
Compact Graph Structure Learning via Mutual Information
Compression

Nian Liu
nianliu@bupt.edu.cn

Beijing University of Posts and
Telecommunications

China

Xiao Wang
xiaowang@bupt.edu.cn

Beijing University of Posts and
Telecommunications

Peng Cheng Laboratory
China

Lingfei Wu
lwu@email.wm.edu

JD.COM Silicon Valley Research
Center

United States

Yu Chen
hugochen@fb.com

Meta AI
United States

Xiaojie Guo
xguo7@gmu.edu

JD.COM Silicon Valley Research
Center

United States

Chuan Shi∗
shichuan@bupt.edu.cn

Beijing University of Posts and
Telecommunications

Peng Cheng Laboratory
China

ABSTRACT
Graph Structure Learning (GSL) recently has attracted considerable
attentions in its capacity of optimizing graph structure as well as
learning suitable parameters of Graph Neural Networks (GNNs) si-
multaneously. Current GSL methods mainly learn an optimal graph
structure (�nal view) from single or multiple information sources
(basic views), however the theoretical guidance on what is the opti-
mal graph structure is still unexplored. In essence, an optimal graph
structure should only contain the information about tasks while
compress redundant noise as much as possible, which is de�ned as
"minimal su�cient structure", so as to maintain the accuracy and
robustness. How to obtain such structure in a principled way? In
this paper, we theoretically prove that if we optimize basic views
and �nal view based on mutual information, and keep their perfor-
mance on labels simultaneously, the �nal view will be a minimal
su�cient structure. With this guidance, we propose aCompactGSL
architecture by MI compression, named CoGSL. Speci�cally, two
basic views are extracted from original graph as two inputs of the
model, which are re�nedly reestimated by a view estimator. Then,
we propose an adaptive technique to fuse estimated views into the
�nal view. Furthermore, we maintain the performance of estimated
views and the �nal view and reduce the mutual information of every
two views. To comprehensively evaluate the performance of CoGSL,
we conduct extensive experiments on several datasets under clean
and attacked conditions, which demonstrate the e�ectiveness and
robustness of CoGSL.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512206

CCS CONCEPTS
•Computingmethodologies!Machine learning; •Networks
! Network algorithms.

KEYWORDS
Graph Neural Networks, Graph Structure Learning, Mutual Infor-
mation

ACM Reference Format:
Nian Liu, XiaoWang, LingfeiWu, Yu Chen, Xiaojie Guo, and Chuan Shi. 2022.
Compact Graph Structure Learning via Mutual Information Compression.
In Proceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29,
2022, Virtual Event, Lyon, France. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3485447.3512206

P���������� 1. Given two basic views \1 and \2, �nal view \
†,

and labels Y! related to downstream task, \† is a minimal su�cient
structure to Y! if the following two principles are satis�ed:
1. � (\1;Y!) = � (\2;Y!) = � (\†;Y!) = � (Y!)
2. minimize � (\1; \2) + � (\1; \†) + � (\2; \†)

1 INTRODUCTION
Graph is capable of modeling real systems in diverse domains vary-
ing from natural language and images to network analysis. Nowa-
days, as an emerging technique, Graph Neural Networks (GNNs)
[12, 19, 32] have achieved great success with their characteristic
message passing scheme [10] that aims to aggregate information
from neighbors continually. So far, GNNs have shown superior per-
formance in a wide range of applications, such as node classi�cation
[37, 38] and link prediction [39, 40].

It is well known that the performance of GNNs is closely related
to the quality of given graphs [9]. However, due to the complexity
of real information sources, the quality of graphs is often unreliable
[23]. On one hand, we are not always provided with graph struc-
tures, such as in natural language processing [5, 21] or computer
vision [29, 30]. In these cases, graphs are constructed by involving
prior knowledge, which is sometimes error-prone. On the other
hand, even though interactions between objects are extracted, spu-
rious edges are usually inevitably existed in graphs. For example, it

https://doi.org/10.1145/3485447.3512206
https://doi.org/10.1145/3485447.3512206
https://doi.org/10.1145/3485447.3512206

is very hard to analyze the molecular structure of unknown pro-
teins [1], so they are prone to be modeled with wrong or useless
connections. Furthermore, graphs sometimes su�er from malicious
attacks, such that original structures are fatally destroyed. With
attacked graphs, GNNs will be very vulnerable. As a result, various
drawbacks are prevalent in real graphs, which prohibits original
structure from being the optimal one for downstream tasks.

Recently, graph structure learning (GSL) has aroused consider-
able attentions, which aims to learn optimal graph structure and
parameters of GNNs simultaneously [43]. Current GSLmethods can
be roughly divided into two categories, single-view [9, 16, 17, 42]
based and multi-view based [4, 28, 34]. For the former, they usually
estimate the optimal structure from one view, i.e., the given adja-
cency matrix, by forcing the learned structure to accord with some
properties. For instance, Pro-GNN [17] learns the graph structure
with low rank, sparsity and feature smoothness constraints. For the
later, considering that the measurement of an edge based on only
one view may be biased, they aim to extract multiple basic views
from original structure, and then comprehensively estimate the
�nal optimal graph structure based on these views. As an example,
IDGL [4] constructs the structure by two type of views: normalized
adjacency matrix and similarity matrix calculated with node em-
beddings. Multi-view based methods are able to utilize multifaceted
knowledge to make the �nal decision on GSL.

Here, we focus on in-depth analysis of multi-view based GSL
methods, and aim to answer one fundamental question: how can
we estimate the optimal graph structure from multiple views in a
principled way? Despite that multiple views based GSL methods are
considered as a promising solution, there is still a lack of theoretical
guidance to determine what is "optimal" in principle. In essence,
an optimal graph structure should only contain the most concise
information about downstream tasks (e.g., node labels), no more
and no less, so that it can conduct the most precise prediction on
labels. If the learned structure absorbs the information of labels
as well as additional irrelevance from basic views, this structure
is more prone to adversarial attacks when small perturbations are
deployed on these irrelevant parts. While if the learned structure
only holds limited information about labels, themodel probably fails
to support downstream tasks. In summary, the optimal structure
should contain minimal but su�cient information of labels, and
we call it minimal su�cient structure, which makes a well balance
between e�ectiveness and robustness. Other GSL methods mainly
focus on the performance, while neglecting the compactness of
structure. Hence, the structures learnt from them inevitably contain
redundant noise, and are also vulnerable to perturbations.

