUCTION

Automatic Speech Recognition (ASR) systems are typically
trained in a fully supervised fashion using paired data, i.e.,
speech utterances with the corresponding transcriptions. The
speech utterances can be either prepared or spontaneous. Pre-
pared speech involves well-constructed sentences that could
be found in a written document or a prepared talk, whereas
spontaneous speech is unprepared and results from people
talking freely. Prepared speech datasets typically consist of
read speech, such as the LibriSpeech [1] or the Wall Street
Journal (WSJ) [2] datasets. In this case, the ground truth tran-
scriptions are directly available from the book or the newspa-
per that the speaker is reading. Spontaneous speech is typ-
ically found in conversational speech datasets, such as the
Fisher [3] or the Switchboard [4] datasets. In this case, the
speech signal must be manually transcribed.

One the one hand, large read speech datasets can easily
be collected for a small cost but they are not representative
of the real test conditions encountered in commercial appli-

cations. As a result, models trained on these datasets achieve
limited performance in real conditions. On the other hand,
spontaneous speech datasets better match real test conditions
but they are much more costly to acquire because of the man-
ual transcription process. The transcriptions commonly used
contain errors, which lead to performance degradation. The
transcribers may provide higher quality transcriptions but at a
much higher cost.

A few studies have sought to reduce the transcription cost.
One approach is to perform semi-supervised learning on both
transcribed and untranscribed data [5, 6]. Another approach
is to use active learning to selectively transcribe some ut-
terances [7]. The two approaches can be combined [8, 9].
Several studies have also considered transfer learning from
related languages [10]. These approaches help reducing the
cost, but the amount of knowledge that can be inferred from
untranscribed data is intrinsically lower.

In this paper, we explore the middle ground where the
training data are neither accurately transcribed nor untran-
scribed but a not-so-expensive “noisy” transcription is avail-
able instead. We propose a new method called Lead2Gold
that learns an end-to-end ASR model given a noise model
and a single noisy transcription per utterance. We exploit all
available information as opposed to discarding overly noisy
transcriptions. To do so, we adapt the Auto Segmentation Cri-
terion (ASG) loss [11] to account for several possible tran-
scriptions. The probability of every possible alignment for a
given transcription is obtained from the current ASR model
and from a noise model which quantifies how likely it has
been mistranscribed into the provided noisy transcription. Be-
cause the computation of this loss is intractable, we use a dif-
ferentiable beam search algorithm that samples only the best
alignments of the best transcriptions.

Noise models have been used in the field of image classi-
fication. They can either be learned in advance [12] or jointly
with the rest of the model with an extra layer [13–16]. Prior
work has also used a noise model conditioned on the input
features [17, 18]. However, these models cannot be directly
applied to ASR as they do not handle sequential inputs and
arbitrary-length outputs. Fewer studies have considered noise
models for ASR. In [19], a spelling correction model was
used for the distinct goal of correcting the output of an al-
ready trained end-to-end ASR system. In [20], the phonetic

sequence corresponding to each training utterance was in-
ferred from several noisy transcriptions made by non-native
transcribers using a misperception model, and subsequently
used to train a conventional ASR model. Lead2Gold stands
apart as it considers a sequence-level loss, it jointly learns the
ASR model and the transcription graph (hence resulting in
better transcriptions of the training data than using the noise
model alone), and it requires a single noisy transcription per
utterance.

This paper is a proof-of-concept for the proposed sequence-
level noise model and training algorithm. As such, we adopt
a controlled experimental protocol where we choose the noise
model and generate noisy datasets accordingly. We present
the algorithm in Section 2, then the experimental protocol
and the experimental results in Sections 3 and 4, respectively.
We conclude in Section 5.

2. SEARCHING FOR AND LEARNING FROM
BETTER TRANSCRIPTIONS

Let us consider an utterance consisting of a feature sequence
X = [X1, ..., XT] over T frames and the corresponding pro-
vided transcription Y = [y1, ..., yL] which is a sequence of L
tokens. An alignment of a transcription over the T frames is
denoted as π = [π1, ..., πT], where πt is the token in frame
t. Given an utterance X , the acoustic model outputs token
scores fπt(X) for each frame t.

Our method relies on the sequence-discriminative ASG
loss [11], that is an alternative to the Connectionist Temporal
Classification (CTC) loss [21] often used to train end-to-end
systems. ASG incorporates bigram frame-level transitions,
does not contain an optional null output, and is globally nor-
malized. As such, it is similar to the lattice-free Maximum
Mutual Information (LF-MMI) loss also commonly used in
ASR [22].

