
CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Gao Huang∗

Cornell University
gh349@cornell.edu

Shichen Liu∗

Tsinghua University
liushichen95@gmail.com

Laurens van der Maaten
Facebook AI Research

lvdmaaten@fb.com

Kilian Q. Weinberger
Cornell University
kqw4@cornell.edu

Abstract

Deep neural networks are increasingly used on mobile
devices, where computational resources are limited. In this
paper we develop CondenseNet, a novel network architec-
ture with unprecedented efficiency. It combines dense con-
nectivity with a novel module called learned group convo-
lution. The dense connectivity facilitates feature re-use in
the network, whereas learned group convolutions remove
connections between layers for which this feature re-use
is superfluous. At test time, our model can be implement-
ed using standard group convolutions, allowing for efficient
computation in practice. Our experiments show that Con-
denseNets are far more efficient than state-of-the-art com-
pact convolutional networks such as ShuffleNets.

1. Introduction

The high accuracy of convolutional networks (CNNs)
in visual recognition tasks, such as image classification
[12, 19, 38], has fueled the desire to deploy these networks
on platforms with limited computational resources, e.g., in
robotics, self-driving cars, and on mobile devices. Unfortu-
nately, the most accurate deep CNNs, such as the winners
of the ImageNet [6] and COCO [31] challenges, were de-
signed for scenarios in which computational resources are
abundant. As a result, these models cannot be used to per-
form real-time inference on low-compute devices.

This problem has fueled development of computation-
ally efficient CNNs that, e.g., prune redundant connection-
s [9, 11, 27, 29, 32], use low-precision or quantized weight-
s [4, 21, 36], or use more efficient network architectures
[5, 12, 16, 19, 22, 47]. These efforts have lead to substan-
tial improvements: to achieve comparable accuracy as VG-
G [38] on ImageNet, ResNets [12] reduce the amount of
computation by a factor 5×, DenseNets [19] by a factor

∗Both authors contributed equally.

of 10×, and MobileNets [16] and ShuffleNets [47] by a
factor of 25×. A typical set-up for deep learning on mo-
bile devices is one where CNNs are trained on multi-GPU
machines but deployed on devices with limited compute.
Therefore, a good network architecture allows for fast par-
allelization during training, but is compact at test-time.

Recent work [4,20] shows that there is a lot of redundan-
cy in CNNs. The layer-by-layer connectivity pattern forces
networks to replicate features from earlier layers throughout
the network. The DenseNet architecture [19] alleviates the
need for feature replication by directly connecting each lay-
er with all layers before it, which induces feature re-use.
Although more efficient, we hypothesize that dense con-
nectivity introduces redundancies when early features are
not needed in later layers. We propose a novel method to
prune such redundant connections between layers and then
introduce a more efficient architecture. In contrast to prior
pruning methods, our approach learns a sparsified network
automatically during the training process, and produces a
regular connectivity pattern that can be implemented effi-
ciently using group convolutions. Specifically, we split the
filters of a layer into multiple groups, and gradually remove
the connections to less important features per group during
training. Importantly, the groups of incoming features are
not predefined, but learned. The resulting model, named
CondenseNet, can be trained efficiently on GPUs, and has
high inference speed on mobile devices.

Our image-classification experiments show that Con-
denseNets consistently outperform alternative network ar-
chitectures. Compared to DenseNets, CondenseNets use
only 1/10 of the computation at comparable accuracy lev-
els. On the ImageNet dataset [6], a CondenseNet with 275
million FLOPs1 achieved a 29% top-1 error, which is com-
parable to the error of a MobileNet that requires twice as
much compute.

1Throughout the paper, FLOPs refers to the number of multiplication-
addition operations.

2. Related Work and Background
We first review related work on model compression and

efficient network architectures, which inspire our work.
Next, we review the DenseNets and group convolutions that
form the basis for CondenseNet.

2.1. Related Work
Weights pruning and quantization. CondenseNets are
closely related to approaches that improve the inference
efficiency of (convolutional) networks via weight prun-
ing [11, 14, 27, 29, 32] and/or weight quantization [21, 36].
These approaches are effective because deep networks of-
ten have a substantial number of redundant weights that can
be pruned or quantized without sacrificing (and sometimes
even improving) accuracy. For convolutional networks, d-
ifferent pruning techniques may lead to different levels of
granularity [34]. Fine-grained pruning, e.g., independen-
t weight pruning [10, 27], generally achieves a high degree
of sparsity. However, it requires storing a large number of
indices, and relies on special hardware/software accelera-
tors. In contrast, coarse-grained pruning methods such as
filter-level pruning [1, 14, 29, 32] achieve a lower degree of
sparsity, but the resulting networks are much more regular,
which facilitates efficient implementations.