However, it is technically challenging to obtain a minimal suf-
�cient graph structure. Particularly, two obstacles need to be ad-
dressed. (1) How to ensure the minimum and su�ciency of the
�nal view? To achieve the su�ciency, the �nal view should be fully
guided by labels, which makes it contain the information about
labels as much as possible. And for the minimum, considering that
the �nal view extracts information from basic views, we need to
constrain the information �ow from basic views to �nal view, which
avoids irrelevant information and contributes to the conciseness of
the �nal view. Therefore, to be minimal and su�cient, we we need
to rethink on how to formulate the relations among basic views,
�nal view and labels. (2) How to ensure the e�ectiveness of basic

views? Considering that basic views are the information source of
�nal view, it is vital to guarantee the quality of basic views. On one
hand, basic views are also needed to contain the information about
labels, which can fundamentally guarantee the performance of �nal
view. On the other hand, these views also should be independent of
each other, so that they can eliminate the redundancy and provide
diverse knowledge about labels for �nal view. However, it is hard to
guarantee the raw basic views satisfy these requirements, implying
that we need to reestimate them..

In this paper, we study the problem of GSL with information
theory, and propose CoGSL, a framework to learn compact graph
structure with mutual information compression. Speci�cally, we
�rst carefully extract two basic views from original structure as
inputs, and design a view estimator to properly adjust basic views.
With the estimated basic views, we propose a novel adaptive non-
parameter fusion mechanism to get the �nal view. In this mech-
anism, the model will assign weights to basic views according to
its predictions on nodes. If it gives a more con�dent prediction on
one view, this view will be assigned with a larger weight. Then,
we propose a formal de�nition minimal su�cient structure. And
we theoretically prove that if the performances of basic views and
�nal view are guaranteed, we need to minimize the mutual informa-
tion (MI) between every two views simultaneously. To e�ectively
evaluate the MI between di�erent views, we deploy a MI estimator
implemented based on InfoNCE loss [25]. In the end, we adopt a
three-fold optimization to practically initialize the principles. Our
contributions are summarized as follows:

• To our best knowledge, we are the �rst to utilize information
theory to study the optimal structure in GSL. We propose the
concept of "minimal su�cient structure", which aims to learn
the most compact structure relevant to downstream tasks in
principle, no more and no less, so as to provide a better balance
between accuracy and robustness.

• We theoretically prove that theminimal su�cient graph structure
heavily depends on modeling the relationships among di�erent
views and labels. Based on this, we propose CoGSL, a novel frame-
work to learn compact graph structure via mutual information
compression.

• We validate the e�ectiveness of CoGSL compared with state-
of-the-art methods on seven datasets. Additionally, CoGSL also
outperforms other GSL methods on attacked datasets, which
further demonstrates the robustness of CoGSL.

2 RELATEDWORK
Graph Neural Network. Graph neural networks (GNNs) have
attracted considerable attentions recently, which can be broadly di-
vided into two categories, spectral-based and spatial-based. Spectral-
based GNNs are inheritance of graph signal processing, and de�ne
graph convolution operation in spectral domain. For example, [2]
utilizes Fourier bias to decompose graph signals; [7] employs the
Chebyshev expansion of the graph Laplacian to improve the e�-
ciency. For another line, spatial-based GNNs greatly simplify above
convolution by only focusing on neighbors. For example, GCN [19]
simply averages information of one-hop neighbors. GraphSAGE
[12] only randomly fuses a part of neighbors with various poolings.

GAT [32] assigns di�erent weights to di�erent neighbors. More
detailed surveys can be found in [36].

Graph Structure Learning. Graph structure learning aims to
estimate a better structure for original graph, which can date back
to previous works in network science [13, 22]. In this paper, we
mainly focus on GNN based graph structure learning models. LDS
[9] jointly optimizes the probability for each node pair and GNN
in a bilevel way. Pro-GNN [17] aims to obtain a clear graph by
deploying some regularizers, such as low-rank, sparsity and fea-
ture smoothness. IDGL [4] casts the GSL as a similarity metric
learning problem. GEN [34] presents an iterative framework based
on Bayesian inference. However, these methods do not provide a
theoretical view to show what the optimal structure is.

3 THE PROPOSED MODEL
In this section, we elaborate the proposed model CoGSL for GSL,
and the overall architecture is shown in Fig. 1(a). Our model begins
with two basic views. Then, we design a view estimator to optimize
two basic views separately. With two estimated views, we propose
an adaptive fusion technique to generate �nal view based on the
con�dence of predictions. Next, we formally propose the concept
"minimal su�cient structure", and make a proposition to guarantee
the �nal view to be minimal and su�cient.

3.1 Problem de�nition
Let G = (V, b) represent a graph, where V is the set of N nodes
and b is the set of edges. All edges formulate an original adjacency
matrix G 2 R#⇥# , where �8 9 denotes the relation between nodes
E8 and E 9 . Graph G is often assigned with node feature matrix
^ = [G1, G2, . . . , G#] 2 R#⇥⇡ , where G8 means the D dimensional
feature vector of node 8 . In semi-supervised classi�cation, we only
have a small part of nodes with labels Y! . The traditional goal of
graph structure learning for GNNs is to simultaneously learn an
optimal structure and GNN parameters to boost downstream tasks.

As one typical architecture, GCN [19] is usually chosen as the
backbone, which iteratively aggregates neighbors’ information.
Formally, the :C⌘ GCN layer can be written as:

⌧⇠# (G,N (:)) = J
�1/2

GJ
�1/2

N
(:�1)

]
: , (1)

where J is the degree matrix of G, and]: is weight matrix. N (:)

represents node embeddings in the :C⌘ layer, and N
(0) = ^ . In

this paper, we simply utilize⌧⇠# (\ ,N) to represent this formula,
where \ is some view and N is the node features or embeddings.

3.2 The selection of basic views
Given a graph G, CoGSL starts from extracting di�erent structures.
In this paper, we mainly investigate four widely-studied structures:
(1) Adjacencymatrix, which re�ects the local structure; (2) Di�usion
matrix, which represents the stationary transition probability from
one node to other nodes and provides a global view of graph. Here,
we choose Personal PageRank (PPR), whose closed-form solution
[14] is Y = U (O � (1�U)J�1/2

GJ
�1/2)�1, where U 2 (0, 1] denotes

teleport probability in a random walk, O is a identity matrix, and J

is the degree matrix of G; (3) Subgraph, which is special for large
graph. We randomly keep a certain number of edges to generate a
subgraph; (4) KNN graph, which re�ects the similarity in feature

space. We utilize original features to calculate cosine similarity
between each node pair, and retain top-k similar nodes for each
node to construct KNN graph.

These four views contain the di�erent properties from various
angles, and we carefully select two of them as two basic views \1
and \2, which are the inputs of CoGSL.