With this approach, a forced alignment step is not needed
before training since all possible alignments of the provided
transcription are taken into account. The score of every indi-
vidual alignment is defined as

s(π|X) =

T∑
t=1

(fπt
(X) + g(πt|πt−1)) (1)

where g(i|j) are the transition scores learned jointly with the
acoustic model. The ASG loss to be minimized is defined as

ASG(Y) = − log p(Y |X) (2)
= − logadd

π∈GASG(Y)

s(π|X) + logadd
π∈Gfull

s(π|X) (3)

= −SASG(Y) + Z (4)

where the logadd operation is defined as logadd(a + b) =
log(ea + eb). GASG(Y) is the graph comprising all possible
alignments of the transcription Y over T frames. Contrary

to [11], we use only one additional token to model the rep-
etition of the previous letter and do not model the repetition
of 3 consecutive letters. The graph Gfull contains all possi-
ble alignments of all possible transcriptions. The first term
SASG(Y) promotes all the paths in GASG(Y), while the sec-
ond term Z is a normalization term. Both terms are efficiently
computed with a dynamic programming algorithm.

2.1. Noise model

In this work, we consider the case when the provided tran-
scriptions are corrupted. For each utterance, we denote by
Ỹ = [ỹ1, ..., ỹL1

] the provided noisy transcription, and by
Y ∗ = [y∗1 , ..., y

∗
L2
] the unknown correct (a.k.a. clean) tran-

scription. We consider a noise model p(Ỹ |Y ∗) which pro-
vides the likelihood of a noisy transcription given the clean
one. Note that the noise model conditions on the clean tran-
scription only and does not depend on the utterance X .

In the following, as a proof-of-concept, we consider a
simple noise model comprising token-level corruptions only.
Clean transcriptions can be transformed into noisy transcrip-
tions by substituting tokens, deleting clean tokens, or insert-
ing new tokens into the resulting noisy transcription. For sim-
plicity, we do not allow the deletion or insertion of two con-
secutive tokens. We also assume that insertions, deletions and
substitutions are independent of each other.

To model this behavior we add a void token ∅. The
probability of deleting a clean token y∗i is given by p(∅|y∗i)
and p(ỹi|∅) is the probability of inserting a noisy token
ỹi. We interleave ∅ between all the tokens in Ỹ and Y ∗

so that Ỹ becomes [∅, ỹ1, ∅, ..., ∅, ỹL1
, ∅] and Y ∗ becomes

[∅, y∗1 , ∅, ..., ∅, y∗L2
, ∅]. A valid alignment between Ỹ and Y ∗

is denoted by a = (a∗, ã) where a∗ and ã contain La tokens.
We denote by AỸY ∗ the set of all possible alignments between
Ỹ and Y ∗.

The noise model can now be computed as follows:

log p(Ỹ |Y ∗) = log
∑

a∈AỸ
Y ∗

p(Ỹ |Y ∗, a) (5)

= log
∑

a∈AỸ
Y ∗

La∏
i=1

p(ãi|a∗i) (6)

= logadd
a∈AỸ

Y ∗

La∑
i=1

log p(ãi|a∗i). (7)

We denote by YỸ the set of all clean transcriptions Y ∗ that
can lead to Ỹ under this noise model:

YỸ = {Y ∗ | p(Ỹ |Y ∗) > 0} (8)

Substitutions only: We also consider the simplified case
where only substitutions are allowed. In this case, only one
alignment a is possible between Ỹ and Y ∗, the length of the

alignment is the same as the clean and noisy transcriptions
(La=L1=L2), and expression (7) reduces to

log p(Ỹ |Y ∗) =
La∑
i=1

log p(ỹi|y∗i). (9)

2.2. Noise-aware ASG loss

We now reformulate the ASG loss to incorporate our model
of transcription noise. The resulting noise-aware ASG loss
can be computed as follows:

ASG(Ỹ) = − log p(Ỹ |X) (10)

= − log
∑

Y ∗∈YỸ

p(Ỹ |Y ∗)p(Y ∗|X) (11)

= −logadd
Y ∗∈YỸ

[
log p(Ỹ |Y ∗) + log p(Y ∗|X)

]
(12)

= −logadd
Y ∗∈YỸ

[
log p(Ỹ |Y ∗)− ASG(Y ∗)

]
(13)

= −logadd
Y ∗

[
log p(Ỹ |Y ∗) + logadd

π∗∈GASG(Y ∗)

s(π∗|X)− Z

]
(14)

= −logadd
Y ∗

[
log p(Ỹ |Y ∗) + logadd

π∗
s(π∗|X)

]
+ Z (15)

= −logadd
Y ∗,π∗

[
s(π∗|X) + log p(Ỹ |Y ∗)

]
+ Z (16)

= −SL2G(Ỹ) + Z. (17)

The normalization term Z is straightforward to compute with
dynamic programming as it is unchanged with respect to the
conventional ASG loss.