CondenseNets also rely on a pruning technique, but d-
iffer from prior approaches in two main ways: First, the
weight pruning is initiated in the early stages of training,
which is substantially more effective and efficient than us-
ing L1 regularization throughout. Second, CondenseNets
have a higher degree of sparsity than filter-level pruning,
yet generate highly efficient group convolution—reaching a
sweet spot between sparsity and regularity.
Efficient network architectures. A range of recent stud-
ies has explored efficient convolutional networks that can
be trained end-to-end [16, 19, 22, 46, 47, 48, 49]. Three
prominent examples of networks that are sufficiently effi-
cient to be deployed on mobile devices are MobileNet [16],
ShuffleNet [47], and Neural Architecture Search (NAS) net-
works [49]. All these networks use depth-wise separable
convolutions, which greatly reduce computational require-
ments without significantly reducing accuracy. A practical
downside of these networks is depth-wise separable convo-
lutions are not (yet) efficiently implemented in most deep-
learning platforms. By contrast, CondenseNet uses the
well-supported group convolution operation [25], leading
to better computational efficiency in practice.
Architecture-agnostic efficient inference has also been
explored by several prior studies. For example, knowledge
distillation [3, 15] trains small “student” networks to repro-
duce the output of large “teacher” networks to reduce test-
time costs. Dynamic inference methods [2, 7, 8, 17] adapt
the inference to each specific test example, skipping units
or even entire layers to reduce computation. We do not ex-
plore such approaches here, but believe they can be used in

1x1 Conv

BN-ReLU

3x3 Conv 3x3 G-Conv

1x1 L-Conv

3x3 G-Conv

1x1 G-Conv

Index

Permute

InputInputInput

BN-ReLU BN-ReLU

BN-ReLU BN-ReLU BN-ReLU

OutputOutputOutput

Permute

Figure 1. The transformations within a layer in DenseNets (left),
and CondenseNets at training time (middle) and at test time (right).
The Index and Permute operations are explained in Section 3.1 and
4.1, respectively. (L-Conv: learned group convolution; G-Conv:
group convolution)

12
11
10
9
8
7
6
5
4
3
2
1

C
onvolution

group 2

group 3

group 1

12
11
10
9
8
7
6
5
4
3
2
1

G
roup

C
onvolution

Input
Features

Output
Features

Input
Features

Output
Features

Figure 2. Standard convolution (left) and group convolution
(right). The latter enforces a sparsity pattern by partitioning the
inputs (and outputs) into disjoint groups.

conjunction with CondenseNets.

2.2. DenseNet
Densely connected networks (DenseNets; [19]) consist

of multiple dense blocks, each of which consists of multiple
layers. Each layer produces k features, where k is referred
to as the growth rate of the network. The distinguishing
property of DenseNets is that the input of each layer is a
concatenation of all feature maps generated by all preced-
ing layers within the same dense block. Each layer performs
a sequence of consecutive transformations, as shown in the
left part of Figure 1. The first transformation (BN-ReLU,
blue) is a composition of batch normalization [23] and rec-
tified linear units [35]. The first convolutional layer in the
sequence reduces the number of channels to save computa-
tional cost by using the 1×1 filters. The output is followed
by another BN-ReLU transformation and is then reduced to
the final k output features through a 3×3 convolution.

2.3. Group Convolution
Group convolution is a special case of a sparsely con-

nected convolution, as illustrated in Figure 2. It was first
used in the AlexNet architecture [25], and has more re-
cently been popularized by their successful application in
ResNeXt [43]. Standard convolutional layers (left illustra-
tion in Figure 2) generate O output features by applying

12
11
10
9
8
7
6
5
4
3
2
1

group 2

group 3

group 1

group 2

group 3

group 1

12
11
10
9
8
7
6
5
4
3
2
1

12
11
10
9
8
7
6
5
4
3
2
1

group 2

group 3

group 1

group 2

group 3

group 1

11
8
6
5

12
10
5
1

12
9
7
3

12
11
10
9
8
7
6
5
4
3
2
1

Index Layer
Condensing Stage 1 Condensing Stage 2 Optimization Stage Testing

G
roup

C
onvolution

Sparsified
C

onvolution

Sparsified
C

onvolution

C
onvolution

Input
Features

Output
Features

Input
Features

Output
Features

Input
Features

Output
Features

Input
Features

Output
Features

Selected and
Rearranged Features

Figure 3. Illustration of learned group convolutions with G=3 groups and a condensation factor of C =3. During training a fraction of
(C−1)/C connections are removed after each of the C − 1 condensing stages. Filters from the same group use the same set of features,
and during test-time the index layer rearranges the features to allow the resulting model to be implemented as standard group convolutions.

a convolutional filter (one per output) over all R input fea-
tures, leading to a computational cost of R×O. In compari-
son, group convolution (right illustration) reduces this com-
putational cost by partitioning the input features into G mu-
tually exclusive groups, each producing its own outputs—
reducing the computational cost by a factor G to R×O

G .

3. CondenseNets

Group convolution works well with many deep neural
network architectures [43, 46, 47] that are connected in a
layer-by-layer fashion. For dense architectures group con-
volution can be used in the 3×3 convolutional layer (see
Figure 1, left). However, preliminary experiments show
that a naı̈ve adaptation of group convolutions in the 1×1
convolutional layer leads to drastic reductions in accuracy.
We surmise that this is caused by the fact that the inputs to
the 1×1 convolutional layer are concatenations of feature
maps generated by preceding layers. Therefore, they dif-
fer in two ways from typical inputs to convolutional layers:
1. they have an intrinsic order; and 2. they are far more
diverse. The hard assignment of these features to disjoint
groups hinders effective re-use of features in the network.
Experiments in which we randomly permute input feature
maps in each layer before performing the group convolu-
tion show that this reduces the negative impact on accuracy
— but even with the random permutation, group convolu-
tion in the 1×1 convolutional layer makes DenseNets less
accurate than for example smaller DenseNets with equiva-
lent computational cost.

