
HORIZON: FACEBOOK’S OPEN SOURCE APPLIED REINFORCEMENT
LEARNING PLATFORM

Jason Gauci 1 Edoardo Conti 1 Yitao Liang 1 Kittipat Virochsiri 1 Yuchen He 1 Zachary Kaden 1

Vivek Narayanan 1 Xiaohui Ye 1

ABSTRACT
In this paper we present Horizon, Facebook’s open source applied reinforcement learning (RL) platform. Horizon
is an end-to-end platform designed to solve industry applied RL problems where datasets are large (millions to
billions of observations), the feedback loop is slow (vs. a simulator), and experiments must be done with care
because they don’t run in a simulator. Unlike other RL platforms, which are often designed for fast prototyping and
experimentation, Horizon is designed with production use cases as top of mind. The platform contains workflows
to train popular deep RL algorithms and includes data preprocessing, feature transformation, distributed training,
counterfactual policy evaluation, and optimized serving. We also showcase real examples of where models trained
with Horizon significantly outperformed and replaced supervised learning systems at Facebook.

1 INTRODUCTION

Deep reinforcement learning (RL) is poised to revolution-
ize how autonomous systems are built. In recent years,
it has been shown to achieve state-of-the-art performance
on a wide variety of complicated tasks (Mnih et al., 2015;
Lillicrap et al., 2015; Schulman et al., 2015; Van Hasselt
et al., 2016; Schulman et al., 2017), where being success-
ful requires learning complex relationships between high
dimensional state spaces, actions, and long term rewards.
However, the current implementations of the latest advances
in this field have mainly been tailored to academia, focusing
on fast prototyping and evaluating performance on simu-
lated benchmark environments.

While interest in applying RL to real problems in indus-
try is high, the current set of implementations and tooling
must be adapted to handle the unique challenges faced in
applied settings. Specifically, the handling of large datasets
with hundreds or thousands of varying feature types and
distributions, high dimensional discrete and continuous ac-
tion spaces, optimized training and serving, and algorithm
performance estimates before deployment are of key impor-
tance.

With this in mind, we introduce Horizon - an open source
end-to-end platform for applied RL developed and used at
Facebook. Horizon is built in Python and uses PyTorch for

1Facebook, Menlo Park, California, USA. Correspondence
to: Jason Gauci <jjg@fb.com>, Edoardo Conti <edoar-
doc@fb.com>, Kittipat Virochsiri <kittipat@fb.com>.

modeling and training (Paszke et al., 2017) and Caffe2 for
model serving (Jia et al., 2014). It aims to fill the rapidly-
growing need for RL systems that are tailored to work on
real, industry produced, datasets. To achieve this goal, we
designed our platform with the following principles in mind.

• Ability to Handle Large Datasets Efficiently

• Ability to Preprocess Data Automatically & Efficiently

• Competitive Algorithmic Performance

• Algorithm Performance Estimates before Launch

• Flexible Model Serving in Production

• Platform Reliability

The rest of this paper goes into the details and features of
Horizon, but at a high level Horizon features:

Data preprocessing: A Spark (Zaharia et al., 2010) pipeline
that converts logged training data into the format required
for training numerous different deep RL models.

Feature Normalization: Logic to extract metadata about
every feature including type (float, int, enum, probability,
etc.) and method to normalize the feature. This metadata
is then used to automatically preprocess features during
training and serving, mitigating issues from varying feature
scales and distributions which has shown to improve model
performance and convergence (Ioffe & Szegedy, 2015).

Deep RL model implementations: Horizon provides im-
plementations of Deep Q-networks (DQN) (Mnih et al.,



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

2015), Deep Q-networks with double Q-learning (DDQN)
(Van Hasselt et al., 2016), Deep Q-networks with dueling
architecture (Dueling DQN & Dueling DDQN) (Wang et al.,
2015) for discrete action spaces, a parametric action version
of all the previously mentioned algorithms for handling very
large discrete action spaces, and Deep Deterministic Policy
Gradients (DDPG) (Lillicrap et al., 2015) for continuous
action spaces.

Multi-GPU training: Industry datasets can be very large. At
Facebook many of our datasets contain tens of millions of
samples per day. Internally, Horizon has functionality to
conduct training on many GPUs distributed over numerous
machines. This allows for fast model iteration and high
utilization of industry sized clusters. Even for problems with
very high dimensional feature sets (hundreds or thousands
of features) and millions of training examples, we are able to
learn models in a few hours (while doing preprocessing and
counterfactual policy evaluation on every batch). As part
of the initial open source release, Horizon supports CPU,
GPU, and multi-GPU training on a single machine.

