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ABSTRACT
All engineers dislike interruptions because it takes away from the
deep focus time needed to write complex code. Our goal is to reduce
unnecessary interruptions at Meta. We first describe our Work-
graph platform that logs how engineers use our internal work tools
at Meta. Using these anonymized logs, we create personal-focus
sessions. Personal-focus sessions are defined in opposition to inter-
ruption and are the amount of time until the engineer is interrupted
by, for example, a work chat message.

We describe descriptive statistics related to how long engineers
are able to focus. We find that at Meta, Engineers have a total of
14.25 hours of personal-focus time per week. These numbers are
comparable with those reported by other software firms.

We then create a Random Forest model to understand which
factors influence the median daily personal-focus time. We find that
the more time an engineer spends in the IDE the longer their focus.
We also find that the more central an engineer is in the social work
network, the shorter their personal-focus time. Other factors such
as role and domain/pillar have little impact on personal-focus at
Meta.

To help engineers achieve longer blocks of personal-focus and
help them stay in flow, Meta developed the auto-focus tool that
blocks work chat notifications when a engineer is working on code
for 12 minutes or longer. auto-focus allows the sender to still
force a work chat message using “@notify" ensuring that urgent
messages still get through, but allowing the sender to reflect on
the importance of the message. In a large experiment, we find that
auto-focus increases the amount of personal-focus time by 20.27%,
and it has now been rolled out widely at Meta.

ACM Reference Format:
Yifen Chen, Peter C. Rigby, Yulin Chen, Kun Jiang, Nader Dehghani, Qiany-
ingHuang, Peter Cottle, ClaytonAndrews, Noah Lee, NachiappanNagappan.
2022. Workgraph: Personal Focus vs. Interruption for Engineers at Meta. In
Proceedings of The 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
2022). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

∗ Rigby is an associate professor at Concordia University in Montreal, QC, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2022, 14 - 18 November, 2022, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software engineering is a complex and intellectually demanding
job. At Meta, we have heavily invested in ensuring that our engi-
neers attain work-life balance. For example, our balance bot allows
employees to specify their working hours and blocks messages
outside these hours. Continuing the effort at Meta to make engi-
neers productive and happy, we focus on interruptions. Prior work
in industry have found that self reported “good days” have fewer
interruptions [7], that interruptions are a serious problem at their
company [6], and that interruptions negatively disrupted task per-
formance, cognitive load, and put users in a negative emotional
state [1]. Althoughmost engineers can recover from an interruption
in around 15 minutes [8], when working on complex tasks inter-
ruptions are more difficult to recover from because of an increase
cognitive load [3].

In this work, we first provide descriptive statistics on the level
of undisrupted personal-focus that our engineers achieve. We cre-
ate a model to understand the factors that lead to longer focus.
Finally, we continue to enhance engineers worklife balance by auto-
matically blocking Workchat (Meta’s internal messaging platform)
notification when an engineer has been working on code for 12 or
more minutes. This work contributes to basic research into how
long people remain focused by using fine-grained logged data. We
discuss how we collect this data. We address the following research
questions.

RQ 1. Focus vs. Interruption: How long do engineers re-
main focused?

Prior work has used surveys (e.g., [7]) or IDE logged events (e.g.,
[8]). In contrast, we collect information on the full range of tools
that engineers at Meta use giving us a clear view of when they are
able to focus.

Findings.We describe theWorkgraph platform that we developed
to help improve the experience of software engineers at Meta.When
applied to personal-focus we find that the sum of time spent in
personal-focus has a median 19.29 hours/week. When we restrict
this time to flow sessions that are more than 12 minutes, we see a
median of 14.25 hours/week.

RQ 2. Focus Factors: Which factors affect the length of
daily personal-focus work sessions?

Wewant to understand the factors that affect how long engineers
remain focused. We perform a Random Forest regression on the
median daily personal-focus and use engineer tenure, centrality,
work pillar, and VSCode actions to understand factors that affect
focus.