It is shown in [19] that making early features available
as inputs to later layers is important for efficient feature re-
use. Although not all prior features are needed at every sub-
sequent layer, it is hard to predict which features should
be utilized at what point. To address this problem, we de-
velop an approach that learns the input feature groupings
automatically during training. Learning the group structure
allows each filter group to select its own set of most rel-

evant inputs. Further, we allow multiple groups to share
input features and also allow features to be ignored by all
groups. Note that in a DenseNEt, even if an input feature is
ignored by all groups in a specific layer, it can still be uti-
lized by some groups At different layers. To differentiate it
from regular group convolutions, we refer to our approach
as learned group convolution.

3.1. Learned Group Convolution

We learn group convolutions through a multi-stage pro-
cess, illustrated in Figures 3 and 4. The first half of the
training iterations comprises of condensing stages. Here,
we repeatedly train the network with sparsity inducing reg-
ularization for a fixed number of iterations and subsequently
prune away unimportant filters with low magnitude weights.
The second half of the training consists of the optimization
stage, in which we learn the filters after the groupings are
fixed. When performing the pruning, we ensure that filters
from the same group share the same sparsity pattern. As a
result, the sparsified layer can be implemented using a stan-
dard group convolution once training is completed (testing
stage). Because group convolutions are efficiently imple-
mented by many deep-learning libraries, this leads to high
computational savings both in theory and in practice. We
present details on our approach below.
Filter Groups. We start with a standard convolution of
which filter weights form a 4D tensor of size O×R×W×H ,
where O, R, W , and H denote the number of output chan-
nels, the number of input channels, and the width and the
height of the filter kernels, respectively. As we are focusing
on the 1×1 convolutional layer in DenseNets, the 4D tensor
reduces to an O×R matrix F. We consider the simplified
case in this paper. But our procedure can readily be used
with larger convolutional kernels. Before training, we first
split the filters (or, equivalently, the output features) into G
groups of equal size. We denote the filter weights for these
groups by F1, . . . ,FG; each Fg has size O

G ×R and Fg
ij

corresponds to the weight of the jth input for the ith output

within group g. Because the output features do not have an
implicit ordering, this random grouping does not negatively
affect the quality of the layer.
Condensation Criterion. During the training process we
gradually screen out subsets of less important input features
for each group. The importance of the jth incoming fea-
ture map for the filter group g is evaluated by the averaged
absolute value of weights between them across all outputs
within the group, i.e., by

∑O/G
i=1 |F

g
i,j |. In other words, we

remove columns in Fg (by zeroing them out) if their L1-
norm is small compared to the L1-norm of other columns.
This results in a convolutional layer that is structurally s-
parse: filters from the same group always receive the same
set of features as input.
Group Lasso. To reduce the negative effects on accura-
cy introduced by weight pruning, L1 regularization is com-
monly used to induce sparsity [29, 32]. In CondenseNets,
we encourage convolutional filters from the same group to
use the same subset of incoming features, i.e., we induce
group-level sparsity instead. To this end, we use the follow-
ing group-lasso regularizer [44] during training:

∑G

g=1

∑R

j=1

√∑O/G

i=1
Fg

i,j
2
.

The group-lasso regularizer simultaneously pushes all the
elements of a column of Fg to zero, because the term in
the square root is dominated by the largest elements in that
column. This induces the group-level sparsity we aim for.
Condensation Factor. In addition to the fact that learned
group convolutions are able to automatically discover good
connectivity patterns, they are also more flexible than stan-
dard group convolutions. In particular, the proportion of
feature maps used by a group does not necessarily need to
be 1

G . We define a condensation factor C, which may differ
from G, and allow each group to select

⌊
R
C

⌋
of inputs.

Condensation Procedure. In contrast to approaches that
prune weights in pre-trained networks, our weight pruning
process is integrated into the training procedure. As illus-
trated in Figure 3 (which uses C = 3), at the end of each
C−1 condensing stages we prune 1

C of the filter weight-
s. By the end of training, only 1

C of the weights remain in
each filter group. In all our experiments we set the number
of training epochs of the condensing stages to M

2(C−1) , where
M denotes the total number of training epochs—such that
the first half of the training epochs is used for condensing.
In the second half of the training process, the Optimization
stage, we train the sparsified model.2

2 In our implementation of the training procedure we do not actually
remove the pruned weights, but instead mask the filter F by a binary tensor
M of the same size using an element-wise product. The mask is initialized
with only ones, and elements corresponding to pruned weights are set to
zero. This implementation via masking is more efficient on GPUs, as it

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

tra
in

in
g

lo
ss

Training Loss
Learning Rate

0.00

0.02

0.04

0.06

0.08

0.10

le
ar

ni
ng

 ra
te

Condensing
Stage 2

Condensing
Stage 3

Condensing
Stage 1

Optimization
Stage

Figure 4. The cosine shape learning rate and a typical training loss
curve with a condensation factor of C=4.