Counterfactual policy evaluation: Unlike in pure research
settings where simulators offer safe ways to test models and
time to collect new samples is very short, in applied settings
it is usually rare to have access to a simulator. This makes
offline model evaluation important as new models affect the
real world and time to collect new observations and retrain
models may take days or weeks. Horizon scores trained
models offline using several well known counterfactual pol-
icy evaluation (CPE) methods. The step-wise importance
sampling estimator, step-wise direct sampling estimator,
step-wise doubly-robust estimator (Dudık et al., 2011), se-
quential doubly-robust estimator (Jiang & Li, 2016)1, and
MAGIC estimator (Thomas & Brunskill, 2016) are all run
as part of Horizon’s end-to-end training workflow.

Optimized Serving: Post training, models are exported from
PyTorch to a Caffe2 network and set of parameters via
ONNX (Exchange, 2018). Caffe2 is optimized for perfor-
mance and portability, allowing models to be deployed to
thousands of machines.

Tested Algorithms: Testing production RL systems is a new
area with no established best practices. We take inspiration
from systems best practices and test our core functionality
and algorithms in Horizon via unit tests and integration
tests. Using custom environments (i.e. Gridworld) and some
standard environments from OpenAI’s Gym (Brockman
et al., 2016) we train and evaluate all of our RL models on
every pull request.

We end the paper discussing examples of how models
trained with Horizon outperformed supervised learning and

1Two variants are implemented; one makes uses of ordinal
importance sampling and the other weighted importance sampling.

heuristic based policies to send notifications and to stream
video at Facebook. We provide details into the formulation
and methods used in our approach.

2 DATA PREPROCESSING

Many RL models are trained on consecutive pairs of
state/action tuples (DQN, DDPG, etc.). However, in produc-
tion systems data is often logged as it comes in, requiring
offline logic to join the data in a format suitable for RL. To
assist in creating data in this format, Horizon includes a
Spark pipeline (called the Timeline pipeline) that transforms
logged data collected in the following row format:

• MDP ID: A unique ID for the Markov Decision Process
(MDP) chain that this training example is a part of.

• Sequence Number: A number representing the location
of the state in the MDP (i.e. a timestamp).

• State Features: The features of the current step that are
independent of the action.

• Action: The action taken at the current step. A string
(i.e. ‘up’) if the action is discrete or a set of features if
the action is parametric or continuous.

• Action Probability: The probability that the current
system took the action logged. Used in counter factual
policy evaluation.

• Reward: The scalar reward at the current step.

• Possible Actions: An array of possible actions at the
current step, including the action chosen (left blank
for continuous action domains). This is optional but
enables Q-Learning (vs. SARSA).

This data is transformed into data in the row format below.
Note, MDP ID, Sequence Number, State Features, Action,
Action Probability, and Reward are also present in the data
below, but are left out for brevity.

• Next State Features: The features of the subsequent
step that are action-independent.

• Next Action: The action taken at the next step.

• Sequence Number Ordinal: A number representing the
location of the state in the MDP after the Sequence
Number was converted to an ordinal number.

• Time Diff : A number representing the “time difference”
between the current state and next state (computed as
the difference in non-ordinal sequence numbers be-
tween states). Used as an optional way to set varying
time differences between states. Particularly useful for
MDPs that have been sub-sampled upstream.



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

• Possible Next Actions: A list of actions that were pos-
sible at the next step. Only present if Possible Actions
were provided.

• Reward Timeline: A map containing the future rewards.
Each key is the number of timesteps forward, and the
value is the reward at that timestep. This column is used
to measure model performance in offline evaluation.

• Episode Value: The sum of discounted future rewards
over the MDP. This column is used to measure model
performance in offline evaluation.

Internally, the Timeline operator is run on a Hive table con-
taining logged data in the format described at the beginning
of this section. After running the operator, post-timeline
data is written to a new Hive table. In the simple examples
provided in the open source Horizon repository, we read pre-
timeline data from a local JSON file and write post-timeline
data to a local JSON file. This is just to provide simple work-
ing examples for end users and using the Spark operator on
data in other formats (e.g. Hive) is straightforward.