Findings. Median daily personal-focus for engineers is increased
when they perform more actions in IDE editors, with a feature
importance of 0.48. The work related social network centrality of
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an engineer reduces their focus time (importance 0.37) as they coor-
dinate more work. The remaining factors such as tenure, role, and
pillar have little explanatory power with each having a feature im-
portance less than 0.06, implying that personal-focus is consistent
regardless of pillar/domain and engineering role.

RQ 3. auto-focus: When an engineer is focusing, what is
the impact of automatically blocking interruptions?

In a remote work setting, the in-office queues of a door closed or
headphones on are not present to indicate to others that an engineer
is in deep focus. Meta developed a tool that uses our Workgraph
platform to block Workchat messages when an engineer is coding
for 12 or more minutes. The message sender is notified that their
message was blocked and has the option to override the block,
‘@notify’ for urgent messages that need a synchronous response.

We conduct an experiment to determine if blocking these notifi-
cations increases personal-focus time. We use a guard measure1 to
ensure that the overall number of messages does not decrease as
we still need engineers to communicate and collaborate.

Findings. In a large experiment of auto-focus, we found that af-
ter engineers started using auto-focus to block interruptions after
12 minutes of coding, their median personal-focus time increased
by 20.27%. We do not see a decrease in the number of messages
sent. auto-focus has been rolled out widely at Meta.

This paper is structured as follows. In Section 2, we provide back-
ground on our internal tooling and Workgraph platform and define
personal-focus sessions. In Section 3, we provide descriptive statis-
tics on how long engineers are able to focus at Meta. In Section 4,
we examine how the centrality of an engineer and other factors in-
fluence personal-focus time. In Section 5, we describe auto-focus
and how a simple tool has improved engineer personal-focus. In
Section 6, we discuss threats to validity. In Section 7, we position
our findings in the larger related work. In Section 8, we conclude
the paper.

2 BACKGROUND ON THEWORKGRAPH
PLATFORM

At Meta thousands of software engineers rely on and build upon
our internal infrastructure to build social value and economic op-
portunity for our users and businesses everyday. The software stack
of our infrastructure comprises a rich repertoire of internal tools,
frameworks, and platforms covering different domains such as sys-
tem, data, code, and ML/AI authoring and management. Beyond the
technical domains we also build our own internal work, time, focus,
and collaboration management products to help our teams perform
their work. Most of our stack is developed in-house, which provides
us with a unique opportunity for consolidating and standardizing
the telemetry of our infrastructure to make data-driven decisions,
optimize our software engineering processes, and build experiences
that our engineers love.

2.1 Workgraph Architecture
Figure 1 shows the architecture. Workgraph is a meta-platform
with a data, analysis, front-end/back-end layer and various insight
solutions built on top of the platform. The “meta” prefix indicates
that each layer in itself follows a platform model with the aim to
1Guard measures are measures that should not be impacted by a change.

optimize network of network effects and that the co-existence and
integration of other internal platforms is possible. The platform
consists of three layers that tightly integrate with our technical
ecosystem. In this study we will primarily focus and explain how
the data layer works.

The data layer - This layer comprises an event driven data
model we call Data Confidence. Tools and products span data, de-
veloper, ML/AI, productivity, and various other domains. The data
consists of a hierarchical data model that models tool specific log-
ging events at the raw, daily, and multi-day aggregation level. The
hierarchy allows us to link high level patterns or metrics with the
raw event data.

An important design element of our data model is the event.
Interactions between the tools and users are logged as events. Each
event has a rich context associated with it such as the user, times-
tamp, application type, event type, feature, duration, error, state,
resources, andmeta information. The application, event, and feature
types provide us a holistic understanding on engineering behavior,
i.e. what tools, features, and activities are being performed when en-
gineers interact with our tools. The duration information provides
us with context around the performance of the tools (e.g. waiting
times) and the error a notion around user-facing reliability (e.g. task
success rate). To provide an example a developer clicks on a button
to compile their code in VSCode, but after 10 minutes the event fails
with an error, which prompts the user to trigger a chat message to a
co-worker to ask for help. The state information captures the code
and build information such as the relevant files, libraries, and build
targets. The resource information captures the associated resource
identifies such as the pull request ID. Behavior, performance, relia-
bility, and the associated state and resource context are key aspects
to understand engineering productivity as well as the challenges.