Learning rate. We adopt the cosine shape learning rate
schedule of Loshchilov et al. [33], which smoothly anneal-
s the learning rate, and usually leads to improved accura-
cy [18, 49]. Figure 4 visualizes the learning rate as a func-
tion of training epoch (in magenta), and the corresponding
training loss (blue curve) of a CondenseNet trained on the
CIFAR-10 dataset [24]. The abrupt increase in the loss at
epoch 150 is causes by the final condensation operation,
which removes half of the remaining weights. However,
the plot shows that the model gradually recovers from this
pruning step in the optimization stage.
Index Layer. After training we remove the pruned weights
and convert the sparsified model into a network with a reg-
ular connectivity pattern that can be efficiently deployed on
devices with limited computational power. For this reason
we introduce an index layer that implements the feature se-
lection and rearrangement operation (see Figure 3, right).
The convolutional filters in the output of the index layer
are rearranged to be amenable to existing (and highly opti-
mized) implementations of regular group convolution. Fig-
ure 1 shows the transformations of the CondenseNet layers
during training (middle) and during testing (right). During
training the 1 × 1 convolution is a learned group convolu-
tion (L-Conv), but during testing, with the help of the index
layer, it becomes a standard group convolution (G-Conv).

3.2. Architecture Design
In addition to the use of learned group convolution-

s introduced above, we make two changes to the regular
DenseNet architecture. These changes are designed to fur-
ther simplify the architecture and improve its computational
efficiency. Figure 5 illustrates the two changes that we made
to the DenseNet architecture.
Exponentially increasing growth rate. The original
DenseNet design adds k new feature maps at each layer,

does not require sparse matrix operations. In practice, the pruning hardly
increases the wall time needed to perform a forward-backward pass during
training.

In Out

Identity
2x2 Pooling
4x4 Pooling
Global Pooling

Figure 5. The proposed DenseNet variant. It differs from the o-
riginal DenseNet in two ways: (1) layers with different resolution
feature maps are also directly connected; (2) the growth rate dou-
bles whenever the feature map size shrinks (far more features are
generated in the third, yellow, dense block than in the first).

where k is a constant referred to as the growth rate. As
shown in [19], deeper layers in a DenseNet tend to rely on
high-level features more than on low-level features. This
motivates us to improve the network by strengthening short-
range connections. We found that this can be achieved by
gradually increasing the growth rate as the depth grows.
This increases the proportion of features coming from later
layers relative to those from earlier layers. For simplici-
ty, we set the growth rate to k = 2m−1k0, where m is the
index of the dense block, and k0 is a constant. This way
of setting the growth rate does not introduce any addition-
al hyper-parameters. The “increasing growth rate” (IGR)
strategy places a larger proportion of parameters in the lat-
er layers of the model. This increases the computational
efficiency substantially but may decrease the parameter ef-
ficiency in some cases. Depending on the specific hardware
limitations it may be advantageous to trade-off one for the
other [22].
Fully dense connectivity. To encourage feature re-use
even more than the original DenseNet architecture does al-
ready, we connect input layers to all subsequent layers in
the network, even if these layers are located in different
dense blocks (see Figure 5). As dense blocks have differ-
ent feature resolutions, we downsample feature maps with
higher resolutions when we use them as inputs into lower-
resolution layers using average pooling.

4. Experiments
We evaluate CondenseNets on the CIFAR-10, CIFAR-

100 [24], and the ImageNet (ILSVRC 2012; [6]) image-
classification datasets. The models and code reproduc-
ing our experiments are publicly available at https://
github.com/ShichenLiu/CondenseNet.
Datasets. The CIFAR-10 and CIFAR-100 datasets consist
of RGB images of size 32×32 pixels, corresponding to 10
and 100 classes, respectively. Both datasets contain 50,000
training images and 10,000 test images. We use a stan-
dard data-augmentation scheme [20, 26, 28, 30, 37, 39, 41],
in which the images are zero-padded with 4 pixels on each

0.2 0.4 0.6 0.8 1.0 1.2 1.4
FLOPs 1e8

4.00

5.00

6.00

7.00

8.00

9.00

te
st

 e
rr

or
 (%

)

LGC(×)-IGR(×)-FDC(×): DenseNets
LGC()-IGR(×)-FDC(×): CondenseNetslight

LGC()-IGR()-FDC(×)
LGC()-IGR()-FDC(): CondenseNets

Figure 6. Ablation study on CIFAR-10 to investigate the efficiency
gains obtained by the various components of CondenseNet.

side, randomly cropped to produce 32×32 images, and hor-
izontally mirrored with probability 0.5.

The ImageNet dataset comprises 1000 visual classes,
and contains a total of 1.2 million training images and
50,000 validation images. We adopt the data-augmentation
scheme of [12] at training time, and perform a rescaling to
256× 256 followed by a 224× 224 center crop at test time
before feeding the input image into the networks.