3 FEATURE NORMALIZATION

Data from recommender systems is often sparse, noisy and
arbitrarily distributed (Adomavicius & Tuzhilin, 2005). Lit-
erature has shown that neural networks learn faster and
better when operating on batches of features that are nor-
mally distributed (Ioffe & Szegedy, 2015). In RL, where
the recurrence can become unstable when exposed to very
large features, feature normalization is even more important.
For this reason, Horizon includes a workflow that automati-
cally analyzes the training dataset and determines the best
transformation function and corresponding normalization
parameters for each feature. Developers can override the
estimation if they have prior knowledge of the feature that
they prefer to use.

In the workflow, features are identified to be of type binary,
probability, continuous, enum, quantile, or boxcox. A “nor-
malization specification” is then created which describes
how the feature should be normalized during training. To
identify the type, we follow the process outlined in algo-
rithm 1.

Although we pre-compute the feature transformation func-
tions prior to training, we do not apply the feature trans-
formation to the dataset until during training. At training
time we create a PyTorch network that takes in the raw
features and applies the normalization during the forward
pass. This allows developers to quickly iterate on the fea-
ture transformation without regenerating the dataset. The
feature transformation process begins by grouping features
according to their identity (see above), and then processing
each group as a single batch using vector operations.

Algorithm 1 Identify feature F

if All values in F are in {0, 1} then
F is a binary feature

else if All values in F are in the range [0, 1] then
F is a probability

else if All values in F are integers with < N unique
values then

F is a categorical feature
else if F is approximately normally distributed then
F is a continuous feature

else if F is approximately normally distributed after a
boxcox transformation then

F is a boxcox feature
else

F is a quantile feature
end if

4 MODEL IMPLEMENTATIONS

Horizon contains implementations of several deep RL algo-
rithms that span to solve discrete action, very large discrete
action, and continuous action domains. We also provide
default configuration files as part of Horizon so that end
users can easily run these algorithms on our included test
domains (e.g. OpenAI Gym (Brockman et al., 2016), Grid-
world). Below we describe the current algorithms supported
in Horizon.

4.1 Discrete-Action Deep Q-Network (Discrete DQN)

For discrete action domains with a tractable number of ac-
tions, we provide a Deep Q-Network implementation (Mnih
et al., 2015). In addition, we provide implementations for
several DQN improvements, including double Q-learning
(Van Hasselt et al., 2016) and dueling architecture (Wang
et al., 2015). We plan on continuing to add more improve-
ments to our DQN model (distributional DQN (Bellemare
et al., 2017), multi-step learning (Sutton et al., 1998), noisy
nets (Fortunato et al., 2017)) as these improvements have
been shown to stack to achieve state of the art results on
numerous benchmarks (Hessel et al., 2017).

4.2 Parametric-Action Deep-Q Network (Parametric
DQN)

Many domains at Facebook have have extremely large dis-
crete action spaces (more than millions of possible actions)
with actions that are often ephemeral. This is a common
challenge when working on large scale recommender sys-
tems where an RL agent can take the action of recommend-
ing numerous different pieces of content. In this setting,
running a traditional DQN would not be practical. One al-
ternative is to combine policy gradients with a K-NN search
(Dulac-Arnold et al., 2015), but when the number of avail-



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

able actions for any given state is sufficiently small, this
approach is heavy-handed. Instead, we have chosen to cre-
ate a variant of DQN called Parametric-Action DQN, in
which we input concatenated state-action pairs and output
the Q-value for each pair. Actions, along with states, are rep-
resented by a set of features. The rest of the system remains
as a traditional DQN. Like our Discrete-Action DQN imple-
mentation, we also have adapted the double Q-learning and
dueling architecture improvements to the Parametric-Action
DQN.

4.3 Deep Deterministic Policy Gradient (DDPG)

Other domains at Facebook involve tuning of sets of hy-
perparameters. These domains can be addressed with a
continuous action RL algorithm. For continuous action
domains we have implemented Deep Deterministic Policy
Gradients (DDPG) (Lillicrap et al., 2015).

Support for other deep RL algorithms will be a continued
focus going forward.

5 TRAINING

Once we have preprocessed data and a feature normalization
function for each feature, we can begin training. Training
can be done using CPUs, a GPU, or multiple GPUs. Inter-
nally, Horizon has functionality to conduct training on many
GPUs distributed over numerous machines. We utilize the
PyTorch multi-GPU functionality to do distributed training
(Paszke et al., 2017). As part of the open source release,
Horizon supports CPU, GPU, and multi-GPU training on a
single machine. Multi-GPU training across numerous ma-
chines is expected to be added to Horizon open source in
the near future.