3.3 View Estimator
Given two basic views \1 and \2, we need to further polish them
so that they are more �exible to generate the �nal view. Here, we
devise a view estimator for each basic view, shown in Fig. 1(b).
Speci�cally, for basic view \1, we �rst conduct a GCN [19] layer to
get embeddings `1 2 R#⇥34B :

`
1 = f (⌧⇠# (\1,^)), (2)

where f is non-linear activation. With embedding `
1, probability

of an edge between each node pair in \1 can be reappraised. For
target node 8 , we concatenate its embedding z1i with embedding z1j
of another node 9 , which is followed by a MLP layer:

F1
8 9 =]1 · [z1i | |z1j] + 11, (3)

whereF1
8 9 denotes the weight between 8 and 9 ,]1 2 R234B⇥1 is map-

ping vector, and 11 2 R234B⇥1 is the bias vector. Then, we normalize
the weights for node 8 to get the probability ?18 9 between node 8 and
other node 9 . Moreover, to alleviate space and time expenditure, we
only estimate limited scope (1. For example, for adjacency matrix,
KNN or subgraph, we only inspect their k-hop neighbors, and for
di�usion matirx, we only reestimate top-h neighbors for each node
according to PPR values. Here, h and k are hyper-parameters. So,
?18 9 is calculated as:

?18 9 =
exp(F1

8 9)Õ
:2(1 exp(F1

8:
)
. (4)

In this way, we construct a probability matrix V
1, where each en-

try is calculated by eq. (4). Combined with original structure, the
estimated view is as follows:

\
1
es = \1 + `1 · V1, (5)

where `1 2 (0, 1) is a combination coe�cient, and the 8th row
of \ 1

es , denoted as \ 1
es_i , shows new neighbors of node 8 in the

estimated view. Estimating \2 is similar to \1 but with a di�erent
set of parameters, and we can get the estimated view \

2
es �nally.

3.4 View Fusion
Then, the question we would like to answer is: given two estimated
views, how can we e�ectively fuse them in an adaptive way for
each node? We utilize the con�dence of predictions as the evidence
to fuse estimated views, and assign a larger weight to the more con-
�dent view. In this way, the �nal view can make a more con�dent
prediction and get more e�ectively trained. Speci�cally, we �rst
utilize two-layer GCNs to obtain predictions of each view:

U
1 = B> 5 C<0G (⌧⇠# (\ 1

es , f (⌧⇠# (\ 1
es ,^)))),

U
2 = B> 5 C<0G (⌧⇠# (\ 2

es , f (⌧⇠# (\ 2
es ,^)))),

(6)

where f is activation function, and for node 8 , its predictions on
these two views are o1i and o

2
i . Next, we show two cases to analyze

Basic View ࢂ

Adaptive Fusion

Adaptive Fusion

V

View Estimator

Basic View ࢂ
ܸ௦
ଵ

ܸ௦
ଶ

Label

Label

Label
MI

(a) (b)

M
LP

G
C
N

G
C
N

View Estimator Basic View Estimated View

(c)

ˢ

Predict

Fusion

Fusion

ܸ௦
ଵ

ܸ௦
ଶ

VGCN

GCN

Ⱦଵ

Ⱦଶ

Figure 1: The overview of our proposed CoGSL. (a) Model framework. (b) View estimator. (c) Adaptive fusion.

how to assign weights to estimated views based on node predictions.
In the �rst case, o1i presents a sharp distribution (e.g. [0.8, 0.1, 0.1]
for three-way classi�cation), while o2i is a smoother distribution (e.g.
[0.4, 0.3, 0.3]). During the fusion, if we assign larger weight to \ 2

es_i ,
the �nal view still give an uncertain result, and the model cannot be
trained e�ectively. So in this case, we suggest to emphasize \ 1

es_i .
For the second case, predictions o1j and o

2
j of node 9 are [0.5, 0.4,

0.1] and [0.5, 0.25, 0.25], respectively. Although they have the same
maximal value, there is a larger margin between maximal value
and submaximal value in o

2
j , so \

2
es_j is a more con�dent view. In

conclusion, if one estimated view has a higher maximal value and a
larger margin between maximal value and submaximal value, it is a
more con�dent view, which should be assigned with larger weight.
With above analysis, we propose an adaptive fusion for each node,
shown in Fig. 1(c). Speci�cally, we focus on node 8 to explain our
fusion mechanism. First, we calculate the importance c1 of \ 1

es_i :

c18 = 4
n
⇣
_ log>18,<+(1�_) log(>18,<�>18,B<)

⌘
, (7)

where >18,< and >18,B< denote the maximal and submaximal values of
prediction o

1
i , n and _ are hyper-parameters. The eq. (7) has three

advantages: (1) If the prediction of one view has a higher maximal
value and a larger margin between maximal and submaximal values,
this view is prone to make con�dent decision, and it will lead the
fusion. (2) This mechanism fully takes account of each node, so
it achieves the adaptive fusion. (3) This mechanism of calculating
importance does not introduce new parameters, so it alleviates
over-�tting to some extent. Similarly, we can get the importance c28
of \ 2

es_i . Next, we normalize the importance and get the weights:

V18 =
c18

c18 + c28
0=3 V28 =

c28
c18 + c28

. (8)

Finally, we generate the �nal view for node 8 based on weights:

\
†
i = V18 · \ 1

es_i + V28 · \ 2
es_i . (9)

We likewise copy above operations to get the fusion for other nodes,
and the �nal view \

† is the combination of these fusion results.

3.5 Learning a minimal su�cient structure +¢

3.5.1 Theoretical Motivation and Formulation. Up to now, we have
discussed how to adaptively fuse basic views to generate �nal view
\
†, which will be used for downstream tasks. The next issue is

how to guide the training of \
†, and what the principle should

be obeyed to deal with the relations between basic views and �nal
view? Please review that we expect the learnt \† only contains the
message about labels and �lters super�uous noise. In other words,
we seek a \† that is the minimal su�cient statistics [31] to label
Y! in information theory. The formal de�nition is given as follows:

D��������� 1. (Minimal Su�cient Structure) Given two vari-
ables* and+ , I(U; V) meansmutual information (MI), H(U) is entropy,
and H(U| V) is conditional entropy. A structure \† is the minimal
su�cient structure if and only if I(\†; Y!) = H(Y!) and H(\†| Y!)
= 0.

In this de�nition, � (\†;Y!) = � (Y!) means \† shares all the
information about � (Y!), and � (\† |Y!) = 0 guarantees that \†
does not contain any other information except� (Y!). To gain such
minimal su�cient structure, we have the following proposition.

P���������� 2. Given the estimated basic views \ 1
es and \

2
es ,

�nal view \
†, and labels Y! related to downstream task, \† is a

minimal su�cient structure to Y! if the following two principles are
satis�ed:
1. � (\ 1

es ;Y!) = � (\ 2
es ;Y!) = � (\†;Y!) = � (Y!)