Including the noise model from Section 2.1 in SL2G(Ỹ),
we obtain:

SL2G(Ỹ) = logadd
Y ∗,π∗

s(π∗|X) + logadd
a∈AỸ

Y ∗

La∑
i=1

log p(ãi|a∗i)

(18)

= logadd
Y ∗,π∗,a

[
s(π∗|X) +

La∑
i=1

log p(ãi|a∗i)

]
(19)

= logadd
(Y ∗,π∗,a)∈GL2G(Ỹ)

s(Y ∗, π∗, a|X) (20)

whereGL2G(Ỹ) is the graph comprising all the alignments π∗

over T frames of all possible clean transcriptions Y ∗ corre-
sponding to the provided noisy transcription Ỹ . Given the
combinatorially large number of paths in GL2G(Ỹ), SL2G(Ỹ)
cannot be computed exactly.

2.3. Approximation of the loss

To obtain an approximation of SL2G(Ỹ) we take into account
only a subset of all possible paths in GL2G(Ỹ), that we ob-

Algorithm 1: Forward pass for the differentiable beam
search.
AddHyp(hyp, π, ỹ, s):

Create a new hyp which adds π to hyp with cursor
to ỹ and a score s, only if it leads to a valid path.

Declare an empty hyp with cursor at ỹ1 and score to 0
for every frame t do

for every hyp being expanded do
hyp has the cursor ỹi and a score sprev
for every token π∗t do

s = sprev + fπ∗
t
(X) + g(π∗t |π∗t−1)

if π∗t = π∗t−1 then
AddHyp (hyp, π∗t , ỹi, s)

else
Deletion of π∗t−1:
st = s+ α log p(∅|π∗t−1)
AddHyp (hyp, π∗t , ỹi, st)

Substitution of π∗t−1 to ỹi:
st = s+ α log p(ỹi|π∗t−1)
AddHyp (hyp, π∗t , ỹi+1, st)

Insertion of ỹi and
Substitution of π∗t−1 to ỹi+1:
st = s+ α log p(ỹi|∅)p(ỹi+1|π∗t−1)
AddHyp (hyp, π∗t , ỹi+2, st)

end
end

end
Merge hypotheses with same cursor and same π∗t .
Keep the N best hypotheses.

end
Add noise score for the last token, logadd all score
hypotheses and return the resulting score.

tain with a beam search algorithm. The algorithm is inspired
from [23], except that the way we choose the paths differs
drastically. s(Y ∗, π∗, a|X) can be computed as a sum over
the T frames and Algorithm 1 describes how we expand the
hypotheses with a corresponding score at each frame. The
noise score is added once an entire letter is emitted. The func-
tion AddHyp prevents from adding an invalid hypothesis, i.e.,
the considered hypothesis must lead to a Y ∗ that belongs to
YỸ . After each processed frame, we merge the hypotheses
that have the same cursor on the noisy transcription and that
are processing the same token. Then we keep only the N
best hypotheses where N denotes the beamsize. For a large
enough N , we are able to compute a good approximation of
GL2G(Ỹ). We denote by L2G(Ỹ) the loss obtained with this
approximation.

To train a model with this loss, it has to be differentiable.
Once we choose the hypotheses in the forward pass, the back-
ward pass doesn’t change from [23].

During the forward pass, we add the acoustic scores with
the log-probabilities of the noise model. To make our beam
search work, we have to balance the contribution of these
two terms with a noise model weight α akin to the language
model weight in conventional ASR decoding. This parameter
is tuned manually on a validation set.

2.4. Performing the transcription

To perform ASR on the test set, we apply the standard tran-
scription procedure, as if there was no corruption at training
time. The acoustic model was trained to model p(Y ∗|X) so
given an utterance X, the model will output clean token prob-
abilities for each frame. We can either decode a transcription
with a Viterbi algorithm or use a standard beam search with a
LM.

3. EXPERIMENTAL SETUP AND PRELIMINARY
OBSERVATIONS

3.1. Getting a noise model

In this work, we do not create a new ASR dataset with noisy
transcriptions. While it would be more realistic, it would also
be costly to annotate and more difficult to evaluate and repro-
duce. Instead, we chose to corrupt an existing paired text and
audio dataset with near-perfect transcriptions. To generate re-
alistic transcription noise, we study the incorrect predictions
of a weak ASR model, which we assume resembles the errors
made by human transcribers.

We use a grapheme-based ASR model. The output set
includes the alphabet plus the apostrophe, the space, and one
repetition token to model the repetition of 2 letters.

Weak ASR Model: To generate meaningful corruptions,
we train a weak ASR model on the si284 subset of the WSJ
dataset [2] (82 hours). This model has the same architecture
and follows the same recipe as the one used to evaluate our
method (see Section 4.1). We call it a weak model because
we do not allow it to converge completely. We stop train-
ing at three different stages, namely when the Letter Error
Rate (LER) on the nov93dev subset reaches 30, 20, or 10%.
We denote these models as M30, M20, and M10, respectively.