Using GPU and multi-GPU training we are able to train
large RL models that contain hundreds to thousands of fea-
tures across tens of millions of examples in a few hours
(while doing feature normalization and counterfactual pol-
icy evaluation on every batch).

6 REPORTING AND EVALUATION

There are several metrics that can inform engineers about
the performance of their RL models after training.

Temporal difference loss (TD-loss) measures the function
approximation error. For example, in DQN, this measures
the difference between the expected value of Q given by
the bellman equation, and the actual value of Q output by
the model. Note that, unlike supervised learning where the
labels are from a stationary distribution, in RL the labels
are themselves a function of the model and as a result this
distribution shifts. As a result, this metric is primarily used
to ensure that the optimization loop is stable. If the TD-

loss is increasing in an unbounded way, we know that the
optimization step is too aggressive (e.gs. the learning rate is
too high, or the minibatch size is too small).

Monte-Carlo Loss (MC-loss) compares the model’s Q-
value to the logged value (the discounted sum of logged
rewards). When the logged policy is the optimal policy (for
example, in a toy environment), MC-loss is a very effective
measure of the model’s policy. Because the logged policy
is often not the optimal policy, the MC-loss has limited
usefulness for real-world domains. Similar to TD-loss, we
primarily monitor MC-loss for extreme values or unbounded
increase.

Because RL is focused on policy optimization, it is more
valuable to evaluate the policy (i.e. what action a model
chooses) than to evaluate the model scores directly. Horizon
has a comprehensive set of Counterfactual Policy Evaluation
techniques.

6.1 Counterfactual Policy Evaluation

Counterfactual policy evaluation (CPE) is a set of methods
used to predict the performance of a newly learned pol-
icy without having to deploy it online. CPE is important
in applied RL as deployed policies affect the real world.
At Facebook, we serve billions of people every day; de-
ploying a new policy directly impacts the experience they
have using Facebook. Without CPE, industry users would
need to launch numerous A/B tests to search for the opti-
mal model and hyperparameters. These experiments can be
time-consuming and costly. With reliable CPE, this search
work can be fully automated using hyperparameter sweep-
ing techniques that optimize for a model’s CPE score. CPE
also makes an efficient and principled parameter sweep pos-
sible by combining counter-factual offline estimates with
real-world testing.

Horizon includes implementations of the following CPE
estimators that are automatically run as part of training:

• Step-wise importance sampling estimator

• Step-wise direct sampling estimator

• Step-wise doubly-robust estimator (Dudık et al., 2011)

• Sequential doubly-robust estimator (Jiang & Li, 2016)

• MAGIC estimator (Thomas & Brunskill, 2016)

Incorporating the aforementioned estimators into our plat-
form’s training pipeline provides us with two advantages:
(1) all feature normalization improvements tailored to train-
ing are also available to CPE (2) users of our platform get
CPE estimates at the end of each epoch which helps them
understand how more training affects model performance.



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

The CPE estimators in Horizon are also optimized for run-
ning speed. The implemented estimators incur minimal time
overhead to the whole training pipeline.

The biggest technical challenge implementing CPE stems
from the nature of how batch RL is trained. To decrease
temporal correlation of the training data, which is needed
for stable supervised learning, a pseudo i.i.d environment
is created by uniformly shuffling the collected training data
(Mnih et al., 2015). However, the sequential doubly robust
and MAGIC estimators both are built based on cumulative
step-wise importance weights (Jiang & Li, 2016; Thomas &
Brunskill, 2016), which require the training data to appear
in its original sequence. In order to satisfy this requirement
while still using the shuffled pseudo i.i.d data in training,
we sample and collect training samples during the training
workflow. At the end of every epoch we then sort the col-
lected samples to place them back in their original sequence
and conduct CPE on the collected data. Such deferral pro-
vides the opportunity to calculate all needed Q-values to-
gether in one run, heavily utilizing matrix operations. As a
side benefit, querying for Q-values at the end of one epoch
of training decreases the variance of CPE estimates as the Q-
function can be very unstable during training. Through this
process we are able to calculate reliable CPE estimations
efficiently.

6.2 TensorboardX

To visualize the output of our training process, we export
our metrics to tensorboard using the TensorboardX plugin
(Huang, 2018). TensorboardX outputs tensors from py-
torch/numpy to the tensorboard format so that they can be
viewed with the Tensorboard web visualization tool.

7 MODEL SERVING

At Facebook, we serve deep reinforcement learning models
in a variety of production applications. The serving platform
is designed to support stochastic policies without requiring
online learning. We do this by producing both raw scores
and the outcomes from a deterministic policy and softmax
sampled policy as part of one forward pass.

