
FBNet: Hardware-Aware Efficient ConvNet Design
via Differentiable Neural Architecture Search

Bichen Wu1∗, Xiaoliang Dai2∗, Peizhao Zhang3, Yanghan Wang3, Fei Sun3,
Yiming Wu3, Yuandong Tian3, Peter Vajda3, Yangqing Jia3, and Kurt Keutzer1

1UC Berkeley, 2Princeton University, 3Facebook Inc.
{bichen, keutzer}@berkeley.edu, xdai@princeton.edu,

{stzpz, yanghan, feisun, wyiming, yuandong, vajdap, jiayq}@fb.com

Abstract

Designing accurate and efficient ConvNets for mobile
devices is challenging because the design space is com-
binatorially large. Due to this, previous neural archi-
tecture search (NAS) methods are computationally expen-
sive. ConvNet architecture optimality depends on fac-
tors such as input resolution and target devices. How-
ever, existing approaches are too resource demanding for
case-by-case redesigns. Also, previous work focuses pri-
marily on reducing FLOPs, but FLOP count does not al-
ways reflect actual latency. To address these, we propose
a differentiable neural architecture search (DNAS) frame-
work that uses gradient-based methods to optimize Con-
vNet architectures, avoiding enumerating and training in-
dividual architectures separately as in previous methods.
FBNets (Facebook-Berkeley-Nets), a family of models dis-
covered by DNAS surpass state-of-the-art models both de-
signed manually and generated automatically. FBNet-B
achieves 74.1% top-1 accuracy on ImageNet with 295M
FLOPs and 23.1 ms latency on a Samsung S8 phone, 2.4x
smaller and 1.5x faster than MobileNetV2-1.3[17] with
similar accuracy. Despite higher accuracy and lower la-
tency than MnasNet[20], we estimate FBNet-B’s search
cost is 420x smaller than MnasNet’s, at only 216 GPU-
hours. Searched for different resolutions and channel sizes,
FBNets achieve 1.5% to 6.4% higher accuracy than Mo-
bileNetV2. The smallest FBNet achieves 50.2% accuracy
and 2.9 ms latency (345 frames per second) on a Sam-
sung S8. Over a Samsung-optimized FBNet, the iPhone-X-
optimized model achieves a 1.4x speedup on an iPhone X.
FBNet models are open-sourced at https://github.
com/facebookresearch/mobile-vision.

∗Work done while interning at Facebook.

… …
Stochastic	super	net

Distribution

Operators

Probability

Training	
super	net	

Proxy
dataset

Sampling

Operator
Latency
LUT

Deploy

Target	
device

Benchmark
…

Search	space

… …
Neural	Architectures

Figure 1. Differentiable neural architecture search (DNAS) for
ConvNet design. DNAS explores a layer-wise space that each
layer of a ConvNet can choose a different block. The search space
is represented by a stochastic super net. The search process trains
the stochastic super net using SGD to optimize the architecture
distribution. Optimal architectures are sampled from the trained
distribution. The latency of each operator is measured on target
devices and used to compute the loss for the super net.

1. Introduction

ConvNets are the de facto method for computer vision.
In many computer vision tasks, a better ConvNet design
usually leads to significant accuracy improvement. In pre-
vious works, accuracy improvement comes at the cost of
higher computational complexity, making it more challeng-
ing to deploy ConvNets to mobile devices, on which com-
puting capacity is limited. Instead of solely focusing on
accuracy, recent work also aims to optimize for efficiency,
especially latency. However, designing efficient and accu-
rate ConvNets is difficult due to the challenges below.

Intractable design space: The design space of a Con-
vNet is combinatorial. Using VGG16 [18] as a motivat-
ing example: VGG16 contains 16 layers. Assume for
each layer of the network, we can choose a different ker-
nel size from {1, 3, 5} and a different filter number from
{32, 64, 128, 256, 512}. Even with such simplified de-
sign choices and shallow layers, the design space contains
(3 × 5)16 ≈ 6 × 1018 possible architectures. However,

https://github.com/facebookresearch/mobile-vision
https://github.com/facebookresearch/mobile-vision


…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…

Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.



We name the models discovered by DNAS as FBNets
(Facebook-Berkeley-Nets). FBNets surpass the state-of-
the-art efficient ConvNets designed manually and automat-
ically. FBNet-B achieves 74.1% top-1 accuracy with 295M
FLOPs and 23.1 ms latency on an Samsung S8 phone, 2.4x
smaller and 1.5x faster than MobileNetV2-1.3. Being better
than MnasNet, FBNet-B’s search cost is 216 GPU-hours,
421x lower than the cost for MnasNet estimated based on
[20]. Such low search cost enables us to re-design ConvNets
case-by-case. For different resolution and channel scaling,
FBNets achieve 1.5% to 6.4% absolute gain in top-1 ac-
curacy compared with MobileNetV2 models. The smallest
FBNet achieves 50.2% accuracy and 2.9 ms latency (345
frames per second) with a batch size of 1 on Samsung
S8. Using DNAS to search for device-specific ConvNet,
an iPhone-x-optimized model achieves 1.4x speedup on an
iPhone X compared with a Samsung-optimized model.

