
Learning Spatio-Temporal Downsampling for
Effective Video Upscaling
Supplementary Material

Xiaoyu Xiang 1, Yapeng Tian 2, Vijay Rengaranjan 1, Lucas D. Young 1,
Bo Zhu 1, and Rakesh Ranjan 1

1 Meta Reality Labs, 2 University of Texas at Dallas
{xiangxiaoyu,apvijay,bozhufrl,rakeshr}@fb.com

{tianyapeng92,lucasyoung482}@gmail.com

In this appendix, we first discuss the difference between video frame interpo-
lation and temporal upscaling in Sec. A. Then, we provide more module design
details in Sec. B. Besides, we provide the background knowledge of space-time
Fourier analysis in Sec. C to help the readers understand the relevant part in
the main paper. Experimental details are described in Sec. D. Sec. E includes
more comparisons with the state-of-the-art (SOTA) methods and the results of
integrating other network structures in the Space-Time Anti-Aliasing (STAA)
framework. Lastly, we show the training setting and more results of the extensive
applications in Sec. F.

A Difference between Video Frame Interpolation and
Temporal Upscaling

In this section, we explain the difference between the video frame interpolation
(VFI) task and the temporal upscaling proposed in this paper.

Fig. S1 shows the illustration of these two different settings: given an input
sequence of frames I1, I2, I3, I4, . . ., VFI adopts nearest-neighbor downsampling
to acquire the downsampled sequence I1, I2, . . ., as shown in (a). The acquired
sequence explicitly corresponds to the timestep in the original input. In the
restoration step, it needs to synthesize the missing frames from neighbors in the
downsampled sequence: e.g .

I1, I3 → Ĩ2. (1)

Thus, in the final sequence with a total length of 2n − 1, n − 1 frames are
synthesized and n frames are directly copied from the original input. So VFI
methods cannot perfectly reconstruct a sequence with an even number of frames.

Temporal upscaling is more like spatial-upscaling: given an input sequence
I1, I2, I3, I4, . . ., the anti-aliasing filter blends the information from nearby frames,
thus each frame of the downsampled sequence should contain information from
multiple frames of the original input. Thus, it does not explicitly correspond to
the timestep in the original input. So we annotate the downsampled frames as
I123, I234, Since this downsampled representation contains the motion infor-
mation at each timestep of the original sequence, we should be able to reconstruct

https://orcid.org/0000-0002-5999-9133
https://orcid.org/0000-0003-1423-4513
https://orcid.org/0000-0001-9477-6587
https://orcid.org/0000-0003-1224-3977
https://orcid.org/0000-0003-4771-0192
https://orcid.org/0000-0003-3317-8473

2 X. Xiang et al.

(a) Video Frame Interpolation (b) Temporal Upscaling

Fig. S1: Illustration of the difference between video frame interpolation and temporal
upscaling. In VFI settings, each downsampled frame corresponds to only a single frame
of the original input. While for temporal upscaling, we allow the downsampled frame to
assimilate information from the adjacent frames of the original input. Thus, we could
reconstruct a full sequence from it.

them with proper design. For the restoration output, all frames in the sequence
are synthesized:

I123, I234 → Ĩ1, Ĩ2, Ĩ3, Ĩ4. (2)

The temporal upscaling method can reconstruct a sequence with either an even
or odd number of frames.

Due to the above differences, it is unfair to directly compare the output be-
tween these two methods. So in this paper, we only compare the frames that are
synthesized by both methods (e.g . in the above example, Ĩ2, Ĩ4, . . .) to measure
the reconstruction capability of the network. For the full sequence, we compare
the temporal profile to evaluate the reconstructed motion patterns.

B Module Design Details

In this section, we provide more details about the two modules of the down-
sampler: the space-time anti-aliasing filter and the differentiable quantization
layer, and the two modules of the upsampler: the deformable temporal modeling
(DTM) and the residual dense block with 3D convolutions.

B.1 Space-Time Anti-Aliasing Downsampler

Fig. S2 illustrates the two operations in the downsampler: filtering with the
learned 3D space-time filter and downsampling with stride. In our implementa-
tion, the above two steps are simplified into a convolution: the convolution kernel
size is the window size in space/time; the convolution weights are learnable with
custom constraints; the downsampling in each dimension is controlled by stride.