One of the key challenges to address was the problem of distin-
guishing between human triggered and system triggered events to
properly estimate human vs. machine time spent. As our internal
logging frameworks do not enforce this difference we employ a set
of heuristics and ML models to label human vs. machine triggered
events in our data model. For example, we filter out events that
happen at regular exact intervals as such events very unlikely can
be performed by engineers. We also exploit the fact that engineers
usually work normal hours and filter out events during non-work
time vs. normal and oncall work times. We also leverage ML models
to flag if a certain event type and feature is a human vs. machine
triggered event (e.g. ClickButtonAction vs. BatchSyncUpdate). The
model predictions and model interpretability analyses, such as fea-
ture importance and error cases, are used by human reviewers to
validate the flags and continuously monitor and update our data
model and chosen heuristics.

We performed a variety of optimizations to ensure consistency
and convenience in our data model for upstream use such as nam-
ing conventions, timezone mapping, retention periods, and logging
semantics. Due to the inconsistency of how tools and products
perform their logging we needed to consolidate naming schemes
(e.g. FBLearner vs. FBLearn) and conventions as well as disam-
biguate name and version changes (e.g. Tool_V1 vs. Tool_V2). For
consistency we also enforce that application names are lower case,
multiple words are separated with an underscore, and the absence
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Figure 1: An overview of the high level architecture of the Workgraph meta-platform. The platform provides the foundations
and interface for Producers and Consumers to provide and consume value. At Meta we have various platform offerings, which
can serve as producers and/or consumers. The data, analysis and front-end layer of Workgraph each follows a platform concept.
We also support the notion that sub platforms can coexist within Workgraph. The architecture is highly interconnected. The
Workgraph core layers and co-hosted platforms are leveraged to build solutions.

of special characters. To account for our global workforce and sup-
port time-zone specific analysis we provided convenience functions
to map between different time zones. Every tooling source table
has their own specific retention period, which can range from 1 to
3 days to multiple years. We implemented data pipelines to ingest
the source data from various tools and products at a daily cadence
to build up a longer term history of our data model for longitu-
dinal analysis. Lastly, every tooling source table can have their
own logging semantics such as capturing data on a sequential or
cumulative basis. Column names also vary as well as their values
(e.g. seconds vs. milliseconds). Due to the scale of our infrastruc-
ture it was not possible to analyze each table separately. So instead
the team prioritized the top-50 tools to perform detailed manual
analysis of the tooling source tables to ingest the data into our
data model. The primary criteria was to include tools based on the
biggest user volume and time spent. We also included tools that
are used less, but are considered important as part of the developer
workflow such as service outage tooling or debugging tools. For the
long-tail we created a self-service “runbook” with design principles
and guidance so other teams can ingest their data in a consistent
manner.

The analysis layer - This layer comprises a Python library we
call Core Library, which serves as a unifying wrapper library for our
internal APIs spanning system, data, code, and ML/AI frameworks.
It also consists of custom algorithms and convenience functions
used by our engineers to i) load, transform, and create data, ii)
perform analysis, and iii) build ML models.

The front-end layer - This layer comprises two components.
Insight solutions that are built on top of the existing SaaS infrastruc-
ture and a no/low-code visual programming interface to provide
easy access to Data Confidence, Polymath, Core Library, and our
internal APIs.

Workgraph is used by hundreds of teams throughout the com-
pany empowering teams to make the right decisions faster and
empower building experiences that our engineers love.