2. Related work
Efficient ConvNet models: Designing efficient Con-

vNet has attracted many research attention in recent years.
SqueezeNet [8] is one of the early works focusing on reduc-
ing the parameter size of ConvNet models. It is originally
designed for classification, but later extended to object de-
tection [22] and LiDAR point-cloud segmentation [24, 26].
Following SqueezeNet, SqueezeNext [3] and ShiftNet [23]
achieve further parameter size reduction. Recent works
change the focus from parameter size to FLOPs. Mo-
bileNetV1 and MobileNetV2 [6, 17] use depthwise con-
volutions to replace the more expensive spatial convolu-
tions. ShuffleNet [29] uses group convolution and shuf-
fle operations to reduce the FLOP count further. More re-
cent works realize that FLOP count does not always reflect
the actual hardware efficiency. To improve actual latency,
ShuffleNetV2 [13] proposes a series of practical guide-
lines for efficient ConvNet design. Synetgy [28] combines
ideas from ShuffleNetV2 and ShiftNet to co-design hard-
ware friendly ConvNets and FPGA accelerators.

Neural Architecture Search: [30, 31] first proposes to
use reinforcement learning (RL) to search for neural archi-
tectures to achieve competitive accuracy with low FLOPs.
Early NAS methods are computationally expensive. Recent
works try to reduce the computational cost by weight shar-
ing [16] or using gradient-based optimization [12]. [25, 1]
further develop the idea of differentiable neural architec-
ture search combining Gumbel Softmax [9]. Early works of
NAS [31, 16, 12] focus on the cell level architecture search,
and the same cell structure is repeated in all layers of a
network. However, such fragmented and complicated cell-
level structures are not hardware friendly, and the actual ef-
ficiency is low. Most recently, [20] explores a stage-level
hierarchical search space, allowing different blocks for dif-
ferent stages of a network, while blocks inside a stage are

still the same. Instead of focusing on FLOPs, [20] aims to
optimize the latency on target devices. Besides searching
for new architectures, works such as [27, 5] focus on adapt-
ing existing models to improve efficiency.

3. Method
In this paper, we use differentiable neural architecture

search (DNAS) to solve the problem of ConvNet design.
We formulate the neural architecture search problem as

min
a∈A

min
wa

L(a,wa). (1)

Given an architecture space A, we seek to find an optimal
architecture a ∈ A such that after training its weights wa,
it can achieve the minimal loss L(a,wa). In our work, we
focus on three factors of the problem: a) the search spaceA.
b) The loss function L(a,wa) that considers actual latency.
c) An efficient search algorithm.

3.1. The Search Space

Previous works [30, 31, 16, 11, 12] focus on cell level
architecture search. Once a cell structure is searched, it
is used in all the layers across the network. However,
many searched cell structures are very complicated and
fragmented and are therefore slow when deployed to mo-
bile CPUs [17, 13]. Besides, at different layers, the same
cell structure can have a different impact on the accuracy
and latency of the overall network. As shown in [20] and in
our experiments, allowing different layers to choose differ-
ent blocks leads to better accuracy and efficiency.

In this work, we construct a layer-wise search space with
a fixed macro-architecture, and each layer can choose a dif-
ferent block. The macro-architecture is described in Table
1. The macro architecture defines the number of layers and
the input/output dimensions of each layer. The first and the
last three layers of the network have fixed operators. For
the rest of the layers, their block type needs to be searched.
The filter numbers for each layer are hand-picked empiri-
cally. We use relatively small channel sizes for early layers,
since the input resolution at early layers is large, and the
computational cost (FLOP count) is quadratic to input size.

Each searchable layer in the network can choose a differ-
ent block from the layer-wise search space. The block struc-
ture is inspired by MobileNetV2 [17] and ShiftNet [23], and
is illustrated in Figure 3. It contains a point-wise (1x1) con-
volution, a K-by-K depthwise convolution where K denotes
the kernel size, and another 1x1 convolution. “ReLU” ac-
tivation functions follow the first 1x1 convolution and the
depthwise convolution, but there are no activation functions
following the last 1x1 convolution. If the output dimension
stays the same as the input dimension, we use a skip con-
nection to add the input to the output. Following [17, 23],
we use a hyperparameter, the expansion ratio e, to control



Input shape Block f n s
2242 × 3 3x3 conv 16 1 2
1122 × 16 TBS 16 1 1
1122 × 16 TBS 24 4 2
562 × 24 TBS 32 4 2
282 × 32 TBS 64 4 2
142 × 64 TBS 112 4 1
142 × 112 TBS 184 4 2
72 × 184 TBS 352 1 1
72 × 352 1x1 conv 1504 (1984) 1 1

72 × 1504 (1984) 7x7 avgpool - 1 1
1504 fc 1000 1 -

Table 1. Macro-architecture of the search space. Column-“Block”
denotes the block type. “TBS” means layer type needs to be
searched. Column-f denotes the filter number of a block. Column-
n denotes the number of blocks. Column-s denotes the stride of
the first block in a stage. The filter size of the last 1x1 conv is 1504
for FBNet-A and 1984 for FBNet-{B, C}.