Letter substitution probabilities: We evaluate the weak
ASR model on the nov93dev and nov92 subsets (836 utter-
ances) and compare the greedy decoded transcriptions with
the ground truth at the token level. To do so, we minimize the
letter edit distance between them and compute the frequency-
based, empirical probabilities, p(ỹ|y∗), for substitutions,
insertions (y∗ = ∅), and deletions (ỹ = ∅).

Generating corruptions: To generate more variations, we
reduce or amplify the number of substitutions, insertions, and
deletions by applying a multiplicative factor f ∈ {0.5, 1, 2}.

We call the resulting noise models “M* f*” in the general case
or “S M* f*” in the substitution-only case (ignoring insertions
and deletions). For example, in “S M10 f2”, the letter substi-
tution probabilities are from a WSJ model which reaches an
LER of 10% on nov93dev, with only substitutions, and the
probabilities are calculated with a multiplicative factor of 2.
We consider 18 such models.

Table 1 shows an example of the “M10 f2” noise model.
Interesting confusions are s/z, presumably because of the ex-
istence of both British and US spellings, or k/c because they
often produce the same hard ‘k’ sound. In this setting, in-
sertion of letters in the noisy transcription is unlikely. This
is because the model from which we get the errors tends to
output shorter transcriptions than the ground truth.

3.2. Generating noisy transcriptions

We test our approach on the LibriSpeech corpus [1]. For
training we use the train-clean-100 subset which contains 100
hours of clean speech along with their ground truth transcrip-
tions. We use the smaller 100 hour subset because our ap-
proach is computationally intensive. However, we find that
100 hours is sufficient to train a non-trivial, end-to-end speech
system and perform meaningful experiments.

We apply the noise model trained on WSJ to the ground
truth transcriptions in train-clean-100 in order to generate 18
noisy training datasets. We will refer to each noisy dataset
with the same name as the noise model used to generate it.
When Lead2Gold is used on a dataset, we use the correspond-
ing noise model in equation (20).

3.3. Evaluation

To develop and test Lead2Gold we use the dev-clean and test-
clean subsets of the LibriSpeech corpus. We report the Word
Error Rate (WER) between the decoded transcriptions pro-
duced by the ASR model and the ground truth transcriptions
(without label noise) on these datasets. The WER on test-
clean is reported both without and with language model (LM)
rescoring.

For the LM, we use a 4-gram trained on the LibriSpeech
text training data with a 200 k word lexicon. The hyperparam-
eters of the decoder are tuned once on dev-clean with a model
trained on the train-clean-100 subset with the ASG loss. We
use a beam size of 2,500, a beam threshold of 50, an LM
weight of 2.66, a word insertion penalty of 1.33 and a space
insertion penalty of -1.33.

The baseline is a model trained on the noisy dataset with
the ASG loss. We also train an oracle model on train-clean-
100 without label noise using the ASG loss.

3.4. Typical beam search results

A typical beam search result is shown in Table 2. The Weight
column represents the contribution of a proposed transcrip-