The deterministic policy always chooses the highest-scoring
action. While this policy has no exploration, it is still useful
for collecting metrics, especially when doing an A/B test
with another deterministic model.

The softmax policy converts scores to propensities using a
softmax function with temperature (Sutton et al., 1998) and
then samples an action from these propensities.

PyTorch 1.0 supports ONNX (Exchange, 2018), an open
source format for model inference. ONNX works by tracing
the forward pass of an RL model, including the feature trans-

formation and the policy outputs. The result is a Caffe2 net-
work and a set of parameters that are serializable, portable,
and efficient. This package is then deployed to thousands of
machines.

At serving time, product teams can either execute one of
our policies, or fetch the scores from one of our models
and develop their own policy. Either way, product teams
log the possible actions, the propensity of choosing each of
these actions, the action chosen, and the reward received.
Depending on the problem domain, it may be hours or even
days before we know the reward for a particular sample.
Product teams typically log a unique key with each sample
so they can later join the logged training data to other data
sources that contain the reward. This joined data is then
fed back into Horizon to incrementally update the model.
Although all of our algorithms are off-policy, they are still
limited based on the policy that they are observing, so it is
important to train in a closed loop to get the best results. In
addition, the data distribution is changing and the model
needs to adapt to these changes over time.

8 PLATFORM TESTING PRACTICES

Like general software systems, adequate testing in machine
learning systems is important for catching algorithmic per-
formance regressions and other issues. To test algorithm
performance, Horizon is integrated with both custom en-
vironments (i.e. a self made Gridworld environment) and
the popular benchmarking library OpenAI Gym (Brock-
man et al., 2016). Internally, when new pull requests are
made, a suite of unit tests and integration tests are started
that test platform core functionality (data pre-processing,
feature normalization, etc.) and also algorithmic perfor-
mance. Specifically, for algorithmic performance, both our
Discrete-Action DQN and Parametric-Action DQN mod-
els are evaluated on OpenAI Gym’s Cartpole environment
while our DDPG model is evaluated on OpenAI Gym’s
Pendulum environment. We evaluate these models with
different configurations (using Q-learning vs. SARSA, with
and without double Q-learning, etc.) to ensure robustness
and correctness. For open source, we have set up a contin-
uous integration test that runs all unit tests upon push to
the master branch on Github and on pull request submis-
sion. The integration test runs on pre-built Docker images
of the target platforms. We have included the Dockerfile
used to build the images to ensure that the test environment
is reproducible.



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

9 CASE STUDY: NOTIFICATIONS AT
FACEBOOK

9.1 Push Notifications

Facebook sends notifications to people to connect them
with the most important updates when they matter, which
may include interactions on your posts or stories, updates
about your friends, joined groups, followed pages, interested
events etc. Push notifications are sent to mobile devices, and
a broader set of notifications is accessible from within the
app/website. It is primarily used as a channel for sending
personalized and time sensitive updates. To make sure we
only send the most personally relevant notifications to peo-
ple, we filter notification candidates using machine learning
models. Historically, we have used supervised learning mod-
els for predicting click through rate (CTR) and likelihood
that the notification leads to meaningful interactions. These
predictions are combined into a score that is used to filter
the notifications.

This however, didn’t capture the long term or incremental
value of sending notifications. There can be some signals
that appear long after the decision to send or drop is made
or can’t be attributed directly to the notification. Addition-
ally, because notification preference varies from person to
person, filtering based on a static threshold misses out on
the improved experience of tailoring notifications for people
with different sensitivities to being notified.

We introduced a new policy that uses Horizon to train a
Discrete-Action DQN model for sending push notifications
to address the problems above. The Markov Decision Pro-
cess (MDP) is based on a sequence of notification candidates
for a particular person. The actions here are sending and
dropping the notification, and the state describes a set of fea-
tures about the person and the notification candidate. There
are rewards for interactions and activity on Facebook, with
a penalty for sending the notification to control the volume
of notifications sent. The policy optimizes for the long term
value and is able to capture incremental effects of sending
the notification by comparing the Q-values of the send and
don’t send action.

The model was incrementally retrained daily on data from
people exposed to the model with some action exploration
introduced during serving. The model is updated with
batches of tens of millions of state transitions. We observed
this to help online usage metrics as we are doing off policy
batch learning.

We observed a significant improvement in activity and mean-
ingful interactions by deploying an RL based policy for
certain types of notifications, replacing the previous system
based on supervised learning.