1x1	(group)	Conv,	ReLU

K	x	K	DWConv,	ReLU

H	x	W	x	Cin

H	x	W	x	(e	x	Cin)

(H/s)	x	(W/s)	x	(e	x	Cin)

(H/s)	x	(W/s)	x	Cout

+

1x1	(group)	Conv

Figure 3. The block structure of the micro-architecture search
space. Each candidate block in the search space can choose a dif-
ferent expansion rate, kernel size, and number of groups for group
convolution.

the block. It determines how much do we expand the output
channel size of the first 1x1 convolution compared with its
input channel size. Following [20], we also allow choos-
ing a kernel size of 3 or 5 for the depthwise convolution.
In addition, we can choose to use group convolution for the
first and the last 1x1 convolution to reduce the computation
complexity. When we use group convolution, we follow
[29] to add a channel shuffle operation to mix the informa-
tion between channel groups.

In our experiments, our layer-wise search space contains
9 candidate blocks, with their configurations listed in Table
2. Note we also have a block called “skip”, which directly
feed the input feature map to the output without actual com-
putations. This candidate block essentially allows us to re-
duce the depth of the network.

In summary, our overall search space contains 22 layers
and each layer can choose from 9 candidate blocks from

Block type expansion Kernel Group
k3 e1 1 3 1

k3 e1 g2 1 3 2
k3 e3 3 3 1
k3 e6 6 3 1
k5 e1 1 5 1

k5 e1 g2 1 5 2
k5 e3 3 5 1
k5 e6 6 5 1
skip - - -

Table 2. Configurations of candidate blocks in the search space.

Table 2, so it contains 922 ≈ 1021 possible architectures.
Finding the optimal layer-wise block assignment from such
enormous search space is a non-trivial task.

3.2. Latency-Aware Loss Function

The loss function used in (1) has to reflect not only the
accuracy of a given architecture but also the latency on the
target hardware. To achieve this goal, we define the follow-
ing loss function:

L(a,wa) = CE(a,wa) · α log(LAT(a))β . (2)

The first term CE(a,wa) denotes the cross-entropy loss of
architecture a with parameter wa. The second term LAT(a)
denotes the latency of the architecture on the target hard-
ware measured in micro-second. The coefficient α controls
the overall magnitude of the loss function. The exponent
coefficient β modulates the magnitude of the latency term.

The cross-entropy term can be easily computed. How-
ever, the latency term is more difficult, since we need to
measure the actual runtime of an architecture on a target de-
vice. To cover the entire search space, we need to measure
about 1021 architectures, which is an impossible task.

To solve this problem, we use a latency lookup table
model to estimate the overall latency of a network based
on the runtime of each operator. More formally, we assume

LAT(a) =
∑
l

LAT(b(a)l ), (3)

where b(a)l denotes the block at layer-l from architecture a.
This assumes that on the target processor, the runtime of
each operator is independent of other operators. The as-
sumption is valid for many mobile CPUs and DSPs, where
operators are computed sequentially one by one. This way,
by benchmarking the latency of a few hundred operators
used in the search space, we can easily estimate the actual
runtime of the 1021 architectures in the entire search space.
More importantly, as will be explained in section 3.3, using
the lookup table model makes the latency term in the loss
function (2) differentiable with respect to layer-wise block
choices, and this allows us to use gradient-based optimiza-
tion to solve problem (1).



3.3. The Search Algorithm

Solving the problem (1) through brute-force enumera-
tion of the search space is very infeasible. The inner prob-
lem of optimizing wa involves training a neural network.
For ImageNet classification, training a ConvNet typically
takes several days or even weeks. The outer problem of op-
timizing a ∈ A has a combinatorially large search space.

Most of the early works on NAS [30, 31, 20] follow the
paradigm above. To reduce the computational cost, the in-
ner problem is replaced by training candidate architectures
on an easier proxy dataset. For example, [30, 31] trains the
architecture on the CIFAR10 dataset, and [20] trains on Im-
ageNet but only for 5 epochs. The learned architectures are
then transferred to the target dataset. To avoid exhaustively
iterating through the search space, [30, 31, 20] use rein-
forcement learning to guide the exploration. Despite these
improvements, solving problem (1) is still prohibitively ex-
pensive – training a network on the proxy dataset is still
time-consuming, and thousands of architectures need to be
trained before reaching the optimal solution.