Clean letters
| ’ a b c d e f g h i j k l m n o p q r s t u v w x y z ∅

N
oi

sy
le

tte
rs

| 89.4 1.8 0.6 0.9 1.0 1.0 0.8 0.3 0.9 0.7 1.0 0.8 0.9 0.8 1.0 0.7 0.5 1.0 2.0 0.4 0.8 0.7 0.9 0.4 1.0 0.6 0.7 7.1 0.3
’ 31.8 0.1 0.1 0.1
a 0.4 2.5 75.9 0.1 0.2 0.5 2.3 2.2 0.6 0.4 3.0 0.6 0.7 0.4 0.6 2.4 0.9 0.4 0.2 0.5 4.2 0.4 0.7 0.6 1.4 0.1
b 0.1 82.9 0.2 0.1 0.1 0.5 0.2 0.4 1.5 0.1 1.6 0.3 0.2
c 0.1 0.4 0.1 0.1 85.3 0.1 0.2 0.3 1.6 0.3 0.2 6.6 0.1 0.2 0.2 1.0 6.1 0.1 0.8 0.3 0.3 0.1 1.2 0.2 1.4
d 0.1 0.2 1.0 67.1 0.4 0.3 2.1 1.2 0.1 3.9 0.1 0.3 0.4 0.1 0.1 0.2 0.2 1.5 0.3 1.0 0.4 0.5 0.1
e 0.4 4.0 4.6 1.0 0.8 1.6 77.7 0.7 1.2 0.9 2.9 1.5 1.0 1.0 0.5 3.0 0.2 0.6 0.5 1.4 4.2 1.2 0.7 3.8 7.1 0.2
f 0.2 0.1 0.2 83.5 0.1 0.9 0.1 0.1 0.4 0.1 0.1 0.2 0.3 1.3 0.5 0.6 0.2
g 0.1 0.1 0.5 0.3 1.2 0.2 0.1 71.4 0.1 3.1 0.9 0.1 0.2 0.1 0.3 1.0 0.1 0.2 0.3 0.1 0.1 0.4 0.1
h 0.1 0.2 0.8 0.3 0.2 0.4 0.1 73.8 0.2 1.6 0.4 0.3 0.1 0.2 0.3 0.1 1.0 0.2 0.1 0.2 0.5 0.8 0.3 0.2 0.1
i 0.4 4.0 3.3 0.4 0.3 0.4 1.7 0.3 0.3 78.2 0.2 0.5 0.2 1.1 0.2 0.2 0.2 0.2 3.0 0.8 0.2 2.9 0.1
j 0.5 79.8 0.1
k 0.7 0.1 0.6 0.1 0.3 0.2 68.9 0.1 0.3 3.0 0.3 0.1 0.1
l 0.1 1.4 0.3 0.1 0.3 0.3 0.1 0.4 0.1 83.9 1.1 0.2 0.6 0.2 0.1 0.2 0.6 0.3 2.8 0.2 1.4
m 0.1 0.1 0.5 0.4 0.1 0.1 0.4 81.3 0.6 0.1 0.1 0.2 0.1 0.7 0.4 0.1
n 0.2 0.7 0.2 0.1 0.2 1.2 0.4 0.8 0.5 0.5 0.2 0.4 4.7 89.1 0.2 0.3 0.2 0.5 0.4 0.1 0.5 0.1
o 0.2 1.4 2.7 0.3 0.1 0.8 1.2 0.5 0.4 0.1 1.0 1.6 0.2 1.8 0.4 0.3 81.3 0.3 0.7 0.1 0.1 4.8 1.0 1.3 0.2 2.9 0.1
p 1.3 0.8 0.1 0.5 0.1 0.2 0.1 0.4 0.2 86.7 0.1 0.1 0.3 0.1 0.1
q 0.1 72.7 0.1
r 0.3 0.1 0.2 0.2 0.3 0.1 0.1 0.1 0.2 0.4 0.1 0.2 1.0 90.5 0.1 0.4 0.1 0.5 0.2
s 0.2 0.2 2.6 0.6 0.6 1.0 0.4 0.3 0.2 0.8 0.1 0.1 0.2 0.2 90.4 0.2 0.3 0.1 2.9 0.6 32.9 0.1
t 0.3 0.4 0.4 1.2 1.3 5.2 0.6 1.6 1.0 1.1 0.5 3.9 5.7 0.6 0.4 0.9 0.2 1.7 4.0 0.2 0.6 82.9 0.6 0.7 0.3 0.6 0.9 0.2
u 0.1 0.4 0.6 0.1 0.2 0.4 0.1 0.1 0.2 0.8 0.3 0.3 0.1 0.8 0.1 0.2 0.1 64.0 0.3 0.7 0.2
v 0.1 1.4 0.2 0.5 0.1 0.2 0.1 0.3 0.2 0.1 0.1 0.1 77.5 0.1
w 0.2 0.2 0.2 0.1 0.5 0.2 0.1 0.2 0.1 0.1 0.4 0.7 68.5 0.2
x 0.4 0.3 91.9
y 0.1 0.2 0.8 0.6 1.0 0.2 0.6 0.1 0.1 0.1 0.1 0.2 0.2 0.1 74.8 1.4
z 25.7
∅ 7.6 50.5 9.5 6.7 5.6 17.5 11.9 6.4 16.7 16.8 10.4 4.7 13.2 8.0 6.7 5.7 8.6 4.4 9.1 5.4 5.1 10.1 13.9 10.8 21.0 2.3 12.5 18.6 98.5

Table 1. The “M20 f1” noise model probabilities. The “|” is the space token. Row ∅ contains the deletion probabilities and
column ∅ contains the insertion probabilities, and p(∅|∅) is the probability of not inserting any new token into the transcription.

Transcription Weight LER

Ground truth could not give his hand to the bride - -

Ỹ ool not ive his han to the rride - 15.8

could not give his hand to the bride 0.22 0
could not ive his hand to the bride 0.13 2.6
could not give his hand to the brie 0.05 2.6
could not ive his hand to the brie 0.03 5.3

Transcription coul not give his hand to the bride 0.029 2.6
hypotheses ould not give his hand to the bride 0.024 2.6

Y ∗ could not cive his hand to the bride 0.023 2.6
could not give his and to the bride 0.022 2.6
coud not give his hand to the bride 0.022 2.6
could not give is hand to the bride 0.018 2.6
could not giv his hand to the bride 0.018 2.6

Table 2. Example of the 10 best transcriptions Y ∗ obtained
by our beam search procedure. The Lead2Gold algorithm is
applied on the “M20 f1” noisy dataset with the corresponding
noise model. We report the Weight and the LER between Y ∗

and the ground truth. The noisy transcription is given by Ỹ .

tion to the loss. The weight for a given transcription is the
logadd of the scores for all the alignments in the beam which
lead to it. We then normalize the weights with a softmax oper-
ation. The example shows that our method can recover good
hypotheses and assign a reasonable weight to them. In this
particular case, the best hypothesis is the ground truth.