2.2 Defining personal-focus Sessions and
Interruptions

Engineering is often collaborative, but requires blocks of personal-
focus to complete complex tasks. In this work, we define personal-
focus time in opposition to interruptions. Interruptions are defined
as usingWorkchat (sending a message/reaction), using the calendar,
unscheduled calls, interacting in Workplace2, and clicking a notifi-
cation. We define personal-focus to be active time spent on a work
computer without interruptions. We use a threshold to define the
minimum length of a session because existing research evidence
states that a developer takes between 10 to 15 minutes to get back
into flow state [8]. To avoid overcounting when an engineer walks
away from their computer, we end a session when there is no ac-
tivity for 30 minutes. Instead of using the entire 30 minutes for this
session, we use the median length of time the tool is used across
all engineers.

An example of personal-focus sessions and interrupted sessions
are shown in Figure 2. In this example, we use 15 minutes as the
minimum length of a personal-focus session. The engineer uses
several personal-focus tools (VSCode, search, and wiki) for 15 min-
utes, and then starts a conversation in Workchat for a minute (to
get some wiki link from a coworker). After checking the wiki page,
this employee then started to check several workplace pages and
send messages for another 5 minutes. In this example, we have 4
sessions and only the first and last are considered non-distracted
sessions. The third session with one Wiki page viewing activity
would be non-distracted, but it only lasts for 1 minute, which does
not meet the threshold. To study personal-focus we use the logged
Workgraph data between June 15, 2021 and December 15, 2021.
The methodology used to provide answers for each of our research
questions differs, so we describe the method with each research
question.

3 RQ 1. FOCUS VS. INTERRUPTION
How long do engineers remain focused?

For this research question, we provide descriptive statistics re-
garding the weekly sum of personal-focus for the median engineer.

2Workplace functions like Facebook, but is for sharing work notes and connecting
with colleagues www.workplace.com

www.workplace.com
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Figure 2: A personal-focus session is defined as a non-distracted session that lasts for 15 minutes or more

Table 1: The median developer’s sum of personal-focus time
and number of sessions per week

Threshold Focus time Sessions
> 0 minutes 19.29 hr/week 143
≥ 3 minutes 18.08 hr/week 56
≥ 12 minutes 14.25 hr/week 27
≥ 15 minutes 13.45 hr/week 23
≥ 30 minutes 9.67 hr/week 10
≥ 60 minutes 4.80 hr/week 3
≥ 90 minutes 3.82 hr/week 2

We report the length and number of each personal-focus session in
Table 1 varying the threshold for the minimum length of a personal-
focus session.

We can see that the sum of total time spent in personal-focus
has a median across all engineers at Meta is 19.3 hours per week
and 143 focus sessions. Many of these sessions are micro-sessions
because when we examine personal-focus sessions with a minimum
of 3 minutes, we see that there is a 61% decrease in the number
of sessions (56). However, there is only one hour less personal-
focus time per week indicating that these are much longer focus
sessions. This trend continues as we increase the minimum length
of a personal-focus session. Software engineering is an inherently
collaborative activity and we see that engineers need many micro-
sessions to ask questions from others to get their work done.

In contrast to these micro-sessions, studies show that longer
focus blocks of uninterrupted time are required to attain flow.While
the exact minimum time necessary for flow is controversial, most
studies agree that flow begins at around 15 minutes [3, 8]. At Meta,
when we set the threshold at 15 minutes, we see that in the median
case, engineers have 13.45 hours/week of flow time and 23 sessions
per week. Engineers also have much longer flow sessions, with a
median of 2 sessions at 90 minutes or longer resulting in 3.82 hours
per week of very long personal-focus.

We find that the sum of time spent in personal-focus has
a median 19.29 hours/week. When we restrict this time
to flow sessions that are more than 12 minutes, we see a
median of 14.25 hours/week. We also see that engineers
have a median of 3 sessions that last longer than 1 hour,
with those sessions lasting a median of 4.80 hours/week.

4 RQ 2. FOCUS FACTORS
Which factors affect the length of daily personal-focus work sessions?

After quantifying how long engineers can stay focused, we next
ask what other factors contribute to the length of personal focus
sessions. We model each developers’ median daily personal-focus
time using a Random Forest model based on the following features:
VSCode usage, centrality of the engineer, tenure, engineering role,
and organizational pillar.