2. minimize � (\ 1
es ; \ 2

es) + � (\ 1
es ; \†) + � (\ 2

es ; \†)
For node classi�cation task, the �rst principle will build the

relationships between \
1
es , \ 2

es , \† and Y! based on MI. In this
way, the information of Y! will be totally contained in \

1
es , \ 2

es
and \

†, which makes them hold su�cient information about Y! .
Meanwhile, we perform the second principle to constrain the shared
information among views, which �nally realizes aminimal \†. Now,
we prove the e�ect of the second principle:

P����. At the beginning, we introduce some basic properties
in information theory [6], which describe entropy � (-), condi-
tional entropy � (. |-), joined entropy � (- ,.), mutual informa-
tion � (- ;.) and conditional mutual information � (- ;/ |.).

(1) Nonnegativity:
� (- |.) � 0; � (- ;. |/) � 0

(2) Chain rule of entropy and MI:
� (- ,.) = � (-) + � (. |-)

� (- ;. ,/) = � (- ;.) + � (- ;/ |.)
(3) Multivariate mutual information:

� (-1;-2; . . . ;-=+1) = � (-1; . . . ;-=) � � (-1; . . . ;-= |-=+1)
Then, we have the following proof:
First, we have � (\†; \ 1

es ; \ 2
es) > 0, because these three views

share the information of Y! at least, which is guaranteed by the
�rst principle. So, we have:

� (\ 1
es ; \

2
es) + � (\ 1

es ; \
†) + � (\ 2

es ; \
†)

> � (\ 1
es ; \

2
es) + � (\ 1

es ; \
†) + � (\ 2

es ; \
†) � 2� (\†; \ 1

es ; \
2
es)

= � (\ 1
es ; \

2
es) + � (\†; \ 1

es |\ 2
es) + � (\†; \ 2

es |\ 1
es)

= � (\†; \ 1
es ; \

2
es) + � (\ 1

es ; \
2
es |\†) + � (\†; \ 1

es |\ 2
es)

+ � (\†; \ 2
es |\ 1

es)
= � (\†; \ 1

es) + � (\†; \ 2
es |\ 1

es) + � (\ 1
es ; \

2
es |\†)

= � (\†; \ 1
es , \

2
es) + � (\ 1

es ; \
2
es |\†)

= � (\†) � � (\† |\ 1
es\

2
es) + � (\ 1

es ; \
2
es |\†)

In the last step, � (\† |\ 1
es\

2
es) = 0. This is because \

† is an
adaptive combination of \ 1

es and \ 2
es , and if \ 1

es and \ 2
es are known,

there is no uncertainty in \
†. Thus, we have:

� (\ 1
es ; \

2
es) + � (\ 1

es ; \
†) + � (\ 2

es ; \
†) > � (\†) + � (\ 1

es ; \
2
es |\†) .

(10)
Furthermore, we can expand � (\†) to � (\†,Y!), because the
information of Y! is totally contained in \

†, according to the �rst
principle. Next, we have the following derivation:

� (\†) + � (\ 1
es ; \

2
es |\†)

=� (\†,Y!) + � (\ 1
es ; \

2
es |\†)

=� (Y!) + � (\† |Y!) + � (\ 1
es ; \

2
es |\†) .

(11)

According to eq. (10) and eq. (11), we have:

� (\ 1
es ; \

2
es) + � (\ 1

es ; \
†) + � (\ 2

es ; \
†)

> � (Y!) + � (\† |Y!) + � (\ 1
es ; \

2
es |\†),

(12)

In inequation 12, � (\† |Y!) � 0 and � (\ 1
es ; \ 2

es |\†) � 0 ac-
cording to nonnegativity shown above. � (Y!) is a constant, be-
cause the information ofY! is �xed. Ideally, both of� (\† |Y!) and
� (\ 1

es ; \ 2
es |\†) equal to 0 by continuously minimizing the original

formula. This means given labels Y! , \† does not include other
information any more, and become a minimal su�cient structure.
Meanwhile, \ 1

es and \
2
es only share the information of \†. So, \ 1

es
and \

2
es only share the message about Y! , and they will provide

the most diverse knowledge for +¢. ⇤

3.5.2 Iterative Optimization. Based on Proposition 2, we design
a three-fold optimization objective: (1) Optimize parameters ⇥ of
classi�ers for each view to improve the accuracy onY! ; (2) Optimize
parameters � of MI estimator to approach the real MI value; (3)
Optimize parameters ⌦ of view estimator to maintain classi�cation
accuracy and minimize the MI between every two views.

GCN

GCN

V

ܛ܍܄

Projection
InfoNCE Loss

ࡴ

ࡴ

Figure 2: An illustration to show the process ofMI estimator.
(Take \† and \

1
es for example)

Optimize ⇥. Please recall that predictions of \ 1
es and \

2
es have

been obtained according to eq. (6), denoted as U1 and U2. Similarly,
we also can get the predictions of \†:

U
† = B> 5 C<0G (⌧⇠# (\†, f (⌧⇠# (\†,^)))). (13)

The parameters of⌧⇠# s involved in eq (6) and eq. (13) are regarded
as the parameters ⇥ of classi�ers together. ⇥ can be optimized by
evaluating the cross-entropy error over Y!

min
⇥

L2;B = �
’

U 2{U1,U2,U† }

’
E8 2Y!

~8 ln oi, (14)

where ~8 is the label of node E8 , and oi is its prediction.
Optimize �. In view of the second principle, we need to mini-

mize MI values of every two views. However, estimating precise
MI is hard [26]. Recently, InfoNCE [3, 15, 25] has been proved as a
lower bound of real MI. If InfoNCE loss is minimized, we can ap-
proximately approach the real MI. Here, we design a corresponding
MI estimator. The whole process of MI estimator is shown in Fig.
2. Speci�cally, for \†, we �rst conduct one-layer GCN to get node
embeddings based on \

†:

N
† = f (⌧⇠# (\†,^)), (15)

where f is PReLU activation, - is the feature matrix.The embed-
dings N 1 and N

2 based on \
1
es and \

2
es can be obtained in a sim-

ilar way. The parameters of above three GCNs are di�erent, but
{N†,N 1,N 2} have the same embedding dimension. Then we deploy
a shared two-layer MLP to project these embeddings into the same
space where MI estimation is employed, and get the projected em-
beddings N†

p , N 1
p and N

2
p , respectively. For example, the projected

embeddings N†
p is got as follows:

N
†
p =]

1 · f (]0 · N† + 10) + 11, (16)

where f is non-linear activation, and {]0,]1,10,11} are shared
parameters. Then, inspired by GCA [44], we take N†

p and N
1
p for

example to give the InfoNCE loss as follows:

!(\†, \ 1
es)