9.2 Page Administrator Notifications

In addition to Facebook users, page administrators also rely
on Facebook to provide them with timely updates about the
pages they manage. In the past, supervised learning models
were used to predict how likely page admins were to be
interested in such notifications and how likely they were to
respond to them. Although the models were able to help
boost page admins’ activity in the system, the improvement
always came at some trade-off with the notification quality,
e.g. the notification click through rate (CTR). With Horizon,
a Discrete-Action DQN model is trained to learn a policy to
determine whether to send or not send a notification based
on the state represented by hundreds of features. The train-
ing data spans multiple weeks to enable the RL model to
capture page admins’ responses and interactions to the noti-
fications with their managed pages over a long term horizon.
The accumulated discounted rewards collected in the train-
ing allow the model to identify page admins with long term
intent to stay active with the help of being notified. After
deploying the DQN model, we were able to improve daily,
weekly, and monthly metrics without sacrificing notification
quality.

9.3 More Applications of Horizon

In addition to making notifications more relevant on our
platform, Horizon is applied by a variety of other teams at
Facebook. The 360-degree video team has applied Hori-
zon in the adaptive bitrate (ABR) domain to reduce bitrate
consumption without harming people’s watching experi-
ence. This was due to more intelligent video buffering and
pre-fetching.

While we focused our case studies on notifications, it is
important to note that Horizon is a horizontal effort in use
or being explored to be used by many organizations within
the company.

10 FUTURE WORK

The most immediate future additions to Horizon fall into 2
categories - 1) New models & model improvements 2) CPE
integrated with real metrics.

New models & model improvements: Specifically, on the
model improvement and new models front, we will be
adding more incremental improvements to our current mod-
els and plan on continually adding the best performing algo-
rithms from the research community.

CPE integrated with real metrics: Many developers struggle
with deriving a single reward scalar that defines the success
of a policy. Rather, they look at a suite of metrics and
watch how these metrics change in concert as the policy
changes. In the future, Horizon will allow developers to



Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform

input a set of metrics that they are interested in tracking and
we will use CPE to estimate the change to these metrics,
independent of the reward CPE. With these additional tools,
the reward shaping process will become more intuitive and
we can eventually support more complicated representations
of rewards, such as an objective function subject to a set of
constraints.

We plan on continuing to improve and add to Horizon going
forward and welcome community pull requests, suggestions,
and feedback.

REFERENCES

Adomavicius, G. and Tuzhilin, A. Toward the next genera-
tion of recommender systems: A survey of the state-of-
the-art and possible extensions. IEEE Transactions on
Knowledge & Data Engineering, (6):734–749, 2005.

Bellemare, M. G., Dabney, W., and Munos, R. A distri-
butional perspective on reinforcement learning. arXiv
preprint arXiv:1707.06887, 2017.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Dudık, M., Langford, J., and Li, L. Doubly robust policy
evaluation and learning. 2011.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P.,
Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., and
Coppin, B. Deep reinforcement learning in large discrete
action spaces. arXiv preprint arXiv:1512.07679, 2015.

Exchange, O. N. N. Onnx github repository, 2018.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I.,
Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin,
O., et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. arXiv preprint arXiv:1710.02298,
2017.

Huang, T.-W. Tensorboardx. https://github.com/
lanpa/tensorboardX, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In

Proceedings of the 22nd ACM international conference
on Multimedia, pp. 675–678. ACM, 2014.

Jiang, N. and Li, L. Doubly robust off-policy value evalu-
ation for reinforcement learning. In Proceedings of the
33rd International Conference on International Confer-
ence on Machine Learning (ICML), volume Volume 48,
pp. 652–661. JMLR. org, 2016.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Paszke, A., Gross, S., Chintala, S., and Chanan, G. Pytorch,
2017.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sutton, R. S., Barto, A. G., et al. Reinforcement learning:
An introduction. MIT press, 1998.

Thomas, P. and Brunskill, E. Data-efficient off-policy policy
evaluation for reinforcement learning. In Proceedings of
the 33rd International Conference on International Con-
ference on Machine Learning (ICML), pp. 2139–2148.
JMLR. org, 2016.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In AAAI, volume 2,
pp. 5. Phoenix, AZ, 2016.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanc-
tot, M., and De Freitas, N. Dueling network architec-
tures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. Spark: Cluster computing with working
sets. HotCloud, 10(10-10):95, 2010.

https://github.com/lanpa/tensorboardX
https://github.com/lanpa/tensorboardX

