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Abstract

Power consumption of data centers had become an important fac-
tor in the economy and sustainability of large-scale Web services. Re-
searchers and practitioners are spending considerable effort to character-
ize Web-scale workloads and evaluating their applicability to alternative,
more power-efficient architectures. One such workload in particular is the
caching layer, which stores expensive-to-regenerate data in fast storage
to reduce service times. In this paper we look at one such application,
the Memcached key-value store, which is widely deployed at Facebook
and other Web services, and one alternative architecture, the TILEPro64
many-core system-on-chip. We explore the performance and power char-
acteristics of Memcached under a variety of workload variations, imple-
mentation choices, and communication protocol, and compare them to
a traditional implementation on x86-based servers. Our results suggest
that the TILEPro64 architecture can significantly outperform x86-based
architectures in terms of throughput per Watt for the evaluated version
of Memcached.

Keywords: tilera; memcached; low power; many-core processors; key-value
store

1 Introduction

Key-value (KV) stores play an important role in many large websites. Examples
include: Dynamo at Amazon [1]; Redis at Github, and Blizzard Interactive!;
Memcached at Facebook, Zynga and Twitter [2, 3]; and Voldemort at Linkedin?.

Ihttp://redis.io
2http://project-voldemort .com



All these systems store ordered (key,value) pairs and are, in essence, a dis-
tributed hash table.

A common use case for these systems is as a layer in the data-retrieval
hierarchy: a cache for expensive-to-obtain values, indexed by unique keys. These
values can represent any data that is cheaper or faster to cache than re-obtain,
such as commonly accessed results of database queries or the results of complex
computations that require temporary storage and distribution.

Because of their role in data-retrieval performance, KV stores attempt to
keep much of the data in main memory, to avoid expensive I/O operations [4, 5].
Some systems, such as Redis or Memcached, keep data exclusively in main
memory. In addition, KV stores are generally network-enabled, permitting the
sharing of information across the machine boundary and offering the function-
ality of large-scale distributed shared memory without the need for specialized
hardware.

This sharing aspect is critical for large-scale web sites, where the sheer data
size and number of queries on it far exceed the capacity of any single server. Such
large-data workloads can be I/O intensive and have no obvious access patterns
that would foster prefetching. Caching and sharing the data among many front-
end servers allows system architects to plan for simple, linear scaling, adding
more KV stores to the cluster as the data grows. At Facebook, we have used this
property grow larger and larger clusters, and scaled Memcached accordingly?.

But as these clusters grow larger, their associated operating cost grows com-
mensurably. The largest component of this cost, electricity, stems from the need
to power more processors, RAM, disks, etc. Lang [6] and Andersen [4] place the
cost of powering servers in the data center at up to 50% of the three-year total
ownership cost (TCO). Even at lower rates, this cost component is substantial,
especially as data centers grow larger and larger every year [7].

One of the proposed solutions to this mounting cost is the use of so-called
“wimpy” nodes with low-power CPUs to power KV stores [4]. Although these
processors, with their relatively slow clock speeds, are inappropriate for many
demanding workloads [6], KV stores can present a cost-effective exception be-
cause even a slow CPU can provide adequate performance for the typical KV
operations, especially when including network latency.

In this paper, we focus on a different architecture: the Tilera TILEPro64
64-core CPU [8, 9, 10, 11, 12]. This architecture is interesting for a Memcached
workload in particular (and KV stores in general), because it combines the
low-power consumption of slower clock speeds with the increased throughput of
many independent cores (described in detail in Sections 2 and 3). As mentioned
above, previous work has mostly concentrated on mapping KV stores to low-
core-count “wimpy” nodes (such as the Intel Atom), trading off low aggregate
power consumption for a larger total node count [4]. This trade-off can mean
higher costs for hardware, system administration, and fault management of very
large clusters.

3For example, see facebook.com/note.php?note_id=39391378919 for a discussion of Face-
book’s scale and performance issues with Memcached.