= � 1
2|⌫ |

|⌫ |’
8=1

"
log

4B8< (h†pi ,h
1
pi
)/g

4B8< (h†pi ,h
1
pi
)/g +Õ

:<8 4
B8< (h†pi ,h

1
pk

)/g

+ log 4B8< (h1pi ,h
†
pi
)/g

4B8< (h1pi ,h
†
pi
)/g +Õ

9<8 4
B8< (h1pi ,h

†
pj
)/g

377775
,

(17)

where B8<(D, E) is cosine similarity of vector D and E , and g is tem-
perature coe�cient. h†pi

and h1pi
are the projected embeddings of

node 8 based on \
1
es and \ 2

es , respectively. ⌫ is a batch of nodes that
randomly sampled. This formula means if we maximize the similar-
ity of embeddings of the same node but from di�erent views, while
minimize the similarity with other nodes in the same batch, we can
approximatively approach real MI between \

† and \
1
es . Similarly,

we can calculate !(\†, \ 2
es) and !(\ 1

es , \
2
es), and the objective to

optimize MI estimator is shown here:

L"� = !(\†, \ 1
es) + !(\†, \ 2

es) + !(\ 1
es , \

2
es). (18)

By minimizing the above equation, the MI estimator �, including
parameters in eq. (15) and the following shared MLP, is well trained.

Optimize ⌦. Given trained classi�ers and MI estimator, we con-
tinuously optimize parameters ⌦ of view estimator. Under the
guidance of proposition 2, we have the following loss:

min
⌦

L2;B � [· L"� , (19)

where [is a balance parameter. With this optimization, \ 1
es and

\
2
es only share the information of \†, and \† only reserves useful
information while �lters noise as far as possible.

To e�ectively train the CoGSL, we alternatively and iteratively
perform the above three-fold optimization, where a pro�le of the
whole process is shown in appendix B. We can optimize the pro-
posed CoGSL via back propagation with stochastic gradient descent.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets We employ seven open datasets, including three aca-
demic networks (i.e., Citeseer [19], Wiki-CS [24] and MS Academic
[20]), three non-graph datasets (i.e., Wine, Breast Cancer (Cancer)
and Digits) available in scikit-learn [27] and a blog graph Polblogs
[17]. The basic information about datasets is summarized in appen-
dix A.1. Notice that for non-graph datasets, we construct a KNN
graph as an initial adjacency matrix as in [4].
Baselines We compare the proposed CoGSL with three cate-
gories of baselines: MI based unsupervised methods {DGI [33], GCA
[44]}, classical GNN models {GCN [19], GAT [32], GraphSAGE [12]}
and three graph structure learning based methods {Pro-GNN [17],
IDGL [4], GEN [34]}.
Implementation Details For DGI and GCA, we �rstly generate
node embeddings, and then evaluate embeddings following the way
stated in original papers. For three classical GNN models (i.e. GCN,
GAT, GraphSAGE), we adopt the implementations from PyTorch
Geometric library [8]. For Pro-GNN, IDGL and GEN, we use the
source codes provided by authors, and follow the settings in their
original papers with carefully tune. For the proposed CoGSL, we
use Glorot initialization [11] and Adam [18] optimizer. We carefully
select two basic views for di�erent datasets as two inputs, which are
summarized in appendix A.3. We set the learning rate for classi�ers
⇥ and MI estimator � as 0.01, and tune it for view estimator ⌦ from
{0.1, 0.01, 0.001}. For combination coe�cient `, we test ranging from
{0.1, 0.5, 1.0}. We set n as 0.1 and search on _ from 0.1 to 0.9. Finally,
we carefully select total iterations) from {100, 150, 200}, and tune
training epochs for each fold {d⇥, d�, d⌦} from {1, 5, 10}.

For fair comparisons, we set the hidden dimension as 16 and ran-
domly run 10 times and report the average results for all methods.
For Pro-GNN, IDGL, GEN and our CoGSL, we uniformly choose

two-layer GCN as backbone to valuate the learnt structure. For the
reproducibility, we report the related parameters in appendix A.4.

4.2 Node Classi�cation
In this section, we evaluate the proposed CoGSL on semi-supervised
node classi�cation. For di�erent datasets, we follow the original
splits on training set, validation set and test set. To more compre-
hensively evaluate our model, we use three common evaluation
metrics, including F1-macro, F1-micro and AUC. The results are
reported in Table 1, where we randomly run 10 times and report
the average results. The "-" symbol in Table 1 indicates that experi-
ments could not be conducted due to memory issue. As can be seen,
the proposed CoGSL generally outperforms all the other baselines
on all datasets, which demonstrates that CoGSL can boost node
classi�cation in an e�ective way. The huge performance superior-
ity of CoGSL over backbone GCN implies that view estimator and
classi�er are collaboratively optimized, and promote each other. In
comparison with other GSL frameworks, our performance improve-
ment illustrates that proposed principles are valid, and the learnt
minimal su�cient structure with more e�ective information and
less noise can o�er a better solution.

4.3 Defense Performance
Here, we aim to evaluate the robustness of various methods. Cancer,
Citeseer and Wiki-CS are adopted. We focus on comparing GSL
models, because these models can adjust original structure, which
makes them more robust than other GNNs. Speci�cally, we choose
Pro-GNN from single-view based methods. And for multi-view
based methods, IDGL and GEN are both selected.

4.3.1 A�acks on edges. To attack edges, we adopt random edge
deletions or additions following [4, 9]. Speci�cally, for edge dele-
tions, we randomly remove 5%, 10%, 15% of original edges, which
retains the connectivity of attacked graph. For edge addition, we
randomly inject fake edges into the graph by a small percentages of
the number of original edges, i.e. 25%, 50%, 75%. In view of that our
CoGSL needs two inputs while other methods need one input, for
a fair comparison, we deploy attacks on each of two inputs sepa-
rately and on both of them together with the same percentages. We
choose poisoning attack [35], where we �rstly generate attacked
graphs and then use them to train models. All the experiments
are conducted 10 times and we report the average accuracy. The
results are plotted in Fig. 3 and 4. Notice that we do not conduct
Pro-GNN on Wiki-CS because of time consuming (more than two
weeks for a result). Besides, the curves of "CoGSL_v1", "CoGSL_v2"
and "CoGSL_all" mean the results that one of inputs of CoGSL is
attacked and both of them are attacked, respectively.

From the �gures, CoGSL consistently outperforms all other base-
lines under di�erent perturbation rates by a margin for three cases.
We also �nd that as the perturbation rate increases, the margin
becomes larger, which indicates that our model is more e�ective
with violent attack. Besides, "CoGSL_all" also performs competi-
tive. Although both of its two inputs are attacked, "CoGSL_all" still
outperforms other baselines.