Learning Spatio-Temporal Downsampling 3

downsamplefiltering

1/2×𝑠

1/2×𝑡

Fig. S2: Illustration of our learned space-time anti-aliasing downsampler.

B.2 Differentiable Quantization Layer

The direct output of our downsampler is a floating-point tensor, while in practi-
cal applications, images are usually encoded as 8-bit RGB (uint8). To make our
downsampled frames compatible with popular image data storage and transmis-
sion pipelines, we propose a quantization layer and include it in our end-to-end
training process.

Directly casting the tensor type to uint8 does not work: such operations are
not differentiable and thus cannot be used to train our network in an end-to-end
manner. Consequently, if we directly send a uint8 input to the upsampler, there
is going to be a performance drop due to the precision gap between the float and
the uint8. So we split the quantization for tensors into two steps:

(1) Clipping: limit the values to a certain range (e.g . [0, 255] for uint8)
to avoid blown-out colors. There is a serious problem: the derivative out of the
[min,max] value is masked to be 0, which makes the training at early itera-
tions unstable, as reported in [4]. To solve this problem, we modify the clipping
function Q(·) into:

x̂ = x+ReLU(min− x),

Q(x) = x̂− ReLU(x̂−max),
(3)

where x is our input value, [min,max] denotes the clipping range, and Q(x) is
the clipped output. The derivative of the clipping function becomes:

dQ(x)

dx
=

2, if x ≤ min

1, if x ∈ (min,max)

2, if x ≥ max

(4)

This modification does not influence clipping results but makes the derivative
non-zero everywhere.

(2) Round: round the values to the closest integer. The gradient of this
function is zero almost everywhere, which is bad for optimization. To avoid this
issue, we override the gradient map to 1 during backward propagation.

As a result, the quantization operation’s derivative is non-zero everywhere,
thus enabling end-to-end training. Fig. S3 shows the training and validation loss
of our framework. It shows our proposed method can be trained stably from
scratch.

4 X. Xiang et al.

Training Loss Validation Loss Validation PSNR

Fig. S3: Plot of our training progress. With the aid of the differentiable quantization
layer, our network’s training is stable from scratch.

B.3 Deformable Temporal Modeling (DTM)

Here we describe the detailed structure of the deformable temporal module: as
illustrated in the main paper, the temporal correspondences are propagated in
both forward and backward directions. At each step i, it takes a current feature fi
as input and refine it with the last step’s output f ′

i−1 with deformable alignment
function T (·):

f ′
i = T (fi, f

′
i−1). (5)

The deformable alignment function T (·) is basically a deformable convolu-
tion, which takes an input feature map f ′

i−1 and an offset map ∆pi:

T (fi, f
′
i−1) = DConv(f ′

i−1, ∆pi), (6)

where the offset ∆pi is estimated from the refined feature map from the last step
and the current step with convolutional function g(·):

∆pi = g(f ′
i−1, fi). (7)

In this way, the previous feature maps are aligned with the current one,
which enhances our network’s capability of handling motions. Then we aggregate
the current feature fi and the aligned feature f ′

i to get the refined feature:
r(fi) = c(fi, f

′
i) with the ConvLSTM c. After bi-directional propagation, for

each timestep i, there will be two refined features from each direction. The
aggregated output can be acquired by a blending function:

DTM(fi) = wf ∗ rf (fi) + wbrb(fi), (8)

where wf , wb are conv1× 1 kernels and ∗ denotes the convolutional operator. In
this way, we get a well-aligned sequence as output.

B.4 Residual Dense Block with 3D Convolutions

As the major building block of the reconstruction trunk in our upsampler, the
3D convolutions are organized exactly the same way as the residual dense block
in [12, 16] while replacing the 2D convolutions with 3D, as shown in Fig. S4.
The skip-connection of the residual block is with a residual scaling parameter β;
in the dense block, features of different hierarchical levels are concatenated.