We adopt a different paradigm of solving problem (1).
We first represent the search space by a stochastic super net.
The super net has the same macro-architecture as described
in Table 1, and each layer contains 9 parallel blocks as de-
scribed in Table 2. During the inference of the super net,
only one candidate block is sampled and executed with the
sampling probability of

Pθl(bl = bl,i) = softmax(θl,i;θl) =
exp(θl,i)∑
i exp(θl,i)

. (4)

θl contains parameters that determine the sampling proba-
bility of each block at layer-l. Equivalently, the output of
layer-l can be expressed as

xl+1 =
∑
i

ml,i · bl,i(xl), (5)

where ml,i is a random variable in {0, 1} and is evaluated
to 1 if block bl,i is sampled. The sampling probability is
determined by equation (4). bl,i(xl) denotes the output of
block-i at layer l given the input feature map xl. We let
each layer sample independently, therefore, the probability
of sampling an architecture a can be described as

Pθ(a) =
∏
l

Pθl(bl = b
(a)
l,i ), (6)

where θ denotes the a vector consists of all the θl,i for each
block-i at layer-l. b(a)l,i denotes that in the sampled architec-
ture a, block-i is chosen at layer-l.

Instead of solving for the optimal architecture a ∈ A,
which has a discrete search space, we relax the problem to
optimize the probability Pθ of the stochastic super net to

achieve the minimum expected loss. Formally, we re-write
the discrete optimization problem (1) as

min
θ

min
wa

Ea∼Pθ
{L(a,wa)}. (7)

It is obvious the loss function in (7) is differentiable with
respect to the architecture weights wa and therefore can be
optimized by stochastic gradient descent (SGD). However,
the loss is not directly differentiable to the sampling param-
eter θ, since we cannot pass the gradient through the dis-
crete random variable ml,i to θl,i. To sidestep this, we relax
the discrete mask variable ml,i to be a continuous random
variable computed by the Gumbel Softmax function [9, 14]

ml,i = GumbelSoftmax(θl,i|θl)

=
exp[(θl,i + gl,i)/τ ]∑
i exp[(θl,i + gl,i)/τ ]

,
(8)

where gl,i ∼ Gumbel(0, 1) is a random noise following the
Gumbel distribution. The Gumbel Softmax function is con-
trolled by a temperature parameter τ . As τ approaches 0,
it approximates the discrete categorical sampling following
the distribution in (6). As τ becomes larger, ml,i becomes
a continuous random variable. Regardless of the value of τ ,
the mask ml,i is directly differentiable with respect to the
parameter θl,i. The technique of using Gumbel Softmax for
neural architecture search is also proposed in [25, 1].

As a result, it is clear that the cross-entropy term from
the loss function (2) is differentiable with respect to the
mask ml,i and therefore θl,i. For the latency term, since we
use the lookup table based model for efficiency estimation,
equation (3) can be written as

LAT(a) =
∑
l

∑
i

ml,i · LAT(bl,i). (9)

The latency of each operator LAT(bl,i) is a constant coef-
ficient, so the overall latency of architecture-a is differen-
tiable with respect to the mask ml,i, therefore θl,i.

As a result, the loss function (2) is fully differentiable
with respect to both weights wa and the architecture distri-
bution parameter θ. This allows us to use SGD to efficiently
solve problem (1).

Our search process is now equivalent to training the
stochastic super net. During the training, we compute
∂L/∂wa to train each operator’s weight in the super net.
This is no different from training an ordinary ConvNet. Af-
ter operators get trained, different operators can have a dif-
ferent contribution to the accuracy and the efficiency of the
overall network. Therefore, we compute ∂L/∂θ to update
the sampling probability Pθ for each operator. This step se-
lects operators with better accuracy and lower latency and
suppresses the opposite ones. After the super net training
finishes, we can then obtain the optimal architectures by
sampling from the architecture distribution Pθ.



As will be shown in the experiment section, the proposed
DNAS algorithm is orders of magnitude faster than previous
RL based NAS while generating better architectures.

4. Experiments

4.1. ImageNet Classification

To demonstrate the efficacy of our proposed method, we
use DNAS to search for ConvNet models on ImageNet 2012
classification dataset [2], and we name the discovered mod-
els FBNets. We aim to discover models with high accuracy
and low latency on target devices. In our first experiment,
we target Samsung Galaxy S8 with a Qualcomm Snap-
dragon 835 platform. The model is deployed with Caffe2
with int8 inference engine for mobile devices.

Before the search starts, we first build a latency lookup
table described in section 3.2 on the target device. Next,
we train a stochastic super net with search space described
in section 3.3. We set the input resolution of the network
to 224-by-224. To reduce the training time, we randomly
choose 100 classes from the original 1000 classes to train
the stochastic super net. We train the stochastic super net for
90 epochs. In each epoch, we first train the operator weights
wa and then the architecture probability parameter θ. wa is
trained on 80% of ImageNet training set using SGD with
momentum. The architecture distribution parameter θ is
trained on the rest 20% of ImageNet training set with Adam
optimizer [10]. To control the temperature of the Gumbel
Softmax from equation (8), we use an exponentially de-
caying temperature. After the search finishes, we sample
several architectures from the trained distribution Pθ, and
train them from scratch. Our architecture search framework
is implemented in pytorch [15] and searched models are
trained in Caffe2. More training details will be provided
in the supplementary materials.