4.3.2 A�acks on features. To attack feature, we add independent
Gaussian noise to features as in [35]. Speci�cally, we �rstly sample
a noise matrix"=>8B4 2 R#⇥⇡ , where each entry is sampled from

Table 1: Quantitative results (%±f) on node classi�cation.(bold: best; underline: runner-up)

Datasets Metric DGI GCA GCN GAT GraphSAGE LDS Pro-GNN IDGL GEN CoGSL

Wine
F1-macro 93.6±0.8 94.5±2.7 94.1±0.6 93.6±0.4 96.3±0.8 93.4±1.0 97.3±0.3 96.3±1.1 96.4±1.0 97.9±0.3
F1-micro 93.6±0.8 94.6±2.4 93.9±0.6 93.7±0.3 96.2±0.8 93.4±0.9 97.2±0.3 96.2±1.1 96.3±1.0 97.8±0.3
AUC 99.5±0.1 97.8±1.4 99.6±0.2 97.8±0.2 99.4±0.4 99.0±0.1 99.5±0.1 99.6±0.1 99.3±0.2 99.7±0.1

Cancer
F1-macro 85.7±1.9 93.4±1.2 93.0±0.6 92.2±0.2 92.0±0.5 83.1±1.5 93.3±0.5 93.1±0.9 94.1±0.8 94.6±0.3
F1-micro 87.6±1.4 93.8±1.2 93.3±0.5 92.9±0.1 92.5±0.5 84.8±0.8 93.8±0.5 93.6±0.9 94.3±1.0 95.0±0.3
AUC 95.2±2.4 97.9±0.6 98.9±0.1 96.9±0.3 96.9±0.5 90.6±0.9 97.8±0.2 98.1±0.3 98.3±0.3 98.5±0.1

Digits
F1-macro 88.9±0.8 89.5±1.4 89.0±1.3 89.9±0.2 87.5±0.2 79.7±1.0 89.7±0.3 92.5±0.5 91.3±1.3 93.3±0.3
F1-micro 89.0±0.8 89.6±1.5 89.1±1.3 90.0±0.2 87.7±0.2 80.2±0.9 89.8±0.3 92.6±0.5 91.4±1.2 93.3±0.3
AUC 99.0±0.1 97.6±0.3 98.9±0.2 98.3±0.4 98.7±0.1 95.1±0.1 98.1±0.2 99.4±0.1 98.4±0.9 99.6±0.0

Polblogs
F1-macro 90.9±0.4 95.0±0.2 95.1±0.4 94.1±0.1 93.3±2.5 94.9±0.3 94.6±0.6 94.6±0.7 95.2±0.6 95.5±0.1
F1-micro 90.9±0.4 95.0±0.2 95.1±0.4 94.1±0.1 93.4±2.5 94.9±0.3 94.6±0.6 94.6±0.7 95.2±0.6 95.5±0.1
AUC 96.4±0.3 98.2±0.2 98.5±0.0 97.4±0.1 98.1±0.1 98.1±0.4 98.3±0.2 98.2±0.2 98.0±0.6 98.3±0.1

Citeseer
F1-macro 68.1±0.6 60.9±0.9 67.4±0.3 68.4±0.2 67.1±0.8 69.4±0.7 63.1±0.7 69.2±0.9 68.7±0.5 70.2±0.6
F1-micro 72.1±0.6 64.5±1.1 70.1±0.2 72.2±0.2 70.1±0.7 72.2±0.7 65.6±0.8 72.6±0.6 72.5±0.8 73.4±0.8
AUC 90.8±0.1 88.5±0.7 89.9±0.2 90.2±0.1 90.5±0.3 91.3±0.3 88.2±0.3 91.1±0.4 88.4±0.5 91.4±0.5

Wiki-CS
F1-macro 56.4±0.1 67.1±1.3 68.8±1.7 70.1±0.1 69.2±0.9 54.6±0.5 63.8±2.0 69.1±1.1 68.4±0.3 72.3±0.6
F1-micro 61.2±0.2 71.3±1.3 70.8±1.8 73.8±0.3 72.2±0.7 53.7±0.5 68.3±1.2 72.7±0.8 71.1±0.9 75.0±0.3
AUC 91.8±0.1 93.2±0.4 95.2±0.3 95.6±0.1 95.0±0.3 88.8±2.1 93.3±0.3 92.0±0.2 91.6±1.2 96.4±0.2

MS Academic
F1-macro 88.6±0.2 87.0±1.6 89.4±0.6 86.7±0.6 88.9±0.4 - - 89.6±0.6 89.8±0.8 90.5±0.4
F1-micro 91.4±0.2 89.8±1.2 91.9±0.5 89.0±0.4 91.1±0.2 - - 91.9±0.5 92.0±0.5 92.4±0.5
AUC 99.1±0.1 99.3±0.2 99.4±0.1 99.2±0.1 99.4±0.0 - - 99.6±0.1 98.8±0.3 99.4±0.1

(a) Cancer (b) Citeseer (c) Wiki-CS

Figure 3: Results of di�erent models under random edge deletion.

(a) Cancer (b) Citeseer (c) Wiki-CS

Figure 4: Results of di�erent models under random edge addition.
(0, 1). Then, we calculate reference amplitude A , which is the
mean of maximal value of each node’s feature. We add @ · A ·"=>8B4
to original feature matrix - , and get the attacked feature matrix
-=>8B4 , where @ 2 {0.1, 0.3, 0.5} is the noise ratio. We also conduct
poisoning settings and report the results in Table 2, where the
results of Pro-GNN onWiki-CS are not reported for the same reason
in section 4.3.1. Again, CoGSL consistently outperforms all other
baselines. Together with observations from 4.3.1, we can conclude
that CoGSL can approach the minimal su�cient structure, so it is
able to defend attacks from edges and features.

4.4 Model Analysis
4.4.1 Analysis of view estimator. Our model involves two basic
views as inputs, each of which will be reestimated with the view
estimator. To evaluate the e�ectiveness of view estimator, we �rstly
train the model, and pick two �nal estimated views. After that, we
compare the performance of two original views, two �nal estimated
views and the �nal view. We conduct comparison on Citeseer and
Digits, and the results are given in Fig. 5, where+ 1_>A8 and+ 2_>A8
mean two original views, and + 1_4B and + 2_4B are two estimated
views. We can see that all estimated views gain an improvement

Table 2: Quantitative results under feature attack.

Datasets F1-macro Pro-GNN IDGL GEN CoGSLL

Cancer

0.0 93.3 93.1 94.1 94.6
0.1 92.9 91.5 92.9 94.2
0.3 92.6 90.5 91.9 93.6
0.5 92.2 90.2 90.9 93.4

Citeseer

0.0 63.1 69.2 68.7 70.2
0.1 55.5 64.1 65.3 67.8
0.3 44.1 22.6 36.1 49.1
0.5 36.8 23.3 29.4 43.5

Wiki-CS

0.0 - 69.1 68.4 72.3
0.1 - 63.6 46.8 70.4
0.3 - 41.6 24.2 46.2
0.5 - 12.5 18.5 24.2

over corresponding original views, which indicates the e�ective-
ness of view estimator. Moreover, CoGSL always outperforms the
estimated views, and this proves the reliability of adaptive fusion
and following optimization principles.