Learning Spatio-Temporal Downsampling 5

C
on
v

LR
eL
U

C
on
v

LR
eL
U

C
on
v

LR
eL
U

C
on
v

LR
eL
U

C
on
v

Fig. S4: Illustration of the residual dense block with 3D convolution.

C Background of Space-Time Fourier Analysis

Given a video signal f(x, y, t), we can analyze its space-time frequency charac-
teristics through Fourier transform (F(·)):

F (Ωx, Ωy, Ωt) = Fx,y,t(f(x, y, t)), (9)

where Ω denotes the frequency for each dimension, and F is the Fourier trans-
form of f . For the uniform-velocity case as discussed in our main paper, we can
denote the constant velocities as vx and vy for each direction. Thus, the object
signal is translated through time by:

f(x, y, t) = g(x− vxt, y − vyt), (10)

where g(x, y) is the signal of the 2D object. We denote its Fourier transform as
G. Correspondingly, the Fourier transform in Eq. 9 becomes:

F (Ωx, Ωy, Ωt) = Fx,y,t[g(x− vxt, y − vyt)]

= G(ΩxΩy)

∫
e−2πit(Ωxvx+Ωyvy+Ωt)dt

= G(ΩxΩy)δ(Ωxvx +Ωyvy +Ωt).

(11)

This explains why moving the 2D object would result in a shearing in the
frequency domain: theoretically, all the non-zero frequency components should
lie on the plane Ωxvx + Ωyvy + Ωt in the 3D Fourier space, which reflects the
coupling of space and time dimensions. However, our digital image is discrete –
our simulated temporal profile has jigsaw-like boundaries between the moving
object and the background due to the motion being at the pixel level. As a
result, the transformed figure has two small sub-bands, as shown in the main
paper. For visualization purposes, our analysis in the main paper is on the xt
2D signals, thus Eq. 11 can be written as:

F (Ωx, Ωt) = G(Ωx)δ(Ωxvx +Ωt), (12)

which shows the spectrum is limited by the delta function to a single line Ωxvx+
Ωt = 0. The velocity vx decides the slope of this line. For the xt 2D signal,
convolving with a filter h(·) equals to a multiplication with H(·) in the Fourier
domain:

HF (Ωx, Ωt) = G(Ωx)δ(Ωxvx +Ωt)H(Ωx, Ωt). (13)

6 X. Xiang et al.

This explains the effect of different filters: Gaussian filter’s Fourier transform
is still a Gaussian function, which gradually attenuates the spatio-temporal high
frequency; box filter (motion blur)’s Fourier transform is a sinc function, which
attenuates certain frequency components.

D Experimental Details

Datasets. Vimeo-90k dataset [15] is adopted to train the proposed framework.
It consists of more than 60,000 training video sequences, and each video sequence
has seven frames. These frames are used as both the inputs and outputs of the
auto-encoder. Consistent with previous works, we evaluate our method on the
Vid4 [6] dataset and the test set of Vimeo-90k to compare with the state-of-the-
art VFI, VSR, and STVSR methods.
Implementation Details. In our proposed STAA framework, we adopt a filter
of shape 3× 3× 3 for the downsampler. In the upsampler, one 3D convolutional
layer is used to convert the input frame sequence to the feature domain. We adopt
the deformable ConvLSTM [13,14] for temporal propagation. Five 3D residual-
dense blocks are stacked to build the reconstruction module. During the training
phase, we augment the training frames by randomly flipping horizontally and
90◦ rotations. The training patch size is 128 × 128, and the batch size is set to
be 32. We train the network for 100 epochs using the Adam [5] optimizer. The
initial learning rate is set to 2× 10−4 which scales down by a factor of 0.2 each
at epochs, 50 and 80. Our network is implemented in PyTorch [8]. Our STAA

framework is trained end-to-end with the L1-loss: L(V, Ṽ) = ||V − Ṽ ||1.

L(V, Ṽ) = ||V − Ṽ ||1. (14)

E More Experiments

E.1 More Comparisons with State-of-the-Art Methods

In this section, we first show more visual results that compare the previous
reconstruction methods with our joint-learned STAA in Fig. S5 and Fig. S6.