4.1 RQ2. Features and Model
The features used in the model are shown in Table 2 and described
here.

Tenure: we suspect that the the number of years an individual
has been at Meta will impact how long they are able to focus on
their work. New engineers will likely need to ask many questions
from senior colleagues.

Centrality: we included the centrality of the engineer based on
the degree centrality of each engineer from Meta’s internal em-
ployee social network graph, where the interactions include meet-
ings, chat messages, document collaboration, and code review in-
teractions.

Engineering role: since different roles may require different re-
sponsibilities and working patterns, engineering role is included in
the model as we suspect it may impact personal-focus time. In the
model, we categorize this feature into Software engineering (SWE),
which is one of the dominant roles at Meta, and Other engineering.

Organizational pillar/domain/product: there aremany pillar/domains
across Meta with different focus areas, which may directly affect
how engineers focus and communicate in their day-to-day duties.
We picked a few of the pillars with largest correlation with personal-
focus time and grouped the rest into a single category.
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Table 2: Description of the features that we use in our model of median daily personal-focus time.

Feature Description
Tenure The number of years that an engineer has been at Meta
Centrality Number of connections in employee social graph
Engineering Role A categorical variable divided by Software Engineering and Other Engineering (including Production

Engineering)
Pillar A categorical variable describing the pillar or suborganization. Examples include Facebook App, Infras-

tructure, etc
IDE actions A count of the number of actions an engineer makes in primary editors used at Meta: VSCode, Android

Studio, and Xcode.

Table 3: The permutation importance of features influenc-
ing median daily personal-focus time. We replace the actual
pillar name with a letter to preserve confidentiality.

Feature Importance Direction
1. IDE Actions 0.482 ↑
2. Centrality 0.374 ↓
3. Tenure 0.063 ↓
4. isSoftwareEngineer 0.017 ↑
5. Pillar A 0.020 ↓
6. Pillar B 0.015 ↑
7. Pillar C 0.015 ↑
8. Pillar D 0.013 ↓

IDE actions: we count the number of actions an engineer makes
in the integrated development environment (IDE) editors, including
VSCode, AndroidStudio, and XCode. For engineers, we expect that
more activity in the editors will likely correspond less time spent
in meeting and other non-focused work.

We built a Random Forest regression model using the features
described in Table 2. Our model was trained on the median of
the personal-focus sessions among 23K engineers and tested on
the median of the personal-focus sessions among 5.8K engineers
between June 15, 2021 and December 15, 2021 (6 months). We
evaluate model fit using the adjusted 𝑅2. To evaluate the importance
of each feature, we use the feature importance package from scikit-
learn.3 This determines the decrease in the score when each feature
is removed and indicates its importance.

The final model has the following form:
MedianPersonalFocus ∼

Centrality + Tenure + IDE_Actions + isSoftwareEngineer + Pillar

4.2 RQ2. Results
The Random Forest regression model of median daily focus time
for engineers has a training adjusted 𝑅2 = 0.88 and testing adjusted
𝑅2 = 0.31. The permutation feature importance and impact on the
direction of personal-focus are shown in Table 3. We discuss each in
order of importance. (1) we see that IDE usage is the main contribu-
tor to the personal-focus time among engineers with an importance
3https://scikit-learn.org/stable/modules/permutation_importance.html

of 0.48. Clearly the longer an engineer spends in the IDE, the more
time they have to work on coding tasks that require deep focus. (2)
The centrality of an engineer has an importance of 0.37. The more
central an individual is, the less time they have to spend on tasks
that need personal-focus because they are assisting other individu-
als and coordinating work. The remaining features have minimal
importance to the model. 3. Tenure, the longer an engineer is at
Meta the shorter personal-focus time they have. Tenure has a Spear-
man correlation of 0.59 with centrality as more senior engineers
tend to be more central. 4. Software engineers have slightly more
focus time than other types of engineers. The pillar/domain has
negligible importance with engineers in all domains demonstrating
similar amount of median personal-focus.