(a) Digits (b) Citeseer

Figure 5: Test on the e�ectiveness of view estimator.
4.4.2 Analysis of adaptive fusion. We propose an adaptive fusion
mechanism, which assigns weights to two estimated views based
on the con�dence on them for each node as eq. (6)-(9) in section 3.4.
To verify the validation of this part, we design two more baselines.
One is to simply average two estimated views as the �nal view.
The other is to use attention mechanism to fuse them, where we
adopt a channel attention layer in [41]. We test on Citeseer and
Digits and show the results in Table 3, where "Adaption" refers to
adaptive fusion we introduce. We can see that our newly proposed
adaptive fusion is the best behaved of three ways. Also, we notice
that "Average" behaves better than "Attention", and we think this is
because "Attention" fusion involves some new parameters, which
increases the complexity of model and brings the risk of over-�tting.

Table 3: Quantitative results on di�erent fusions.

Digits Citeseer
Fusion F1-ma F1-mi AUC F1-ma F1-mi AUC
Average 93.0 93.0 99.5 69.6 72.8 90.8
Attention 92.9 93.0 99.6 69.4 72.7 91.2
Adaption 93.3 93.3 99.6 70.2 73.4 91.4

4.4.3 Analysis of MI. We need to constrain the MI between views
are neither too weak or too strong, so that the �nal view contain
concise information, no more and no less. We notice that as a
balance parameter, [in eq. (19) well controls the e�ect of MI loss. If
[increases, MI between views is heavily constrained, and vice versa.
So, we investigate the change of [to substitute the change of real
MI between views, and the results are shown in Fig. 6, where we
report the results on Citeseer and Digits. In this �gure, the area of

each point means relative size of MI between views. The shallower
the color of point is, the better the performance is. And the best
point is marked with a red star. We observe that the optimal point
is a medium value, neither a too strong or a too weak constraint.
Especially, when [equals to zero, we mimic the situation of general
GSL methods, and we can see that the results are not very good in
this case. It implies that restricting MI between views is necessary.

(a) Digits (b) Citeseer

Figure 6: The investigation of change of MI.4.4.4 Analysis of hyper-parameter. In this section, we explore the
sensitivity of h and k on Citeseer and Digits, introduced in sec-
tion 3.3. As shown in appendix A.3, the input views of Citeseer and
Digits are both adjacency matrix and di�usion matrix, plotted in
Fig. 7. For Digits, the optimal ⌘ of adjacency matrix is 1-hop, and
the optimal : of di�usion matrix is top 100. Similarly, for Citeseer,
the optimal points are 2-hop and top 40. We can see that a proper
estimation scope is indispensable. If the scope is too small, some
important structures are neglected. However if the scope is too
large, we can not distinguish the right connections e�ectively.

(a) Citeseer: adjacency matrix (b) Citeseer: di�usion matrix

(c) Digits: adjacency matrix (d) Digits: di�usion matrix

Figure 7: Impact of hyper-parameter scope.

5 CONCLUSION
In this paper, we theoretically study how to estimate a minimal suf-
�cient structure in GSL problem. We prove that if the performances
of basic views and �nal view are maintained, the mutual informa-
tion between every two views should be minimized simultaneously,
so that the learnt �nal view tends to be minimal su�cient struc-
ture. With this theory, we propose CoGSL, a framework to learn a
compact graph structure by compressing mutual information. Ex-
tensive experimental results, under clean and attacked conditions,
are conducted to verify the e�ectiveness and robustness of CoGSL.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China (No. U20B2045, 62192784, 62172052, 61772082,
62002029, U1936104). It is also supported in part by The Fundamen-
tal Research Funds for the Central Universities 2021RC28.

REFERENCES
[1] Mohammed AlQuraishi. 2019. AlphaFold at CASP13. Bioinformatics (2019),

4862–4865.
[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In 2nd International
Conference on Learning Representations.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geo�rey Hinton. 2020.
A simple framework for contrastive learning of visual representations. In ICML.
1597–1607.

[4] Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iterative deep graph learning
for graph neural networks: Better and robust node embeddings. NeurIPS (2020).

[5] Yu Chen, Lingfei Wu, and Mohammed J Zaki. 2019. Reinforcement learning
based graph-to-sequence model for natural question generation. arXiv preprint
arXiv:1908.04942 (2019).

[6] Thomas M Cover, Joy A Thomas, et al. 1991. Entropy, relative entropy and mutual
information. Elements of information theory (1991), 12–13.

[7] Michaël De�errard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016. 3837–3845.

[8] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[9] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learn-
ing discrete structures for graph neural networks. In ICML. 1972–1982.

[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In ICML. 1263–1272.

[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the di�culty of training
deep feedforward neural networks. In AISTATS. 249–256.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[13] Mark S Handcock and Krista J Gile. 2010. Modeling social networks from sampled
data. The Annals of Applied Statistics (2010), 5.

[14] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view
representation learning on graphs. In ICML. 4116–4126.

[15] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In CVPR. 9729–
9738.

[16] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. 2019. Semi-supervised
learning with graph learning-convolutional networks. In CVPR. 11313–11320.

[17] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In SIGKDD.
66–74.

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classi�cation with
Graph Convolutional Networks. In ICLR.

[20] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
ICLR.

[21] Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. 2019. Heterogeneous
graph attention networks for semi-supervised short text classi�cation. In EMNLP-
IJCNLP. 4821–4830.

[22] Dean Lusher, Johan Koskinen, and Garry Robins. 2013. Exponential random graph
models for social networks: Theory, methods, and applications. Vol. 35. Cambridge
University Press.

[23] Peter V Marsden. 1990. Network data and measurement. Annual review of
sociology (1990), 435–463.

[24] Péter Mernyei and Cătălina Cangea. 2020. Wiki-cs: A wikipedia-based benchmark
for graph neural networks. arXiv preprint arXiv:2007.02901 (2020).

[25] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[26] Liam Paninski. 2003. Estimation of entropy and mutual information. Neural
computation (2003), 1191–1253.

[27] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research (2011), 2825–2830.

[28] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.
Geom-GCN: Geometric Graph Convolutional Networks. In ICLR.

[29] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 2017. 3d
graph neural networks for rgbd semantic segmentation. In ICCV. 5199–5208.

[30] Adam Santoro, David Raposo, David GT Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. 2017. A simple neural network
module for relational reasoning. arXiv preprint arXiv:1706.01427 (2017).

[31] Stefano Soatto and Alessandro Chiuso. 2016. Modeling Visual Representations:
De�ning Properties and Deep Approximations. In ICLR.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[33] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341
(2018).