Fig. S5 shows the temporal upscaling results (1×s, 2×t). Compared with pre-
vious VFI methods, the reconstruction results of our proposed STAA framework
have more vivid spatial textures while preserving the correct motion patterns.
Because our STAA downsampler can encode the motion of each frame in the
original input sequence, our reconstruction result maintains the fast motions
that are lost in the previous nearest-neighbor sampling (see the pigeon in the
second row).

Fig. S6 shows the space-time upscaling results (4× s, 2× t). Benefiting from
the joint encoding of space-time dimensions, our reconstruction result has much
richer spatial details even without the aid of perceptual or adversarial loss, which
is almost impossible to be restored by previous methods. These results demon-
strate the great advantage of co-designing the downsampler with the upsampler,
which could be a potential direction for the video reconstruction task.

Learning Spatio-Temporal Downsampling 7

Input-Overlayed GT FLAVR [3] XVFI [10] Ours

Fig. S5: Qualitative results of 1 × s, 2 × t upscaling on Vid4 dataset. Compared with
previous video frame interpolation methods, the reconstruction results of our proposed
STAA framework have better textures while preserving the motion patterns due to the
co-design of downsampler and upsampler.

We also compare the computational efficiency of different space-time video
upscaling methods by computing the FLOPs per million pixels (MP) using the
open-source tool fvcore [9], as shown in Table S1. Compared with the two-stage
methods with cascaded VFI and VSR networks, the one-stage space-time super-
resolution network is more efficient. Our proposed upsampler requires the least
computation cost among all compared methods.

E.2 Our Framework Can be Generalized to More Networks

To compare the influence of the joint-learning mechanism of our framework,
we switch the upsampler to an STVSR network ZSM 1, which converts 4 LR
frames to 7 HR frames. In the updated STAA-ZSM setup, the 4 LR frames are
generated by our STAA downsampler and then sent to the ZSM for reconstruc-
tion. Compared with the original ZSM in Table S2, we can observe that the
STAA downsampled representation improves the PSNR by 2.14 dB and SSIM
by 0.0348. These results demonstrate that the improvement brought by the joint
learning framework can be generalized to other networks.

To evaluate the effectiveness of our upsampler design, we train another frame-
work under the setting 1×s, 2×t by substituting the upsampler with FLAVR [3].

1 Note that the reconstructed result is not comparable with our video upscaling setting
of 4× s, 2× t, since our network decodes 8 frames from 4 LR inputs, which is more
challenging than decoding 7 out of 4.

8 X. Xiang et al.

Input-Overlayed GT SepConv+EDVR DAIN+EDVR

FLAVR+BasicVSR++ XVFI+BasicVSR++ ZSM Ours

Input-Overlayed GT SepConv+EDVR DAIN+EDVR

FLAVR+BasicVSR++ XVFI+BasicVSR++ ZSM Ours

Input-Overlayed GT SepConv+EDVR DAIN+EDVR

FLAVR+BasicVSR++ XVFI+BasicVSR++ ZSM Ours

Input-Overlayed GT SepConv+EDVR DAIN+EDVR

FLAVR+BasicVSR++ XVFI+BasicVSR++ ZSM Ours

Fig. S6: Qualitative results of 4×s, 2×t upscaling on Vid4 dataset. Compared with pre-
vious two-stage and one-stage space-time super-resolution methods, the reconstruction
results of our proposed STAA framework have much better textures while preserving
the motion patterns due to the co-design of downsampler and upsampler.

Learning Spatio-Temporal Downsampling 9

Table S1: Comparison of computational costs among cascaded VFI and VSR methods,
and space-time super-resolution, and our method.

Method
GFLOPs/MP

VFI VSR

FLAVR [3] BasicVSR++ [2] 185.34+140.29
XVFI [10] BasicVSR++ [2] 676.65+140.29

ZSM [13] 198.51
Ours 163.98

Table S2: Using space-time anti-aliasing filter for space-time super-resolution.