Median daily personal-focus for engineers is increased
when they perform more actions in IDE editors, with a
feature importance of 0.48. The centrality of an engineer
reduces their focus time (importance 0.37) as they coor-
dinate more work. The remaining factors such as tenure,
role, and pillar have little explanatory power with each
having a feature importance less than 0.06, implying that
personal-focus is consistent regardless of pillar/domain
and engineering role.

5 RQ 3. AUTO-FOCUS
When an engineer is focusing, what is the impact of automatically
blocking interruptions?

Our first attempt to improve engineers’ focus was to allow them
to explicitly create “Focus Blocks" in the calendar. During these
times, messages would not be push notified and engineers would
not be interrupted. Unfortunately, creating and maintaining these
blocks meant that usage was low and we did not see an improve-
ment in focus time [2]. Instead, at Meta we know when an engineer
is focusing on work vs. collaborating with colleagues over chat
or in meetings. The goal of auto-focus is to automatically block
chat notifications when a developer is in deep coding focus. For
auto-focus we define deep focus to be working on a coding tasks
for 12 or more minutes. When the engineer receives chat messages
during deep focus, the sender will receive the following with an
example displayed in Figure 3: “This message did not push-notify to
<Engineer’s name> because they are currently in deep focus while

https://scikit-learn.org/stable/modules/permutation_importance.html
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Figure 3: When a Workchat message is sent and an engineer is focusing on code, the sender will be notified that their message
was not pushed notified to the engineer. The sender can then reflect if the message needs to be answered immediately “@notify"
or if it can wait until the engineer has a natural break in focus.

coding. For urgent messages, mention them or reply with @notify."
If the sender has important information, such as a response to a
coding question, or something urgent, e.g., a crash, they can use
"@notify" and auto-focus will allow the message to interrupt the
engineer. As a fictitious but representative example of auto-focus
in action. The generic “Hi Peter" message is blocked and Nachi
is notified that Peter is in deep focus coding. However, Nachi has
important information for Peter and he responds, “@notify system
X has seen a performance drop, we need to start debugging this
issue right now, let’s meet." This message is pushed to Peter by-
passing auto-focus and allowing them to work immediately on
the issue. The design of auto-focus allows the sender to reflect
on the urgency of their message and to consciously and explicitly
decide when to interrupt a colleague.

5.1 RQ3. Experimental Design
All significant changes at Meta go through A/B experimentation. In
an A/B trial, the old feature ‘A’ is experimentally compared with the
new feature ‘B.’ In our case, the control group A does not have any
Workchat notifications blocked by auto-focus. In the test group
B, auto-focus blocks chats giving the author the chance to force
a notification, “@notify.”

Our goal is to reduce the interruptions and increase focus, but we
do not want to inadvertently decrease the level of communication
among engineers. Each experiment at Meta has goal metrics and
guard metrics. The goal metric in this experiment is the length of
median daily personal-focus time.We hypothesize that auto-focus
will increase median personal-focus time. The guard metric ensures
that blocking notifications does not have an adverse impact. For
auto-focus our guard measure is the daily number of chat mes-
sages sent. We expect to see no statistically significant change in
the number of message sent. The ideal outcome of this study is that
the same number of messages are sent, but that the messages are
responded to when the engineer is not in deep focus and are taking
a natural break.

In this experiment, we study 3.3k engineers who were enrolled
into auto-focus between July 2021 and March 2022. Instead of
using a traditional A/B test, we compare each engineers before and
after auto-focus. We exclude the winter holiday and the perfor-
mance evaluation cycle at the start of the new year from the analysis
because engineering work patterns are systematically different in
these periods. To compare the goal and guard metrics before and
after auto-focus use, we use a Wilcoxon test because the data is
not normally distributed. We use two sided violin plots to display
the metric distributions. A violin plot is a kernel density plot of
the distribution. The left of the violin plot shows the metric before

Figure 4: Left violin shows the personal-focus time per day
before auto-focus. The right shows personal-focus time with
auto-focus. We see a median increase of 20.27%.

auto-focus and the right shows auto-focus usage, we also show
the 25th, 50th, and 75th percentiles, i.e. P25, P50, and P75.