Our initial evaluation of the TILEPro64 architecture [13] found encourag-
ing efficiency advantages on a limited set of workloads, compared to x86-based
systems. In this work, we expand upon our previous results in three areas:

1. We enhance the workload to include not only read operations but also var-
ious mixes of reads and writes, and their effect on the combined maximum
throughput attainable.

2. We enhance the usage model to include not only the UDP protocol for
reads, but also TCP (writes always use TCP). The choice of protocol
affects not both the latency and throughput of read requests, and to a
lesser degree, the power consumption of the node.

3. We further tuned our stock version of Memcached to eliminate some of
the locking bottlenecks we previously identified, thus improving the overall
throughput on the x86-based systems.

2 Memcached Architecture

Memcached?* is a simple, open-source software package that exposes data in
RAM to clients over the network. As data size grows in the application, more
RAM can be added to a server, or more servers can be added to the network.
In the latter case, servers do not communicate among themselves—only clients
communicate with servers. Clients use consistent hashing [14] to select a unique
server per key, requiring only the knowledge of the total number of servers
and their IP addresses. This technique presents the entire aggregate data in
the servers as a unified distributed hash table, keeps servers independent, and
facilitates scaling as data size grows.

Memcached’s interface provides all the basic primitives that hash tables
provide—insertion, deletion, and lookup/retrieval—as well as more complex op-
erations built atop them. The complete interface includes the following opera-
tions:

e STORE: stores (key, value) in the table.
e ADD: adds (key, value) to the table iff the lookup for key fails.
e DELETE: deletes (key, value) from the table based on key.

REPLACE: replaces (key, value;) with (key, values) based on (key, values).

CAS: atomic compare-and-swap of (key,value;) with (key, values).

e GET: retrieves either (key,value) or a set of (key;, value;) pairs based on
key or {key; s.t. i = 1...k}.

“http://memcached.org/
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Figure 1: Write path: The client selects a server (1) by computing k1 = consistent_hashi (key)
and sends (2) it the (key,value) pair. The server then calculates ko = hasha(key) mod M
using a different hash function and stores (3) the entire (key,wvalue) pair in the appropriate
slot k2 in the hash table, using chaining in case of conflicts. Finally, the server acknowledges
(4) the operation to the client.

The first four operations are write operations (destructive) and follow the
same code path as for STORE (Fig. 1). Write operations are always transmit-
ted over the TCP protocol to ensure retries in case of a communication error.
STORE requests that exceed the server’s memory capacity incur a cache evic-
tion based on the least-recently-used (LRU) algorithm.

GET requests follow a similar code path (Fig. 2). If the key to be retrieved
is actually stored in the table (a hit), the (key,value) pair is returned to the
client. Otherwise (a miss), the server notifies the client of the missing key. One
notable difference from the write path, however, is that clients can opt to use
the faster but less-reliable UDP protocol for GET requests.

It is worth noting that GET operations can take multiple keys as an argu-
ment. In this case, Memcached returns all the KV pairs that were successfully
retrieved from the table. The benefit of this approach is that it allows aggregat-
ing multiple GET requests in a single network packet, reducing network traffic
and latencies. But to be effective, this feature requires that servers hold a large
amount of RAM, so that servers are more likely to have multiple keys of inter-
est in each request. (Another reason for large RAM per server is to amortize
the RAM acquisition and operating costs over fewer servers.) Because some
clients make extensive use of this feature, “wimpy” nodes are not a practical
proposition for them, since they typically support smaller amounts of RAM per
server.

3 TILEPro64 Architecture

Tile processors are a class of general-purpose and power-efficient many-core
processors from Tilera using switched, on-chip mesh interconnects and coher-
ent caches. The TILEPro64 is Tilera’s second generation many-core processor
chip, comprising 64 power efficient general-purpose cores connected by six 8x8
mesh networks. The mesh networks also connect the on-chip Ethernet, PCle,
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Figure 2: Read path: The client selects a server (1) by computing k1 = consistent_hashi (key)
and sends (2) it the key. The server calculates ko = hasha(key) mod M and looks up (3) a
(key, value) pair in the appropriate slot k2 in the hash table (and walks the chain of items
if there were any collisions). Finally, the server returns (4) the (key, value) to the client or
notifies it of the missing record.
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Figure 3: High-level overview of the Tilera TILEPro64 architecture. The processor is an 8x8
grid of cores. Each of the cores has a 3-wide VLIW CPU, a total of 88KB of cache, MMU
and six network switches, each a full 5 port 32-bit-wide crossbar. 1/O devices and memory
controllers connect around the edge of the mesh network.