4. EXPERIMENTS

4.1. Experimental protocol

We implement the Lead2Gold (L2G) loss in the wav2letter++
framework [24], a fast speech recognition toolkit written in
C++, and train a model on each of the 18 noisy datasets.
We first pre-train with the standard ASG loss without a noise
model for 1,000 epochs. This is done since the L2G loss is
more than 15 times slower than ASG and can be up to 30
times slower when using a beam size of 300. We then fine-

tune with the L2G loss for 200 epochs in the substitution-only
case and for 1 epoch in the general case (see explanation in
Section 4.2 below). We train an oracle model on the clean
data with the ASG loss for 1,200 epochs and during the last
200 epochs we anneal the learning rate by a factor of 2.

The network architecture is based on the off-the-shelf Lib-
riSpeech ASG recipe provided with wav2letter++, namely, a
1D gated convolutional neural network (Gated ConvNet) [25].
The model contains 17 1D convolutional layers with a fixed
kernel width of 13 followed by 2 linear layers. For each layer,
except for the last one, we apply weight normalization [26],
Gated Linear Units (GLUs) [27] as the activation function and
a fixed dropout rate of 0.25. Along the 17 convolutional lay-
ers we linearly increase the number of output hidden units
from 100 to 200. For the first layer we use a stride of 2 in
order to reduce the number of frames used in computing L2G
loss. The first linear layer projects the number of hidden units
to 400 and the last one to 29, producing one score for each
output token.

The model contains only 10 M parameters, which is suffi-
cient to accommodate the smaller training set. The number of
hidden units and hence parameters was tuned on train-clean-
100 with the ASG loss using the dev-clean dataset for valida-
tion. We do not perform further architecture search. Despite
the fact that the overall architecture was designed for a larger
dataset, we obtain a decent WER. On dev-clean, the model
achieves 16.9% WER which is close to the 14.7% WER re-
ported for end-to-end models in [28]. With an LM, the model
reaches 9.5% WER compared to 7.3% WER from [29] which
aims to find a good model in this setting.

The model takes 40 log-mel filterbank features as inputs.
We use the SGD optimizer and clip the norm of the gradients
to 0.05. The learning rate is set to 8 when pre-training. A
separate learning rate of 0.004 is used to update the transition
scores, g(πt|πt−1).

We train with a batch size of 320 and implement the L2G
loss in parallel using one CPU per example in the batch. We
divide the loss by the square root of the length of the provided

ASR training dev-clean test-clean test-clean+LM
dataset ASG L2G ASG L2G ASG L2G

S M10 f0.5 17.5 17.1 17.7 17.3 12.1 10.2
S M10 f1 17.9 17.1 18.1 17.2 23.4 10.3
S M10 f2 18.8 17.4 18.8 18.6 21.4 10.4

S M20 f0.5 18.1 17.1 18.3 17.5 15.0 10.4
S M20 f1 19.0 17.5 19.2 18.1 22.3 10.7
S M20 f2 20.6 18.2 20.9 18.6 49.1 11.2

S M30 f0.5 18.3 17.3 18.8 17.6 19.9 10.6
S M30 f1 20.2 18.2 20.4 18.3 41.1 11.0
S M30 f2 24.8 19.6 25.1 20.0 80.1 12.7

clean-100h 16.9 - 17.3 - 10.0 -

Table 3. WER (%) achieved by ASR models trained on noisy
data including substitutions only.

transcription.
During the pre-training phase we use 8 GPUs which gives

an epoch time of approximately 30 seconds. When training
with the L2G loss, the number of GPUs used is not important
since the computation of the loss, which occurs on the CPU,
represents the bulk of the training time. We set the beam size
of L2G to 300 for all the experiments. We find that increasing
it further has little impact on the results.

The noise model weight α must be tuned. Lead2Gold
only converges with α below 0.7 in our experiments. In gen-
eral, as the amount of noise in the data the data grows, α must
be shrinked in order to achieve convergence. We reduce α
until we obtain a WER convergence on dev-clean.

One epoch of L2G epoch lasts between 7 and 15 minutes.
In future work, we could reduce the complexity of Lead2Gold
by using sub-word units or entire words as tokens. This would
allow us to use a smaller beam size and further reduce the
frame rate of the encoded utterance.

4.2. Results

Table 3 shows the results achieved by ASR models trained on
noisy data including substitutions only. We keep the learning
rate to 8 and we set α to 0.5 except for the “S M30 f2” case
where it is set to 0.3. Lead2Gold outperforms the ASG loss in
every case. We almost reach the oracle WER when the noise
level is low, but the relative gain achieved by L2G is larger
on noisier datasets. For the model trained on the “S M30 f2”
dataset, we achieve a WER reduction of 5.1% absolute when
using the L2G loss. We note that in some cases adding an
external LM makes the WER worse when models are trained
with the ASG loss on noisy data. One possible explanation
is that we did not re-tune the decoding parameters for each
setting.