Method
Vimeo-90k

PSNR SSIM

ZSM [13] 33.48 0.9178
STAA-ZSM 35.62 0.9526

We modify the input and output numbers of the FLAVR to make it compatible
with the temporal upscaling ratio. From Table S3, we can see that our proposed
upsampler outperforms FLAVR by a large margin. Considering that both net-
works adopt 3D convolution as the basic building block, we believe that such
improvement should attribute to the deformable temporal modeling.

E.3 Influence of Filter Size

In the aformentioned experiments, we empirically set the downsampling filter
size as 3× 3× 3. Here we experimented different sizes from 1× 3× 3 to 5× 7× 7
(as shown in Tab S4) and found that larger sizes (e.g., 3 × 5 × 5) can achieve
better results but increase model complexity. For this downsampling setting 2×t,
4× s, keeping increasing the filter size does not bring better performance.

Table S3: Performance comparison for temporal upscaling: 2× t.

Method
Vimeo-90k

Params(M)
PSNR SSIM

STAA-FLAVR [3] 44.72 0.9915 42.1
STAA-Ours 46.59 0.9942 15.9

10 X. Xiang et al.

Table S4: Ablation study of different downsampling filter kernel sizes (2× t, 4× s).

kernel(t, s) Params/k GFLOPs/MP PSNR SSIM

1x3x3 0.081 0.027 32.17 0.9291
3x3x3 0.243 0.081 34.56 0.9413
3x5x5 0.675 0.225 35.15 0.9437
5x3x3 0.405 0.135 34.46 0.9403
5x5x5 1.125 0.375 34.99 0.9427
5x7x7 2.205 0.735 35.13 0.9425

F Extensive Applications

In this section, we provide the training details for each application, and show
more results and analysis. Besides, we also discuss the trade-off between the data
storage and the reconstruction performance.

F.1 Frame Rate Conversion

Training Details. We adopt REDS [7] as our training set: it contains 270
videos of dynamic scenes at 720× 1280 resolution, in which 240 videos are split
as the training set and 30 videos as the validation set. In this application, we
train our upsampler network with the training set. During the training, we take
the 5-frame sequence as input and the 6-frame sequence as the supervision for
output.

To quantitatively evaluate the frame rate conversion on in-the-wild videos
of our network, we took 120-fps video clips using a high-speed camera. In this
way, we can get the input and corresponding ground truth for 20-fps and 24-fps
frames by sampling every 6 or 5 frames, respectively. We measure the PSNR and
SSIM of the output and show the results in Table S5. We also take the outputs
of several popular video editing tools and software for comparison: ffmpeg [11]
(skip/duplicate frames), and Adobe Premiere Pro [1]. Adobe Premiere Pro has
three options for frame rate conversion: frame sampling, frame blending, and
optical flow warping. Among these compared methods, only “blending” and
“warping” can synthesize new frames at the new timestamp. We show these
synthesized frame in Fig. S7.

From Table S5, we can conclude that the frame duplication and sampling
perform the worst since it cannot synthesize frames at the new timestamp. Frame
blending is a little bit better in terms of PSNR and SSIM; still, it suffers from
ghosting artifacts (transparent edges due to the overlayed objects) as shown in
the second figure in Fig. S7. Optical flow warping can synthesize the correct
motion for the new timestamp and thus improve the reconstruction PSNR and
SSIM. However, the reconstruction performance relies on the estimated optical
flow field: if the estimation accuracy is low, then the warped frames would have
holes, as shown in the third figure. Compared with the above methods, our
network does not have these artifacts and achieves the highest reconstruction
quality in terms of PSNR and SSIM.

Learning Spatio-Temporal Downsampling 11

Table S5: Performance comparison for frame rate conversion: 20 to 24 fps.

Method ffmpeg [11] premiere-sampling premiere-blend premiere-warp Ours

PSNR 32.44 32.39 33.90 34.54 36.99
SSIM 0.9514 0.9474 0.9536 0.9588 0.9784

GT premiere-blend premiere-warp Ours

Fig. S7: Comparison of the intermediate frame synthesized by different methods. The
blending result has obvious ghosting artifacts (transparent edges), while the optical-
flow warping result has holes in the leaf. Compared with the other two methods, our
result does not have these artifacts.