and memory controllers. Cache coherence across the cores, the memory, and
I/0 allows for standard shared memory programming. The six mesh networks
efficiently move data between cores, I/O and memory over the shortest number
of hops. Packets on the networks are dynamically routed based on a two-word
header, analogous to the IP and port in network packets, except the networks are
loss-less. Three of the networks are under hardware control and manage mem-
ory movement and cache coherence. The other three networks are allocated to
software. One is used for I/O and operating system control. The remaining two
are available to applications in user space, allowing low-latency, low-overhead,
direct communication between processing cores, using a user-level API to read
and write register-mapped network registers.

Each processing core, shown as the small gray boxes in Fig. 3, comprises a
32-bit 5-stage VLIW pipeline with 64 registers, L1 instruction and data caches,
L2 combined data and instruction cache, and switches for the six mesh networks.
The 64KB L2 caches from each of the cores form a distributed L3 cache accessible
by any core and I/O device. The short pipeline depth reduces power and the
penalty for a branch prediction miss to two cycles. Static branch prediction
and in-order execution further reduce area and power required. Translation
look-aside buffers support virtual memory and allow full memory protection.
The chip can address up to 64GB of memory using four on-chip DDR2 memory
controllers (greater than the 4GB addressable by a single Linux process). Each
memory controller reorders memory read and write operations to the DIMMs
to optimize memory utilization. Cache coherence is maintained by each cache-
line having a “home” core. Upon a miss in its local L2 cache, a core needing
that cache-line goes to the home core’s L2 cache to read the cache-line into
its local L2 cache. Two dedicated mesh networks manage the movements of
data and coherence traffic in order to speed the cache coherence communication
across the chip. To enable cache coherence, the home core also maintains a
directory of cores sharing the cache line, removing the need for bus-snooping
cache coherency protocols, which are power-hungry and do not scale to many
cores. Because the L3 cache leverages the L2 cache at each core, it is extremely
power efficient while providing additional cache resources. Figure 3 shows the
I/0O devices, 10G and 1GB Ethernet, and PCl-e, connecting to the edge of the
mesh network. This allows direct writing of received packets into on-chip caches
for processing and vice-versa for sending.

4 Execution Model

Although TILEPro64 has a different architecture and instruction set than the
standard x86-based server, it provides a familiar software development environ-
ment with Linux, gcc, autotools, etc. Consequently, only a few software tweaks
to basic architecture-specific functionality suffice to successfully compile and
execute Memcached on a TILEPro64 system. However, this naive port does
not perform well and can hold relatively little data. The problem lies with
Memcached’s share-all multithreaded execution model (Fig. 4). In a standard
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Figure 4: Execution model of standard version of Memcached.

version of Memcached, one thread acts as the event demultiplexer, monitoring
network sockets for incoming traffic and dispatching event notifications to one
of the N other threads. These threads execute incoming requests and return the
responses directly to the client. Synchronization and serialization are enforced
with locks around key data structures, as well as a global hash table lock that
serializes all accesses to the hash table. This serialization limits the scalability
and benefits we can expect with many cores.

Moreover, recall that TILEPro64 has a 32-bit instruction set, limiting each
process’ address space to 232 bytes (4GB) of data. As discussed in Sec. 2,
packing larger amounts of data in a single node holds both a cost advantage
(by reducing the overall number of servers) and a performance advantage (by
batching multiple get requests together).