5.2 RQ3. Results
The daily personal-focus time distribution is shown in Figure 4.
When we compare the before auto-focus we see a median daily
personal-focus of 3.69 hours compared to a median of 4.43 when
using auto-focus. This represents an increase of 20.27% in daily
personal-focus when using auto-focus. Comparing these distribu-
tions with a Wilcoxon test, we see that the results are statistically
significant with a 𝑝 ≪ 0.001.

Our guard metric of the number of messages sent surprisingly
increased from a median daily messages of 18 to 21. Comparing the
distributions with a Wilcoxon test we have 𝑝 ≪ 0.001. Although
future work is necessary to understand this increase, we conjecture
that it may be because engineers are focused on responding to mes-
sages rather than splitting their attention between Workchat and
trying to write code. In effect, it may be that because the engineer
has been able to focus on code, they are now more able to focus on
providing a focused response to a colleague’s messages.

In a large experiment of auto-focus, we found that after
engineers started using auto-focus to block interruptions
after 12 minutes of coding, their median personal-focus
time increased by 20.27%. We do not see a decrease in the
number of messages sent. auto-focus has been rolled out
to all employees at Meta.
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6 THREATS TO VALIDITY
In Section 2, we discussed the Workgraph platform. It is impos-
sible to validate all logged data, however, we have worked with
engineers on other teams to validate their logged sessions. We also
use the median time of the final tool usage to avoid counting time
when an engineer has walked away from their work computer.
The descriptive statistics in Section 3 are consistent with values
reported in other works, e.g., [8]. This type of replication work in
new contexts is an important part of generalization. However, it is
unclear whether our results will generalize beyond Meta to other
development contexts. With remote work increasing and the loss
of in-person “busy" signals, we hope that other organizations will
build upon auto-focus to adapt it to their context.

We did not perform any hyperparameter tuning for our model
of personal-focus time, which leaves open the possibility that these
models can be further improved through a rigorous hyperparameter
optimization. By using unoptimized defaults, the hyperparameters
were fixed before looking at the test set to ensure no contamination.
In addition, there is no reason that a hyperparameter search on
Random Forest would result in dramatic changes in which features
are considered the most important, which is what we focused on in
the end. The first hyperparameter of ‘depth’ would mostly impact
features that are less important, since most major features would
already be accounted for in the first few layers of the model’s
trees. In addition, the other hyperparameter of ‘number of trees’
would be expected to have negligible impact on feature importances
given that each tree in the Random Forest is independent. We used
the median personal-focus time, however, it is possible that other
values of personal-focus time could lead to different results. We
conducted a basic sensitivity analysis and in addition to the median
of personal-focus sessions, we also ran the models on P50 and P75
of personal-focus sessions and obtained similar training adjusted
𝑅2 (0.89 and 0.88 respectively) and testing adjusted 𝑅2 (0.34 and
0.30 respectively). We do not expect other modelling methodologies
or thresholds to substantively change our results.

7 RELATEDWORK
There has been substantial work in understanding interruptions.
Surveying over 5k developers at Microsoft, Meyer et al. [7] found
that good workdays had statistically significant fewer interruptions
than typical or bad workdays. Furthermore, self-reports from de-
velopers indicated an average of 47.3 minutes of coding without
interruption. LaToza et al. [6] found that 62% of developers found
interruptions to be a serious problem. Parnin and Rugaber [8] re-
port that for 80% of interruptions engineers are able to return to
a programming task in 15 or fewer minutes. Interruptions when
working on complex tasks are more difficult to return to compared
to tasks that take less cognitive load [3]. Bailey et al. [1] found
that interruptions negatively disrupted task performance, cognitive
load, and put users in a negative emotional state. Self reporting
can suffer from inaccurate memories of work, and in our work we
measure actual time that developers spend on task.