4.1. Results on CIFAR
We first perform a set of experiments on CIFAR-10 and

CIFAR-100 to validate the effectiveness of learned group
convolutions and the proposed CondenseNet architecture.
Model configurations. Unless otherwise specified, we use
the following network configurations in all experiments on
the CIFAR datasets. The standard DenseNet has a constan-
t growth rate of k = 12 following [19]; our proposed ar-
chitecture uses growth rates k0 ∈ {8,16,32} to ensure that
the growth rate is divisable by the number of groups. The
learned group convolution is only applied to the first con-
volutional layer (with filter size 1×1, see Figure 1) of each
basic layer, with a condensation factor of C = 4, i.e., 75%
of filter weights are gradually pruned during training with a
step of 25%. The 3×3 convolutional layers are replaced
by standard group convolution (without applying learned
group convolution) with four groups. Following [46, 47],
we permute the output channels of the first 1×1 learned
group convolutional layer, such that the features generated
by each of its groups are evenly used by all the groups of
the subsequent 3× 3 group convolutional layer .
Training details. We train all models with stochastic
gradient descent (SGD) using similar optimization hyper-
parameters as in [12, 19]. Specifically, we adopt Nesterov
momentum with a momentum weight of 0.9 without damp-
ening, and use a weight decay of 10−4. All models are
trained with mini-batch size 64 for 300 epochs, unless oth-
erwise specified. We use a cosine shape learning rate which

https://github.com/ShichenLiu/CondenseNet
https://github.com/ShichenLiu/CondenseNet

starts from 0.1 and gradually reduces to 0. Dropout [40]
with a drop rate of 0.1 was applied to train CondenseNets
with >3 million parameters (shown in Table 1).
Component analysis. Figure 6 compares the computation-
al efficiency gains obtained by each component of Con-
denseNet: learned group convolution (LGR), exponential-
ly increasing learning rate (IGR), full dense connectivity
(FDC). Specifically, the figure plots the test error as a func-
tion of the number of FLOPs (i.e., multiply-addition op-
erations). The large gap between the two red curves with
dot markers shows that learned group convolution signifi-
cantly improves the efficiency of our models. Compared to
DenseNets, CondenseNetlight only requires half the num-
ber of FLOPs to achieve comparable accuracy. Further, we
observe that the exponentially increasing growth rate, yield-
s even further efficiency. Full dense connectivity does not
boost the efficiency significantly on CIFAR-10, but there
does appear to be a trend that as models getting larger, full
connectivity starts to help. We opt to include this architec-
ture change in the CondenseNet model, as it does lead to
substantial improvements on ImageNet (see later).
Comparison with state-of-the-art efficient CNNs. In Ta-
ble 1, we show the results of experiments comparing a
160-layer CondenseNetlight and a 182-layer CondenseNet
with alternative state-of-the-art CNN architectures. Follow-
ing [49], our models were trained for 600 epochs. From
the results, we observe that CondenseNet requires approxi-
mately 8× fewer parameters and FLOPs to achieve a com-
parable accuracy to DenseNet-190. CondenseNet seem-
s to be less parameter-efficient than CondenseNetlight, but
is more compute-efficient. Somewhat surprisingly, our
CondenseNetlight model performs on par with the NASNet-
A, an architecture that was obtained using an automated
search procedure over 20, 000 candidate architectures com-
posed of a rich set of components, and is thus careful-
ly tuned on the CIFAR-10 dataset [49]. Moreover, Con-
denseNet (or CondenseNetlight) does not use depth-wise
separable convolutions, and only use simple convolutional
filters with size 1×1 and 3×3. It may be possible to in-
clude CondenseNet as a meta-architecture in the procedure
of [49] to obtain even more efficient networks.
Comparison with existing pruning techniques. In Ta-
ble 2, we compare our CondenseNets and CondenseNetslight

with models that are obtained by state-of-the-art filter-level
weight pruning techniques [14, 29, 32]. The results show
that, in general, CondenseNet is about 3× more efficient in
terms of FLOPs than ResNets or DenseNets pruned by the
method introduced in [32]. The advantage over the other
pruning techniques is even more pronounced. We also re-
port the results for CondenseNetlight in the second last row
of Table 2. It uses only half the number of parameters to
achieve comparable performance as the most competitive
baseline, the 40-layer DenseNet described by [32].

Model Params FLOPs C-10 C-100
ResNet-1001 [13] 16.1M 2,357M 4.62 22.71
Stochastic-Depth-1202 [20] 19.4M 2,840M 4.91 -
Wide-ResNet-28 [45] 36.5M 5,248M 4.00 19.25
ResNeXt-29 [43] 68.1M 10,704M 3.58 17.31
DenseNet-190 [19] 25.6M 9,388M 3.46 17.18
NASNet-A∗ [49] 3.3M - 3.41 -
CondenseNetlight-160∗ 3.1M 1,084M 3.46 17.55
CondenseNet-182∗ 4.2M 513M 3.76 18.47

Table 1. Comparison of classification error rate (%) with other con-
volutional networks on the CIFAR-10(C-10) and CIFAR-100(C-
100) datasets. * indicates models that are trained with cosine shape
learning rate for 600 epochs.