Table 4 shows the results achieved by ASR models trained
on noisy data including substitutions, insertions, and dele-
tions. The learning rate is set to 1 and α to 0.1 for all of these

ASR training dev-clean test-clean test-clean+LM
dataset ASG L2G ASG L2G ASG L2G

M10 f0.5 18.2 18.5 18.8 19 13.7 12.8
M10 f1 19.5 20.1 19.5 20.3 23.4 19.4
M10 f2 21.7 22.6 22.2 22.8 59.9 41.7

M20 f0.5 20.2 21.1 20.7 21.8 28.6 22.6
M20 f1 23.9 22.8 24.3 23.2 71.2 58.3
M20 f2 44.0 31.2 44.6 31.7 96.5 68.9

M30 f0.5 23.3 22.0 23.4 22.0 60.8 39.8
M30 f1 39.1 28.6 39.6 28.7 95.3 76.1
M30 f2 87.7 46.4 87.9 46.9 99.0 84.8

clean-100h 16.9 - 17.3 - 10.0 -

Table 4. WER (%) achieved by ASR models trained on noisy
data including substitutions, insertions, and deletions.

experiments. While L2G does not improve over the baseline
ASG trained model in every case, we still see a gain in per-
formance in some cases, particularly at higher noise levels. In
the general case, we see more frequent convergence issues. In
some cases, the WER on the training data initially improves
but then starts to deteriorate over time. We report the results
when the best WER is reached on dev-clean during the single
epoch we perform. We found that if we continue to train, the
predicted transcriptions tend to grow shorter and shorter. One
possible solution could be to use a different scale for each of
the insertions, deletion and substitution probabilities.

5. CONCLUSION

We propose Lead2Gold, a novel sequence-level loss func-
tion which incorporates a noise model and is able to better
learn from noisy transcriptions. While the L2G objective is
intractable and cannot be computed directly, we use a differ-
entiable beam search to approximate it. We show that when
contrived yet non-trivial noise is introduced into the labels
used to train the acoustic model, L2G can dramatically out-
perform a noise-unaware criterion such as ASG.

The main limitation of Lead2Gold is the high computa-
tional cost. In future work we plan to mitigate this problem
in part by using sub-word units as tokens. This would reduce
the transcription length and thus make it possible to reduce
the frame-rate of the encoded input utterance. We also intend
to further investigate scaling to many more CPUs and alter-
native SIMD style parallel implementations of the L2G loss-
function. Another avenue for improvement with L2G is using
a more complex noise model. The noise model can condition
on the utterance or on some meta-data about the transcriber.

The L2G loss function has the potential to better leverage
noisy data. Learning more accurately from noisy data can
dramatically decrease the cost of generating transcriptions for
acoustic training sets – currently one of the biggest costs in
developing a new speech recognition system.

6. REFERENCES

[1] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an ASR corpus based
on public domain audio books,” in 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2015, pp. 5206–5210.

[2] Douglas B Paul and Janet M Baker, “The design for the
Wall Street Journal-based CSR corpus,” in Proceedings
of the workshop on Speech and Natural Language. As-
sociation for Computational Linguistics, 1992, pp. 357–
362.

[3] Christopher Cieri, David Miller, and Kevin Walker,
“The fisher corpus: a resource for the next generations
of speech-to-text.,” in LREC, 2004, vol. 4, pp. 69–71.

[4] John J Godfrey, Edward C Holliman, and Jane Mc-
Daniel, “Switchboard: Telephone speech corpus for
research and development,” in [Proceedings] ICASSP-
92: 1992 IEEE International Conference on Acoustics,
Speech, and Signal Processing. IEEE, 1992, vol. 1, pp.
517–520.

[5] Karel Veselỳ, Mirko Hannemann, and Lukáš Burget,
“Semi-supervised training of deep neural networks,” in
2013 IEEE Workshop on Automatic Speech Recognition
and Understanding. IEEE, 2013, pp. 267–272.

[6] Shigeki Karita, Shinji Watanabe, Tomoharu Iwata, At-
sunori Ogawa, and Marc Delcroix, “Semi-supervised
end-to-end speech recognition.,” in Interspeech, 2018,
pp. 2–6.

[7] Jiaji Huang, Rewon Child, Vinay Rao, Hairong Liu,
Sanjeev Satheesh, and Adam Coates, “Active learning
for speech recognition: the power of gradients,” arXiv
preprint arXiv:1612.03226, 2016.