F.2 Blurry Frame Reconstruction

Training Details. For this application, we adopt REDS [7] as our training set:
it provides blurry videos at 24-fps and the corresponding clean videos at both
24-fps or 120-fps. We conduct two experiments: in the main paper, we show the
results of 4× s, 2× t, which are trained with bicubic-downsampled blurry videos
at 12-fps as input, and clean HR videos at 24-fps as output. Besides, we also
experiment on another setting with temporal-upscaling only: 1× s, 5× t, which
means the model needs to decode 5 clean frames per input frame. This network is
trained with 24-fps blurry videos as input and 120-fps clean videos as output. To
handle the motion ambiguity, we take 2 frames as input and make the network
generate 2 × t frames as output. We use the training subset of REDS to train
the networks and show results on the validation subset.

To further illustrate the effectiveness of our upsampler design, We compare
our upsampler’s structure with FLAVR [3] under the setting 1 × s, 5 × t in
Table S6 trained with the same hyperparameters. Our method exceeds it by a
large margin in terms of PSNR and SSIM. We also provide the qualitative results
of the validation videos from REDS in Fig. S8. As we can see, our method can
reduce the motion blur and produce clean and crisp frames. Compared with
FLAVR, our network generates vivid textures for each frame while keeping a
good motion pattern at each timestep.

F.3 Efficient Video Storage and Transmission

For this application, we assume the video capturing and reconstruction steps are
asynchronous: the captured video can be downsampled and saved or transmitted

12 X. Xiang et al.

Input Input

GT-0 GT-1 GT-2 GT-3 GT-4

FLAVR-0 FLAVR-1 FLAVR-2 FLAVR-3 FLAVR-4

Ours-0 Ours-1 Ours-2 Ours-3 Ours-4

Fig. S8: Qualitative results of the blurry frame reconstruction. The first row is the
input blurry frame, and the other rows are corresponding clean frames. Our method
can generate clean frames with vivid textures and correct motions at each timestep.

Learning Spatio-Temporal Downsampling 13

Table S6: Performance comparison for blurry frame upscaling: 5× t.

Method
REDS

PSNR SSIM

FLAVR [3] 28.50 0.8337
Ours 32.29 0.9153

for later reconstruction. In this process, the downsampling filter can help save
the data to be stored or transmitted while keeping high-quality reconstruction
results. Our proposed downsampling method is a better way to reduce the num-
ber of pixels in space and time dimensions, and it is compatible with the previous
image and video compression methods in the standard ISP pipeline. In practical
applications, a video can be first resized by our STAA downsampler and then
compressed with video codecs for transmission. Correspondingly, it requires the
upsampler to be trained with the compressed data for better handling the com-
pressed video reconstruction. We do not conduct the above experiments since
it is beyond the scope of this paper. It can be a promising direction for future
works.

For efficient video storage and transmission, we care about the downsampling
ratio since it directly influences the amount of data to be stored or transmit-
ted: intuitively, the restoration quality should increase with the sampling ratio.
In the extreme case when the ratio = 1.0, the stored/transmitted video is ex-
actly the original input. We discuss the trade-off between the data storage and
reconstruction performance as follows.

Trade-off between Storage and Reconstruction Performance. We evalu-
ate the percentage of pixels kept in the downsampled representation: for temporal
downsampling ratio of t, there will be 1/t pixels kept; for spatial downsampling
ratio of s, there will be 1/s2 pixels kept because of the reduction in both height
and width. We conduct a series of experiments with different combinations of
space and time downsampling factors and plot the influence of pixel percentage
in downsampled representation to the reconstruction PSNR/SSIM calculated on
Vimeo-90k’s testset in Fig. S9, where the x-axis is the base-10 logarithmic scale
of the pixel percentage, and the y-axis refers to PSNR and SSIM. All the ex-
periments are done with the same network structure and trained with the same
hyperparameters on Vimeo-90k.