Model FLOPs Params C-10 C-100
VGG-16-pruned [29] 206M 5.40M 6.60 25.28
VGG-19-pruned [32] 195M 2.30M 6.20 -
VGG-19-pruned [32] 250M 5.00M - 26.52
ResNet-56-pruned [14] 62M 8.20 -
ResNet-56-pruned [29] 90M 0.73M 6.94 -
ResNet-110-pruned [29] 213M 1.68M 6.45 -
ResNet-164-B-pruned [32] 124M 1.21M 5.27 23.91
DenseNet-40-pruned [32] 190M 0.66M 5.19 25.28
CondenseNetlight-94 122M 0.33M 5.00 24.08
CondenseNet-86 65M 0.52M 5.00 23.64

Table 2. Comparison of classification error rate (%) on CIFAR-
10 (C-10) and CIFAR-100 (C-100) with state-of-the-art filter-level
weight pruning methods.

CondenseNet Feature map size
3×3 Conv (stride 2) 112×112[

1×1 L-Conv
3×3 G-Conv

]
×4 (k=8) 112×112

2×2 average pool, stride 2 56×56[
1×1 L-Conv
3×3 G-Conv

]
×6 (k=16) 56×56

2×2 average pool, stride 2 28×28[
1×1 L-Conv
3×3 G-Conv

]
×8 (k=32) 28×28

2×2 average pool, stride 2 14×14[
1×1 L-Conv
3×3 G-Conv

]
×10 (k=64) 14×14

2×2 average pool, stride 2 7×7[
1×1 L-Conv
3×3 G-Conv

]
×8 (k=128) 7×7

7×7 global average pool 1×1

1000-dim fully-connected, softmax

Table 3. CondenseNet architectures for ImageNet.

4.2. Results on ImageNet
In a second set of experiments, we test CondenseNet on

the ImageNet dataset.
Model configurations. Detailed network configurations
are shown in Table 3. To reduce the number of parameter-
s, we prune 50% of weights from the fully connected (FC)
layer at epoch 60 in a way similar to the learned group con-
volution, but with G=1 (as the FC layer could not be split

Model FLOPs Params Top-1 Top-5
Inception V1 [42] 1,448M 6.6M 30.2 10.1
1.0 MobileNet-224 [16] 569M 4.2M 29.4 10.5
ShuffleNet 2x [47] 524M 5.3M 29.1 10.2
NASNet-A (N=4) [49] 564M 5.3M 26.0 8.4
NASNet-B (N=4) [49] 488M 5.3M 27.2 8.7
NASNet-C (N=3) [49] 558M 4.9M 27.5 9.0
CondenseNet (G=C=8) 274M 2.9M 29.0 10.0
CondenseNet (G=C=4) 529M 4.8M 26.2 8.3

Table 4. Comparison of Top-1 and Top-5 classification error rate
(%) with other state-of-the-art compact models on ImageNet.

into multiple groups) and C=2. Similar to prior studies on
MobileNets and ShuffleNets, we focus on training relative-
ly small models that require less than 600 million FLOPs to
perform inference on a single image.
Training details. We train all models using stochastic gra-
dient descent (SGD) with a batch size of 256. As before,
we adopt Nesterov momentum with a momentum weight of
0.9 without dampening, and a weight decay of 10−4. Al-
l models are trained for 120 epochs, with a cosine shape
learning rate which starts from 0.1 and gradually reduces to
0. We use group lasso regularization in all experiments on
ImageNet; the regularization parameter is set to 10−5.
Comparison with state-of-the-art efficient CNNs. Ta-
ble 4 shows the results of CondenseNets and several state-
of-the-art, efficient models on the ImageNet dataset. We ob-
serve that a CondenseNet with 274 million FLOPs obtains
a 29.0% Top-1 error, which is comparable to the accuracy
achieved by MobileNets and ShuffleNets that require twice
as much compute. A CondenseNet with 529 million FLOPs
produces to a 3% absolute reduction in top-1 error com-
pared to a MobileNet and a ShuffleNet of comparable size.
Our CondenseNet even achieves a the same accuracy with
slightly fewer FLOPs and parameters than the most com-
petitive NASNet-A, despite the fact that we only trained a
very small number of models (as opposed to the study that
lead to the NASNet-A model).
Actual inference time. Table 5 shows the actual infer-
ence time on an ARM processor for different models. The
wall-time to inference an image sized at 224× 224 is high-
ly correlated with the number of FLOPs of the model.
Compared to the recently proposed MobileNet, our Con-
denseNet (G=C = 8) with 274 million FLOPs inferences
an image 2× faster, while without sacrificing accuracy.

4.3. Ablation Study
We perform an ablation study on CIFAR-10 in which

we investigate the effect of (1) the pruning strategy, (2) the
number of groups, and (3) the condensation factor. We also
investigate the stability of our weight pruning procedure.
Pruning strategy. The left panel of Figure 7 compares our
on-the-fly pruning method with the more common approach

Model FLOPs Top-1 Time(s)
VGG-16 15,300M 28.5 354
ResNet-18 1,818M 30.2 8.14
1.0 MobileNet-224 [16] 569M 29.4 1.96
CondenseNet (G=C=4) 529M 26.2 1.89
CondenseNet (G=C=8) 274M 29.0 0.99

Table 5. Actual inference time of different models on an ARM
processor. All models are trained on ImageNet, and accept input
with resolution 224×224.

of pruning weights of fully converged models. We use a
DenseNet with 50 layers as the basis for this experimen-
t. We implement a “traditional” pruning method in which
the weights are pruned in the same way as in as in Con-
denseNets, but the pruning is only done once after training
has completed (for 300 epochs). Following [32], we fine-
tune the resulting sparsely connected network for another
300 epochs with the same cosine shape learning rate that we
use for training CondenseNets. We compare the traditional
pruning approach with the CondenseNet approach, setting
the number of groups G is set to 4. In both settings, we vary
the condensation factor C between 2 and 8.