[34] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing
Xie. 2021. Graph Structure Estimation Neural Networks. In WWW. 342–353.

[35] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. 2020. Graph information
bottleneck. arXiv preprint arXiv:2010.12811 (2020).

[36] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Networks Learn. Syst. (2021), 4–24.

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[38] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML. 5449–5458.

[39] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural
networks. In ICML. 7134–7143.

[40] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. NeurIPS (2018), 5165–5175.

[41] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye.
2021. Heterogeneous Graph Structure Learning for Graph Neural Networks. In
AAAI.

[42] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu,
Haifeng Chen, and Wei Wang. 2020. Robust graph representation learning via
neural sparsi�cation. In ICML. 11458–11468.

[43] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang.
2021. Deep Graph Structure Learning for Robust Representations: A Survey.
arXiv preprint arXiv:2103.03036 (2021).

[44] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In WWW. 2069–2080.

A DETAILS ON EXPERIMENTAL SETUP
In this section, for the reproducibility, we provide some basic infor-
mation about baselines and datasets. The implementation details,
including the detailed hyper-parameter values, are also provided.

A.1 Datasets
Table 4 shows the statistics of seven datasets used in our experi-
ments.

Table 4: The statistics of the datasets

Dataset Nodes Edges Classes Features Train/Val/Test
Wine 178 3560 3 13 10/20/148
Cancer 569 22760 2 30 10/20/539
Digits 1797 43128 10 64 50/100/1647

Polblogs 1222 33428 2 1490 121/123/978
Citeseer 3327 9228 6 3703 120/500/1000
Wiki-CS 11701 291039 10 300 200/500/1000

MS Academic 18333 163788 15 6805 300/500/1000

These seven datasets used in experiments can be found in these
URLs:

• Wine, Breast Cancer andDigits: https://scikit-learn.org/stable/
modules/classes.html#module-sklearn.datasets

• Polblogs: https://github.com/ChandlerBang/Pro-GNN
• Citeseer: https://github.com/tkipf/gcn
• Wiki-CS: https://github.com/pmernyei/wiki-cs-dataset
• MS Academic: https://github.com/klicperajo/ppnp

A.2 Baselines
The publicly available implementations of baselines can be found
at the following URLs:

• DGI: https://github.com/PetarV-/DGI
• GCA: https://github.com/CRIPAC-DIG/GCA
• GCN,GAT andGraphSAGE: https://pytorch-geometric.readthedocs.
io/en/latest/

• LDS: https://github.com/lucfra/LDS-GNN
• Pro-GNN: https://github.com/ChandlerBang/Pro-GNN
• IDGL: https://github.com/hugochan/IDGL
• GEN: https://github.com/BUPT-GAMMA/Graph-Structure-
Estimation-Neural-Networks

A.3 The selected input views
Table 5 shows the basic views we select for di�erent datasets.

Table 5: The selected views for di�erent datasets

Candidate Wine Cancer Digits Polblogs Citeseer Wiki-CS MS Academic
Adjacency matrix (�)

p p p p p

Di�usion matrix (()
p p p p p

KNN graph ()
p p

Subgraph (�BD1)
p p

A.4 Hyperparameters Settings
We implement CoGSL in PyTorch, and list some important parame-
ter values used in our model in Table 6. In this table, ve_lr is the
learning rate of view estimator, and ve_drop is the dropout used in
estimating basic views. Notice that "-" of ⌫ indicates that we use all
of nodes to calculate InfoNCE loss.

Table 6: The values of parameter used in CoGSL.

Dataset ve_lr ve_drop) d⇥ d� d⌦ ⌫ n _

Wine 0.001 0.8 100 1 5 1 - 0.1 0.5
Cancer 0.1 0.5 150 1 5 1 - 0.1 0.9
Digits 0.01 0.5 200 10 10 1 - 0.1 0.5

Polblogs 0.1 0.8 150 5 5 1 - 0.1 0.1
Citeseer 0.001 0.2 200 5 10 5 - 0.1 0.5
Wiki-CS 0.01 0.2 200 1 5 1 1000 0.1 0.1

MS Academic 0.0001 0.8 200 15 10 1 1000 1.0 0.2

B THREE-FOLD OPTIMIZATION
In this section, we detail the process of three-fold optimization,
shown in Algorithm 1.

Algorithm 1: The CoGSL Algorithm
Input :Basic views {+1, +2}, feature matrix X, labels Y!
Params :⌫, total iterations) ,

training epochs for each fold {d⇥, d�, d⌦}
Output :�nal view +¢, GCN parameters ⇥

1 Initialize ⇥, � and ⌦;
2 for 8 = 1 to) do
3 for 9 = 1 to d⌦ do
4 % +84F 4BC8<0C>A)A08=8=6
5 Estimate {+1, +2} as {+ 1

4B , + 2
4B } with eq (2)- (5);

6 Adaptively fuse +1 and +2 into +¢;
7 Update ⌦ with eq. (19);
8 end
9 Get {+ 1

4B , + 2
4B ,+

¢} after view estimating and fusion;
10 for : = 1 to d⇥ do
11 % ⇠;0BB8 5 84AB)A08=8=6
12 Calculating predictions with eq. (6) and (13);
13 Update ⇥ with eq. (14);
14 end
15 for ; = 1 to d� do
16 %"� 4BC8<0C>A)A08=8=6
17 Randomly sample B nodes to calculate eq. (17);
18 Update � by minimizing eq. (18);
19 end
20 end
21 return +¢ and ⇥;

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
https://github.com/ChandlerBang/Pro-GNN
https://github.com/tkipf/gcn
https://github.com/pmernyei/wiki-cs-dataset
https://github.com/klicperajo/ppnp
https://github.com/PetarV-/DGI
https://github.com/CRIPAC-DIG/GCA
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/lucfra/LDS-GNN
https://github.com/ChandlerBang/Pro-GNN
https://github.com/hugochan/IDGL
https://github.com/BUPT-GAMMA/Graph-Structure-Estimation-Neural-Networks
https://github.com/BUPT-GAMMA/Graph-Structure-Estimation-Neural-Networks

	Abstract
	1 Introduction
	2 related work
	3 the proposed model
	3.1 Problem definition
	3.2 The selection of basic views
	3.3 View Estimator
	3.4 View Fusion
	3.5 Learning a minimal sufficient structure V

	4 experiments
	4.1 Experimental Setup
	4.2 Node Classification
	4.3 Defense Performance
	4.4 Model Analysis

	5 conclusion
	Acknowledgments
	References
	A Details on Experimental Setup
	A.1 Datasets
	A.2 Baselines
	A.3 The selected input views
	A.4 Hyperparameters Settings

	B Three-fold Optimization