From plot (a), we can observe that the reconstruction PSNR is almost linearly
correlated to the log of pixel percentage. The SSIM plot increases slower when
the percentage becomes higher, and it will eventually reach the top-right corner
when the percentage is 100% and SSIM=1.0 (original video). These plots reflect
the following interesting facts:

1. Under our STAA framework with jointly learned downsampler and upsam-
pler, the reconstruction performance only relates to the percentage of pixels
kept in the downsampled representation, regardless of whether the reduc-

14 X. Xiang et al.

(a) PSNR (b) SSIM

Fig. S9: Plot of reconstruction PSNR/SSIM for different percentages of pixels in the
downsampled representation. With the increase of pixel percentage, the reconstruction
results become better.

tion happens on time or space dimension. This trend validates our method’s
effectiveness in maintaining the spatio-temporal characteristics of the video;

2. With this plot, we can estimate a rough range of reconstruction performance
given a specific downsampling ratio. This trade-off can guide the design
of the video restoration system by answering the following question: what
is the lowest percentage of pixels that satisfies the reconstruction quality
requirement;

3. This plot can serve as a benchmark of the network’s restoration capability:
a better network should move the plot to the top left (reconstruct the best
quality with the least percentage of pixels). Since the plot is acquired through
different space/time downsampling settings, it reflects the general restoration
ability beyond specific tasks.

Learning Spatio-Temporal Downsampling 15

References

1. Adobe Inc.: Adobe premiere pro, https://www.adobe.com/products/premiere.
html

2. Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: Basicvsr++: Improving video
super-resolution with enhanced propagation and alignment. arXiv preprint
arXiv:2104.13371 (2021)

3. Kalluri, T., Pathak, D., Chandraker, M., Tran, D.: Flavr: Flow-agnostic video rep-
resentations for fast frame interpolation. arXiv preprint arXiv:2012.08512 (2020)

4. Kim, H., Choi, M., Lim, B., Lee, K.M.: Task-aware image downscaling. In: Euro-
pean Conference on Computer Vision. pp. 399–414 (2018)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Liu, C., Sun, D.: A bayesian approach to adaptive video super resolution. In:
IEEE Conference on Computer Vision and Pattern Recognition. pp. 209–216. IEEE
(2011)

7. Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., Lee, K.M.: Ntire 2019
challenge on video deblurring and super-resolution: Dataset and study. In: IEEE
Conference on Computer Vision and Pattern Recognition Workshops (June 2019)

8. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

9. Research, M.: fvcore. https://github.com/facebookresearch/fvcore (2019)
10. Sim, H., Oh, J., Kim, M.: Xvfi: extreme video frame interpolation. In: IEEE In-

ternational Conference on Computer Vision (2021)
11. Tomar, S.: Converting video formats with ffmpeg. Linux Journal 2006(146), 10

(2006)
12. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.:

Esrgan: Enhanced super-resolution generative adversarial networks. In: Proceed-
ings of the European conference on computer vision (ECCV) workshops. pp. 0–0
(2018)

13. Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J.P., Xu, C.: Zooming slow-mo:
Fast and accurate one-stage space-time video super-resolution. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 3370–3379 (2020)

14. Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J.P., Xu, C.: Zooming slowmo: An
efficient one-stage framework for space-time video super-resolution. arXiv preprint
arXiv:2104.07473 (2021)

15. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with
task-oriented flow. International Journal of Computer Vision 127(8), 1106–1125
(2019)

16. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for
image super-resolution. In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2472–2481 (2018)

https://www.adobe.com/products/premiere.html
https://www.adobe.com/products/premiere.html
https://github.com/facebookresearch/fvcore

	Learning Spatio-Temporal Downsampling for Effective Video Upscaling Supplementary Material
	Difference between Video Frame Interpolation and Temporal Upscaling
	Module Design Details
	Space-Time Anti-Aliasing Downsampler
	Differentiable Quantization Layer
	Deformable Temporal Modeling (DTM)
	Residual Dense Block with 3D Convolutions

	Background of Space-Time Fourier Analysis
	Experimental Details
	More Experiments
	More Comparisons with State-of-the-Art Methods
	Our Framework Can be Generalized to More Networks
	Influence of Filter Size

	Extensive Applications
	Frame Rate Conversion
	Blurry Frame Reconstruction
	Efficient Video Storage and Transmission