At Google, Jaspan et al. [4] described their experiences in build-
ing out a system and quantitative logs pipeline called InSession that
integrates dozens of development tools to understand developer

behavior and productivity. They describe their design and imple-
mentation, how they validated the data, and show an application
to understand the effect on readability. They also share key lessons
learned. In contrast, we describe our work on quantifying and un-
derstanding developers workflows, their focus, and interruption
patterns.

Work to clasify developer actions are extensive. For example,
Ko et al. [5] analyzed developers’ day-to-day information needs
(n=17) by transcribing their behaviors through manual observa-
tion from 90-minute sessions in a two-months field study. They
identified 21 information types and partitioned the observed work
into work categories (coding, committing, debugging, reproducing,
understanding, design reasoning, and maintaining awareness) and
causes of task switching (face-to-face dialog, phone calls, instant
messages, email alerts, meetings, task avoidance, getting blocked,
task completion). In contrast, our work is based on analyzing large
scale telemetry data from thousands of developers over a longer
time horizon, logs at second level granularity, and quantifying time
spent for various software engineering tasks.

Vasilescu et al. [9] gathered ecosystem-level data across GitHub
about developers working on large collections of projects and de-
veloped models and methods to measure the rate and breadth of a
developers’ context-switching behavior. They found that the most
common reason for multitasking is the interrelationship and de-
pendencies between projects and that the rate of switching and
breadth of a developer’s work affect productivity (fewer projects
per day led to higher productivity). In our work, we focus on better
understanding the relationship between focus and interruptions,
how tenure and centrality relates to focus, and the impact of an
auto-focus system to automatically block interruptions.

Züger et al. [10] developed FlowLight to combine a physical
traffic-light LED with an automatic interruptibility measure based
on computer activity data to reduce the cost of in-person interrup-
tions at work. They performed a multi-national field study (n=449)
to evaluate their approach and found a 46% reduction in interrup-
tions, increased awareness of the disruptiveness of interruptions,
and positive self-rated productivity. In contrast, our work focuses
on engineering workflows, utilizes telemetry data that is many
times larger, and relates focus and interruptions to engineering
productivity.

8 CONCLUDING REMARKS
In this work, we make the following contributions.

• We describe our large scale logging infrastructure powered
by Workgraph that allows us to study how our engineers
work with the goal of making their jobs more enjoyable and
productive.

• We provide descriptive statistics on how long engineers re-
main focused at Meta. We find that the sum of time spent
in personal-focus has a median 19.29 hours/week. When we
restrict this time to flow sessions that are 12 or more min-
utes, we see a median of 14.25 hours/week. We also see that
engineers have a median of 3 sessions that last longer than
1 hour for a median of 4.80 hours/week.

• We examine the factors that influence personal-focus time.
We find that the median daily personal-focus for engineers
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is increased when they perform more actions in IDE edi-
tors, with a feature importance of 0.48. The centrality of
an engineer reduces their focus time (importance 0.37) as
they coordinate more work. The remaining factors such as
tenure, role, and pillar have little explanatory power with
each having a feature importance less than 0.06, implying
that personal-focus is consistent regardless of pillar/domain
and engineering role.

• We study the impact of blocking Workchat notifications
when a developer is in a deep coding focus. In a large exper-
iment of auto-focus, we found that after engineers started
using auto-focus to block interruptions after 12 minutes
of coding, their median personal-focus time increased by
20.27%. We do not see a decrease in the number of messages
sent. auto-focus has been rolled out to all employees at
Meta.

auto-focus is only one example of work at Meta designed to re-
duce interruptions and increase focus. Future work at Meta includes
investing in defragmenting calendars to make more focus time, by,
for example, allowing engineers to marking meetings as “flexible"
within a specific time frame. There are efforts to book time for code
review, as well as to book time for coding on specific tasks. We are
excited by the potential of making more time for engineering work,
and hope our approach will inspire other projects and companies.
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