Our experiment results are summarized in Table 3. We
compare our searched models with state-of-the-art efficient
models both designed automatically and manually. The pri-
mary metrics we care about are top-1 accuracy on the Im-
ageNet validation set and the latency. If the latency is not
available, we use FLOP as the secondary efficiency metric.
For baseline models, we directly cite the parameter size,
FLOP count, and top-1 accuracy from the original paper.
Since our network is deployed with caffe2 with highly effi-
cient in8 implementation, we have an unfair latency advan-
tage against other baselines. Therefore, we implement the
baseline models ourselves and measure their latency under
the same environment for a fair comparison. For automati-
cally designed models, we also compare the search method,
search space, and search cost.

Table 3 divides the models into three categories accord-
ing to their accuracy level. In the first group, FBNet-
A achieves 73.0% accuracy, better than 1.0-MobileNetV2

(+1.0%), 1.5-ShuffleNet V2 (+0.4%), and CondenseNet
(+2%), and are on par with DARTS and MnasNet-65. Re-
garding latency, FBNet-A is 1.9 ms (relative 9.6%), 2.2
ms (relative 11%), and 8.6 ms (relative 43%) better than
the MobileNetV2, ShuffleNetV2, and CondenseNet coun-
terparts. Although we did not optimize for FLOP count di-
rectly, FBNet-A’s FLOP count is only 249M, 50M smaller
(relative 20%) than MobileNetV2 and ShuffleNetV2, 20M
(relative 8%) smaller than MnasNet, and 2.4X smaller than
DARTS. In the second group, FBNet-B achieves com-
parable accuracy with 1.3-MobileNetV2, but the latency
is 1.46x lower, and the FLOP count is 1.73x smaller,
even smaller than 1.0-MobileNetV2 and 1.5-ShuffleNet V2.
Compared with MnasNet, FBNet-B’s accuracy is 0.1%
higher, latency is 0.6ms lower, and FLOP count is 22M
(relative 7%) smaller. We do not have the latency of
NASNet-A and PNASNet, but the accuracy is compara-
ble, and the FLOP count is 1.9x and 2.0x smaller. In the
third group, FBNet-C achieves 74.9% accuracy, same as
2.0-ShuffleNetV2 and better than all others. The latency is
28.1 ms, 1.33x and 1.19x faster than MobileNet and Shuf-
fleNet. The FLOP count is 1.56x, 1.58x, and 1.03x smaller
than MobileNet, ShuffleNet, and MnasNet-92.

Among all the automatically searched models, FBNet’s
performance is much stronger than DARTS, PNAS, and
NAS, and better than MnasNet. However, the search cost
is orders of magnitude lower. MnasNet [20] does not dis-
close the exact search cost (in terms of GPU-hours). How-
ever, it mentions that the controller samples 8,000 mod-
els during the search and each model is trained for five
epochs. According to our experiments, training of MNas-
Net for one epoch takes 17 minutes using 8 GPUs. So
the estimated cost for training 8,000 models for 5 epochs
is about 17/60 × 5 × 8 × 8, 000 ≈ 91 × 103 GPU hours.
In comparison, the FBNet search takes 8 GPUs for only 27
hours, so the computational cost is only 216 GPU hours,
or 421x faster than MnasNet, 222x faster than NAS, 27.8x
faster than PNAS, and 1.33x faster than DARTS.

We visualize some of our searched FBNets, Mo-
bileNetV2, and MnasNet in Figure 4.

4.2. Different Resolution and Channel Size Scaling

A common technique to reduce the computational cost of
a ConvNet is to reduce the input resolution or channel size
without changing the ConvNet structure. This approach is
likely to be sub-optimal. We hypothesize that with a dif-
ferent input resolution and channel size scaling, the optimal
ConvNet structure will be different. To test this, we use
DNAS to search for several different combinations of input
resolution and channel size scaling. Thanks to the superior
efficiency of DNAS, we can finish the search very quickly.
The result is summarized in Table 4. Compared with Mo-
bileNetV2 under the same input size and channel size scal-



Model
Search
method

Search
space

Search cost
(GPU hours / relative) #Params #FLOPs

CPU
Latency

Top-1
acc (%)

1.0-MobileNetV2 [17] manual - - 3.4M 300M 21.7 ms 72.0
1.5-ShuffleNetV2 [13] manual - - 3.5M 299M 22.0 ms 72.6

CondenseNet (G=C=8) [7] manual - - 2.9M 274M 28.4 ‡ ms 71.0
MnasNet-65 [13] RL stage-wise 91K∗ / 421x 3.6M 270M - 73.0

DARTS [12] gradient cell 288 / 1.33x 4.9M 595M - 73.1
FBNet-A (ours) gradient layer-wise 216 / 1.0x 4.3M 249M 19.8 ms 73.0