[8] Thomas Drugman, Janne Pylkkonen, and Reinhard
Kneser, “Active and semi-supervised learning in ASR:
Benefits on the acoustic and language models,” arXiv
preprint arXiv:1903.02852, 2019.

[9] Dong Yu, Balakrishnan Varadarajan, li Deng, and Alex
Acero, “Active learning and semi-supervised learning
for speech recognition: A unified framework using the
global entropy reduction maximization criterion,” Com-
puter Speech & Language, vol. 24, pp. 433–444, 2010.

[10] Dong Wang and Thomas Fang Zheng, “Transfer learn-
ing for speech and language processing,” in Proc. AP-
SIPA Annual Summit and Conf., 2015, pp. 1225–1237.

[11] Ronan Collobert, Christian Puhrsch, and Gabriel
Synnaeve, “Wav2letter: an end-to-end convnet-
based speech recognition system,” arXiv preprint
arXiv:1609.03193, 2016.

[12] Giorgio Patrini, Alessandro Rozza, Aditya Kr-
ishna Menon, Richard Nock, and Lizhen Qu, “Making
deep neural networks robust to label noise: A loss
correction approach,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2017, pp. 1944–1952.

[13] Takuhiro Kaneko, Yoshitaka Ushiku, and Tatsuya
Harada, “Label-noise robust generative adversarial net-
works,” CoRR, vol. abs/1811.11165, 2018.

[14] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus, “Training convo-
lutional networks with noisy labels,” arXiv preprint
arXiv:1406.2080, 2014.

[15] Ishan Jindal, Matthew Nokleby, and Xuewen Chen,
“Learning deep networks from noisy labels with dropout
regularization,” in 2016 IEEE 16th International Con-
ference on Data Mining (ICDM). IEEE, 2016, pp. 967–
972.

[16] Jacob Goldberger and Ehud Ben-Reuven, “Training
deep neural-networks using a noise adaptation layer,” in
ICLR, 2017.

[17] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiao-
gang Wang, “Learning from massive noisy labeled data
for image classification,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2015, pp. 2691–2699.

[18] Aditya Krishna Menon, Brendan Van Rooyen, and
Nagarajan Natarajan, “Learning from binary labels
with instance-dependent corruption,” arXiv preprint
arXiv:1605.00751, 2016.

[19] Jinxi Guo, Tara N Sainath, and Ron J Weiss, “A spelling
correction model for end-to-end speech recognition,”
in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 5651–5655.

[20] Mark A Hasegawa-Johnson, Preethi Jyothi, Daniel Mc-
Cloy, Majid Mirbagheri, Giovanni M di Liberto, Amit
Das, Bradley Ekin, Chunxi Liu, Vimal Manohar, Hao
Tang, et al., “ASR for under-resourced languages from
probabilistic transcription,” IEEE/ACM Transactions on
Audio, Speech and Language Processing (TASLP), vol.
25, no. 1, pp. 50–63, 2017.

[21] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber, “Connectionist temporal classifi-
cation: labelling unsegmented sequence data with recur-
rent neural networks,” in Proceedings of the 23rd inter-
national conference on Machine learning. ACM, 2006,
pp. 369–376.

[22] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pe-
gah Ghahremani, Vimal Manohar, Xingyu Na, Yim-
ing Wang, and Sanjeev Khudanpur, “Purely sequence-
trained neural networks for asr based on lattice-free
mmi,” in Interspeech, 2016, pp. 2751–2755.

[23] Ronan Collobert, Awni Hannun, and Gabriel Synnaeve,
“A fully differentiable beam search decoder,” arXiv
preprint arXiv:1902.06022, 2019.

[24] Vineel Pratap, Awni Hannun, Qiantong Xu, Jeff Cai, Ja-
cob Kahn, Gabriel Synnaeve, Vitaliy Liptchinsky, and
Ronan Collobert, “Wav2letter++: The fastest open-
source speech recognition system,” arXiv preprint
arXiv:1812.07625, 2018.

[25] Vitaliy Liptchinsky, Gabriel Synnaeve, and Ronan Col-
lobert, “Letter-based speech recognition with gated con-
vnets,” arXiv preprint arXiv:1712.09444, 2017.

[26] Tim Salimans and Durk P Kingma, “Weight normaliza-
tion: A simple reparameterization to accelerate training
of deep neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2016, pp. 901–909.

[27] Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier, “Language modeling with gated convolu-
tional networks,” in Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 933–941.

[28] Christoph Lüscher, Eugen Beck, Kazuki Irie, Markus
Kitza, Wilfried Michel, Albert Zeyer, Ralf Schlüter, and
Hermann Ney, “RWTH ASR systems for librispeech:
Hybrid vs attention-w/o data augmentation,” arXiv
preprint arXiv:1905.03072, 2019.

[29] Jayadev Billa, “Improving LSTM-CTC based ASR per-
formance in domains with limited training data,” arXiv
preprint arXiv:1707.00722, 2017.