The results in Figure 7 show that pruning weights grad-
ually during training outperforms pruning weights on ful-
ly trained models. Moreover, gradual weight pruning re-
duces the training time: the “traditional pruning” model-
s were trained for 600 epochs, whereas the CondenseNets
were trained for 300 epochs. The results also show that re-
moving 50% the weights (by setting C =2) from the 1×1
convolutional layers in a DenseNet incurs hardly any loss in
accuracy.
Number of groups. In the middle panel of Figure 7, we
compare four CondenseNets with exactly the same network
architecture, but a number of groups, G, that varies between
1 and 8. We fix the condensation factor, C, to 8 for all the
models, which implies all models have the same number of
parameters after training has completed. In CondenseNets
with a single group, we discard entire filters in the same way
that is common in filter-pruning techniques [29, 32]. The
results presented in the figure demonstrate that test errors
tends to decrease as the number of groups increases. This
result is in line with our analysis in Section 3, in particular,
it suggests that grouping filters gives the training algorithm
more flexibility to remove redundant weights.
Effect of the condensation factor. In the right panel of
Figure 7, we compare CondenseNets with varying conden-
sation factors. Specifically, we set the condensation factor
C to 1, 2, 4, or 8; this corresponds to removing 0%, 50%,
75%, or 87.5% of the weights from each of the 1×1 convolu-
tional layers, respectively. A condensation factor C=1 cor-
responds to a baseline model without weight pruning. The
number of groups, G, is set to 4 for all the networks. The
results show that a condensation factors C larger than 1 con-

C=2 C=4 C=8
Condensation Factor

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

te
st

 e
rr

or
 (%

)

5.50 5.50 5.505.61

6.22

6.82

6.12

7.60

8.60Full model
CondenseNet
Traditional Pruning

G=1 G=2 G=4 G=8
Group Number

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

te
st

 e
rro

r (
%

)

7.63

7.32

6.82
6.67

0.2 0.4 0.6 0.8 1.0 1.2 1.4
FLOPs 1e8

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

te
st

 e
rro

r (
%

)

CondenseNet C=1
CondenseNet C=2
CondenseNet C=4
CondenseNet C=8

Figure 7. Classification error rate (%) on CIFAR-10. Left: Comparison between our condense method with traditional pruning approach,
under varying condensation factors. Middle: CondenseNets with different number of groups for the 1×1 learned group convolution. All
the models have the same number of parameters. Right: CondenseNets with different condensation factors.

0 10 20 30 40
Depth ()

0
50

100
150
200
250
300
350
400

W
id

th
 (s

)

Classification layer

Model (1)

0 5 10 15 20
Target layer (t)

0

5

10

15

20

So
ur

ce
 la

ye
r (

s)

Classification layer

Model (1)

0 10 20 30 40
Depth ()

Classification layer

Model (2)

0 5 10 15 20
Target layer (t)

Classification layer

Model (2)

0 10 20 30 40
Depth ()

Classification layer

Model (3)

0 5 10 15 20
Target layer (t)

Classification layer

Model (3)

0.2 0.4 0.60 0.8 1

Figure 8. Norm of weights between layers of a CIFAR-10 Con-
denseNet per filter group (top) and per filter block (bottom). The
three columns correspond to independent training runs.

sistently lead to improved efficiency, which underlines the
effectiveness of our method. Interestingly, models with con-
densation factors 2, 4 and 8 perform comparably in terms of
classification error as a function of FLOPs. This suggests
that whilst pruning more weights yields smaller models, it
also leads to a proportional loss in accuracy.
Stability. As our method removes redundant weights in
early stages of the training process, a natural question is
whether this will introduce extra variance into the training.
Does early pruning remove some of the weights simply be-
cause they were initialized with small values?

To investigate this question, Figure 8 visualizes the
learned weights and connections for three independently
trained CondenseNets on CIFAR-10 (using different ran-
dom seeds). The top row shows detailed weight strengths
(averaged absolute value of non-pruned weights) between
a filter group of a certain layer (corresponding to a column
in the figure) and an input feature map (corresponding to a
row in the figure). For each layer there are four filter groups
(consecutive columns). A white pixel in the top-right corner
indicates that a particular input feature was pruned by that
layer and group. Following [19], the bottom row of Fig-

ure fig:learned-weights-stablity shows the overall connec-
tion strength between two layers in the condensed network.
The vertical bars correspond to the linear classification lay-
er on top of the CondenseNet. The gray vertical dotted lines
correspond to pooling layers that decrease the feature reso-
lution.