1.3-MobileNetV2 [17] manual - - 5.3M 509M 33.8 ms 74.4
CondenseNet (G=C=4) [7] manual - - 4.8M 529M 28.7‡ ms 73.8

MnasNet [20] RL stage-wise 91K∗ / 421x 4.2M 317M 23.7 ms 74.0
NASNet-A [31] RL cell 48K / 222x 5.3M 564M - 74.0
PNASNet [11] SMBO cell 6K† / 27.8x 5.1M 588M - 74.2
FBNet-B (ours) gradient layer-wise 216 / 1.0x 4.5M 295M 23.1 ms 74.1

1.4-MobileNetV2 [17] manual - - 6.9M 585M 37.4 ms 74.7
2.0-ShuffleNetV2 [13] manual - - 7.4M 591M 33.3 ms 74.9

MnasNet-92 [20] RL stage-wise 91K∗ / 421x 4.4M 388M - 74.8
FBNet-C (ours) gradient layer-wise 216 / 1.0x 5.5M 375M 28.1 ms 74.9

Table 3. ImageNet classification performance compared with baselines. For baseline models, we directly cite the parameter size, FLOP
count and top-1 accuracy on the ImageNet validation set from their original papers. For CPU latency, we deploy and benchmark the models
on the same Samsung Galaxy S8 phone with Caffe2 int8 implementation. The details of MnasNet-{64, 92} are not disclosed from [20]
so we cannot measure the latency. *The search cost for MnasNet is estimated according to the description in [20]. † The search cost is
estimated based on the claim from [11] that PNAS [11] is 8x lower than NAS[31]. ‡ The inference engine is faster than other models.

FBNet-A

FBNet-96-0.35-1

FBNet-s8

FBNet-iPhoneX

MobileNetV2

MnasNet

SkipK=3
E=6

K=3
E=3

K=3
E=1

K=3
E=1
G=2

K=5
E=6

K=5
E=3

K=5
E=1

K=5
E=1
G=2

FBNet-B

FBNet-C

Figure 4. Visualization of some of the searched architectures. We
use rectangle boxes to denote blocks for each layer. We use differ-
ent colors to denote the kernel size of the depthwise convolution,
blue for kernel size of 3, green for kernel size of 5, and empty for
skipping. We use height to denote the expansion rate of the block:
6, 3, 1, and 1 with group-2 convolution.

ing, our searched models achieve 1.5% to 6.4% better accu-
racy with similar latency. Especially the FBNet-96-0.35-1
model achieves 50.2% (+4.7%) accuracy and 2.9 ms latency
(345 frames per second) on a Samsung Galaxy S8.

We visualize the architecture of FBNet-96-0.35-1 in Fig-
ure 4, we can see that many layers are skipped, and the net-
work is much shallower than FBNet-{A, B, C}, whose input

size is 224. We conjecture that this is because with smaller
input size, the receptive field needed to parse the image also
becomes smaller, so having more layers will not effectively
increase the accuracy.

4.3. Different Target Devices

In previous ConvNet design practices, the same ConvNet
model is deployed to many different devices. However, this
is sub-optimal since different computing platforms and soft-
ware implementation can have different characteristics. To
validate this, we conduct search targeting two mobile de-
vices: Samsung Galaxy S8 with Qualcomm Snapdragon
835 platforms, and iPhone X with A11 Bionic processors.
We use the same architecture search space, but different la-
tency lookup tables collected from two target devices. All
the architecture search and training protocols are the same.
After we searched and trained two models, we deploy them
to both Samsung Galaxy S8 and iPhone X to benchmark the
overall latency. The result is summarized in Table. 5.

As we can see, the two models reach similar accuracy
(73.20% vs. 73.27%). FBNet-iphoneX model’s latency
is 19.84 ms on its target device, but when deployed to a
Samsung S8, its latency increases to 23.33 ms. On the
other hand, FBNet-S8 reaches a latency of 22.12 ms on a
Samsung S8, but when deployed to an iPhone X, the la-
tency hikes to 27.53 ms, 7.69 ms (relatively 39%) higher
than FBNet-iPhone X. This demonstrates the necessity of
re-designing ConvNets for different target devices.

Two models are visualized in Figure 4. Note that FBNet-



Input size &
Channel Scaling Model #Parameters #FLOPs CPU Latency Top-1 acc (%)

(224, 0.35)
MobileNetV2-224-0.35 1.7M 59M 9.3 ms 60.3

MNasNet-scale-224-0.35 1.9M 76M 10.7 ms 62.4 (+2.1)
FBNet-224-0.35 2.0M 72M 10.7 ms 65.3 (+5.0)

(192, 0.50)
MobileNetV2 2.0M 71M 8.4 ms 63.9

MnasNet-search-192-0.5 - - - 65.6 (+1.7)
FBNet-192-0.5 (ours) 2.6M 73M 9.9 ms 65.9 (+2.0)

(128, 1.0)
MobileNetV2 3.5M 99M 8.4 ms 65.3

MnasNet-scale-128-1.0 4.2M 103M 9.2 ms 67.3 (+2.0)
FBNet-128-1.0 (ours) 4.2M 92M 9.0 ms 67.0 (+1.7)

(128, 0.50) MobileNetV2 2.0M 32M 4.8 ms 57.7
FBNet-128-0.5 (ours) 2.4M 32M 5.1 ms 60.0 (+2.3)

(96, 0.35)
MobileNetV2 1.7M 11M 3.8 ms 45.5

FBNet-96-0.35-1 (ours) 1.8M 12.9M 2.9 ms 50.2 (+4.7)
FBNet-96-0.35-2 (ours) 1.9M 13.7M 3.6 ms 51.9 (+6.4)

Table 4. FBNets searched for different input resolution and channel scaling. MnasNet-scale is the MnasNet model with input and channel
size scaling. MnasNet-search-192-0.5 is a model searched with an input size of 192 and channel scaling of 0.5. Details of it are not
disclosed in [20], so we only cite the accuracy.

Model #Parameters #FLOPs
Latency on
iPhone X

Latency on
Samsung S8 Top-1 acc (%)

FBNet-iPhoneX 4.47M 322M 19.84 ms (target) 23.33 ms 73.20
FBNet-S8 4.43M 293M 27.53 ms 22.12 ms (target) 73.27

Table 5. FBNets searched for different devices.

0 200 400 600 800 1000 1200

hw28_c192_k5_s2

hw14_c192_k5_s1

hw14_c336_k5_s1

hw28_c192_k3_s1

hw14_c336_k3_s1

hw14_c384_k3_s1

Comparison	of	Operator	Runtime	(us)

iPhone	X Samsung	S8

Ops	adopted	by	FBNet-iPhoneX

Ops	adopted	in	FBNet-S8

Figure 5. Comparison of operator runtime on two devices. Run-
time is in micro-second (us). Orange bar denotes the runtime on
iPhone X and blue bar denotes the runtime on Samsung S8. The
upper three operators are faster on iPhone X, therefore they are au-
tomatically adopted in FBNet-iPhoneX. The lower three operators
are faster on Samsung S8, and they are also automatically adopted
in FBNet-S8.

S8 uses many blocks with 5x5 depthwise convolution while
FBNet-iPhoneX only uses them in the last two stages. We
examine the depthwise convolution operators used in the
two models and compare their runtime on both devices.
As shown in Figure 5, the upper three operators are faster
on iPhone X, therefore they are automatically adopted in
FBNet-iPhoneX. The lower three operators are significantly
faster on Samsung S8, and they are also automatically
adopted in FBNet-S8. Notice the drastic runtime differ-

ences of the lower three operators on two target devices.
It explains why the Samsung-S8-optimized model performs
poorly on an iPhone X. This shows DNAS can automati-
cally optimize the operator adoptions and generate different
ConvNets optimized for different devices.

5. Conclusion
We present DNAS, a differentiable neural architecture

search framework. It optimizes over a layer-wise search
space and represents the search space by a stochastic su-
per net. The actual target device latency of blocks is used to
compute the loss for super net training. FBNets, a family of
models discovered by DNAS surpass state-of-the-art mod-
els, both manually and automatically designed: FBNet-B
achieves 74.1% top-1 accuracy with 295M FLOPs and 23.1
ms latency, 2.4x smaller and 1.5x faster than MobileNetV2-
1.3 with the same accuracy. It also achieves better accuracy
and lower latency than MnasNet, the state-of-the-art effi-
cient model designed automatically; we estimate the search
cost of DNAS is 420x smaller. Such efficiency allows us to
conduct searches for different input resolutions and channel
scaling. Discovered models achieve 1.5% to 6.4% accu-
racy gains. The smallest FBNet achieves 50.2% accuracy
with a latency of 2.9 ms (345 frames/sec) with batch size 1.
Over the Samsung-optimized FBNet, the improved FBNet
achieves 1.4x speed up on an iPhone X, showing DNAS is
able to adapt to different target devices automatically.



References
[1] Anonymous. Snas: stochastic neural architecture search. In

Submitted to International Conference on Learning Repre-
sentations, 2019. under review.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[3] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao,
and K. Keutzer. Squeezenext: Hardware-aware neural net-
work design. arXiv preprint arXiv:1803.10615, 2018.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016.

[5] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc:
Automl for model compression and acceleration on mobile
devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 784–800, 2018.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[7] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger.
Condensenet: An efficient densenet using learned group con-
volutions. group, 3(12):11, 2017.

[8] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size. arXiv
preprint arXiv:1602.07360, 2016.

[9] E. Jang, S. Gu, and B. Poole. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144,
2016.

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[11] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy. Progressive neural ar-
chitecture search. arXiv preprint arXiv:1712.00559, 2017.