The results in the figure suggest that while there are d-
ifferences in learned connectivity at the filter-group level
(top row), the overall information flow between layers (bot-
tom row) is similar for all three models. This suggests that
the three training runs learn similar global connectivity pat-
terns, despite starting from different random initializations.
Later layers tend to prefer more recently generated features,
do however utilize some features from very early layers.

5. Conclusion
In this paper, we introduced CondenseNet: an efficient

convolutional network architecture that encourages feature
re-use via dense connectivity and prunes filters associated
with superfluous feature re-use via learned group convolu-
tions. To make inference efficient, the pruned network can
be converted into a network with regular group convolution-
s, which are implemented efficiently in most deep-learning
libraries. Our pruning method is simple to implement, and
adds only limited computational costs to the training pro-
cess. In our experiments, CondenseNets outperform re-
cently proposed MobileNets and ShuffleNets in terms of
computational efficiency at the same accuracy level. Con-
denseNet even slightly outperforms a network architecture
that was discovered by empirically trying tens of thousand-
s of convolutional network architectures, and with a much
simpler structure.

Acknowledgements. The authors are supported in part by
grants from the National Science Foundation (III-1525919,
IIS-1550179, IIS-1618134, S&AS 1724282, and CCF-
1740822), the Office of Naval Research DOD (N00014-17-
1-2175), and the Bill and Melinda Gates Foundation. We
thank Xu Zou, Weijia Chen, Danlu Chen for helpful discus-
sions.

References
[1] J. M. Alvarez and M. Salzmann. Learning the number of

neurons in deep networks. In Advances in Neural Informa-
tion Processing Systems, pages 2270–2278, 2016.

[2] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. Adaptive
neural networks for fast test-time prediction. In ICML, 2017.

[3] C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model
compression. In ACM SIGKDD, pages 535–541, 2006.

[4] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.
Compressing neural networks with the hashing trick. In
ICML, pages 2285–2294, 2015.

[5] F. Chollet. Xception: Deep learning with depthwise sepa-
rable convolutions. arXiv preprint arXiv:1610.02357, 2016.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009.

[7] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang,
D. Vetrov, and R. Salakhutdinov. Spatially adaptive com-
putation time for residual networks. arXiv preprint arX-
iv:1612.02297, 2016.

[8] A. Graves. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016.

[9] S. Han, H. Mao, and W. J. Dally. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv preprint arX-
iv:1510.00149, 2015.

[10] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In NIPS, pages
1135–1143, 2015.

[11] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain sur-
geon and general network pruning. In IJCNN, pages 293–
299, 1993.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In ECCV, 2016.

[14] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-
ing very deep neural networks. 2017.

[15] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-
edge in a neural network. In NIPS Deep Learning Workshop,
2014.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[17] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and
K. Q. Weinberger. Multi-scale dense networks for resource
efficient image classification. In ICLR, 2018.

[18] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q.
Weinberger. Snapshot ensembles: Train 1, get m for free. In
ICLR, 2017.

[19] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In CVPR, 2017.

[20] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.
Deep networks with stochastic depth. In ECCV, 2016.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Binarized neural networks. In NIPS, pages 4107–
4115, 2016.

[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and 0.5 mb model size. arXiv
preprint arXiv:1602.07360, 2016.

[23] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.

[24] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. In Tech Report, 2009.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[26] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:
Ultra-deep neural networks without residuals. arXiv preprint
arXiv:1605.07648, 2016.

[27] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.
Jackel. Optimal brain damage. In NIPS, volume 2, pages
598–605, 1989.

[28] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-
supervised nets. In AISTATS, 2015.

[29] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.
Pruning filters for efficient convnets. arXiv preprint arX-
iv:1608.08710, 2016.

[30] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,
2014.

[31] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV, pages 740–755. Springer,
2014.

[32] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.
Learning efficient convolutional networks through network
slimming. In ICCV, 2017.

[33] I. Loshchilov and F. Hutter. SGDR: stochastic gradient de-
scent with restarts. In ICLR, 2017.

[34] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J.
Dally. Exploring the Regularity of Sparse Structure in Con-
volutional Neural Networks.

[35] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In ICML-10, pages 807–814,
2010.

[36] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neu-
ral networks. In ECCV, pages 525–542. Springer, 2016.

[37] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR,
2015.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[39] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-
miller. Striving for simplicity: The all convolutional net.
arXiv preprint arXiv:1412.6806, 2014.

[40] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[41] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training
very deep networks. In NIPS, 2015.

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

[43] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregat-
ed residual transformations for deep neural networks. arXiv
preprint arXiv:1611.05431, 2016.

[44] M. Yuan and Y. Lin. Model selection and estimation in re-
gression with grouped variables. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 68(1):49–
67, 2006.

[45] S. Zagoruyko and N. Komodakis. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

[46] T. Zhang, G.-J. Qi, B. Xiao, and J. Wang. Interleaved group
convolutions for deep neural networks. In ICCV, 2017.

[47] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile
devices. arXiv preprint arXiv:1707.01083, 2017.

[48] L. Zhao, J. Wang, X. Li, Z. Tu, and W. Zeng. Deep convolu-
tional neural networks with merge-and-run mappings. 2016.

[49] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-
ing transferable architectures for scalable image recognition.
arXiv preprint arXiv:1707.07012, 2017.