[12] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[13] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet
v2: Practical guidelines for efficient cnn architecture design.
arXiv preprint arXiv:1807.11164, 2018.

[14] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete dis-
tribution: A continuous relaxation of discrete random vari-
ables. arXiv preprint arXiv:1611.00712, 2016.

[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. 2017.

[16] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Effi-
cient neural architecture search via parameter sharing. arXiv
preprint arXiv:1802.03268, 2018.

[17] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4510–4520, 2018.

[18] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1–9, 2015.

[20] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le.
Mnasnet: Platform-aware neural architecture search for mo-
bile. arXiv preprint arXiv:1807.11626, 2018.

[21] T. Veniat and L. Denoyer. Learning time/memory-efficient
deep architectures with budgeted super networks. arXiv
preprint arXiv:1706.00046, 2017.

[22] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer. Squeezedet:
Unified, small, low power fully convolutional neural net-
works for real-time object detection for autonomous driving.
In CVPR Workshops, pages 446–454, 2017.

[23] B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gho-
laminejad, J. Gonzalez, and K. Keutzer. Shift: A zero flop,
zero parameter alternative to spatial convolutions. arXiv
preprint arXiv:1711.08141, 2017.

[24] B. Wu, A. Wan, X. Yue, and K. Keutzer. Squeezeseg: Con-
volutional neural nets with recurrent crf for real-time road-
object segmentation from 3d lidar point cloud. In 2018
IEEE International Conference on Robotics and Automation
(ICRA), pages 1887–1893. IEEE, 2018.

[25] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer.
Mixed precision quantization of convnets via differentiable
neural architecture search. arXiv preprint arXiv:1812.00090,
2018.

[26] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer. Squeeze-
segv2: Improved model structure and unsupervised domain
adaptation for road-object segmentation from a lidar point
cloud. arXiv preprint arXiv:1809.08495, 2018.

[27] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. San-
dler, V. Sze, and H. Adam. Netadapt: Platform-aware neural
network adaptation for mobile applications. Energy, 41:46,
2018.

[28] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gam-
bardella, M. Blott, L. Lavagno, K. Vissers, J. Wawrzynek,
et al. Synetgy: Algorithm-hardware co-design for con-
vnet accelerators on embedded fpgas. arXiv preprint
arXiv:1811.08634, 2018.

[29] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile
devices. arxiv 2017. arXiv preprint arXiv:1707.01083.

[30] B. Zoph and Q. V. Le. Neural architecture search with rein-
forcement learning. arXiv preprint arXiv:1611.01578, 2016.

[31] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-
ing transferable architectures for scalable image recognition.
arXiv preprint arXiv:1707.07012, 2(6), 2017.



A. Experiment details
We describe more experiment details in this appendix

to facilitate other researchers to reproduce our work. Our
architecture search is divided into two stages. In the first
stage, we train the stochastic super net to find an opti-
mal architecture distribution. In the second stage, we sam-
ple architectures from the distribution and train them from
scratch.

To train the stochastic super net, we randomly sample
100 classes from the original 1,000 classes of ImageNet.
Training the super net on this smaller proxy dataset is much
faster. We train the stochastic super net for 90 epochs with a
batch size of 192. In each epoch, we first train the operator
parameters wa on 80% of the training set using stochastic
gradient descent with momentum. The initial learning rate
is 0.1, and decay following a cosine decaying schedule. The
momentum is 0.9, and weight decay is 10−4. Next, we train
the architecture distribution parameter θ on the rest 20% of
the training set with Adam optimizer [10] with a learning
rate of 10−2 and weight decay of 5 × 10−4. The split of
weight and architecture parameter training ensure the archi-
tecture generalize to the validation dataset. To control the
Gumbel Softmax in (8), we use an initial temperature of 5.0
and exponentially anneal it by exp(−0.045) ≈ 0.956 every
epoch. For the loss function in (2), we set α to 0.2 and β
to 0.6. We use the standard ResNet data augmentation [4]
to process the input images. We found that at the begin-
ning of the training, operators are usually not sufficiently
trained, so their contributions to the accuracy are not clear.
However, their computational costs are always significantly
different from each other. As a consequence, the super net
may always pick low computational cost operators at the
beginning of the training. To prevent this, we postpone the
training of the architecture parameter θ by 10 epochs to al-
low operator weights to be sufficiently trained first. At the
end of the super net training, we sample 6 architectures from
the final distribution to be trained from scratch.

To train the sampled architectures, the training proto-
cols are different for different models. Here we describe
the training protocol for FBNet-{A, B, C}. These models
have an input resolution of 224, channel size scaling of 1.0.
We train the models with a batch size of 256 on 8 GPUs
for 360 epochs. We set the initial learning rate to be 0.1,
and decay 10x at 90, 180, and 270 epochs. The momentum
is 0.9, weight decay is 4 × 10−5. We use dropout at the
last convolution layer of the network, and the dropout ratio
is 0.2. We use the standard GoogleNet data augmentation
[19] to randomly resize the image during training.