However, the physical memory limit on the TILEPro64 is currently 64GB,
allowing different processes to address more than 4GB in aggregate. The larger
physical address width suggests a solution to the problem of the 32-bit address
space: extend the multithreading execution model with multiple independent
processes, each having its own address space. Figure 5 shows the extended
model with new processes and roles. First, two hypervisor cores handle I1/0
ingress and egress to the on-chip network interface, spreading I/O interrupts to
the appropriate CPUs and generating DMA commands. The servicing of 1/O
interrupts and network layer processing (such as TCP/UDP) is now owned by
K dedicated cores, managed by the kernel and generating data for user sockets.
These requests arrive to the main Memcached process as before, which contains a
demultiplexing thread and N worker threads. Note, however, that these worker
threads are statically allocated to handle either TCP or UDP requests, and each
thread is running on exactly one exclusive core. These threads do not contain
KV data. Rather, they communicate with M distinct processes, each containing
a shard of the KV data table in its own dedicated address space, as follows:

When a worker thread receives a request, it identifies the process that owns
the relevant table shard with modulo arithmetic. It then writes the pertinent
request information in a small region of memory that is shared between the
thread and the process, and had been previously allocated from the global pool
using a memory space attribute. The worker thread then notifies the shard
process of the request via a message over the on-chip user-level network to the
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Figure 5: Execution model of Memcached on TILEPro64.

shard process (using a low-latency software interface). On a STORE request,
the shard process copies the data into its private memory. For a GET operation,
the shard process copies the requested value from its private hash table memory
to the shared memory, to be returned to the requesting thread via the user-level
network. For multi-GET operations, the thread merges all the values from the
different shards into on the response packet.

This execution model solves the problem of the 32-bit address space limita-
tions and that of a global table lock. Partitioning the table data allows each
shard to comfortably reside within the 32-bit address space. Owning each table
shard by a single process also means that all requests to mutate it are serialized
and therefore require no locking protection. In a sense, this model adds data
parallelism to what was purely task-parallel.

It is important to note that this execution model is much better suited for
the TILEPro64 architecture than it would be for x86-based architectures. One
reason is that communication between cores on x86 goes through the memory
hierarchy, which serializes and potentially slows down communication (espe-
cially if it ends up going through main memory). Another reason is that the
TILEPro64 system-on-chip (SoC) offers higher flexibility for distributing net-
work interrupts among an arbitrary number of cores. For the purposes of a fair
comparison, we tuned our version of Memcached for the evaluated x86-systems
using the existing execution model, to the best of our ability.



5 Experimental Evaluation and Discussion

This section explores the performance of the modified Memcached on the TILEPro64
processor, and compares it to the tuned version on commodity x86-based servers.

5.1 Methodology and Metrics

We measure the performance of all servers by configuring them to run Mem-
cached (only), using the following command line on x86:

memcached -p 11211 -U 11211 -u nobody -m <memory size>

and on the TILEPro64:

memcached -p 11211 -U 11211 -u root -m <memory size> -t $tcp -V $part

where $tcp and $part are variables representing how many TCP and hash par-
titions are requested (with the remaining number of cores allocated to UDP
threads). On a separate client machine we use the mcblaster tool to stimulate
the system under test and report the measured performance. A single run of
mcblaster consists of two phases. During the initialization phase, mcblaster
stores data in Memcached by sending requests at a fixed rate, the argument to
-W. This phase runs for 100 seconds (initialization requests are sent using the
TCP protocol), storing 1,000,000 32-byte objects, followed by 5 seconds of idle
time, with the command line:

mcblaster -z 32 -p 11211 -W 50000 -d 100 -k 1000000 -c 10 -r 10 <hostname>

During the subsequent phase, mcblaster sends query packets requesting
randomly-ordered keys initialized in the previous phase and measures their re-
sponse time using the command line:

mcblaster -z 32 -p 11211 -d 120 -k 1000000 -W O -c 20 -r $rate <hostname>

where $rate is a variable representing offered request rate.

We concentrate on two metrics of responsiveness and throughput. The first
is the median response time (latency) of GET requests at a fixed offered load.
The second, complementary, metric is the capacity of the system, defined as
the approximate highest offered load (in transactions per second, or TPS) at
which the mean response time remains under 1ms. Although this threshold is
arbitrary, it is in the same order of magnitude of cluster-wide communications
and well below the human perception level. We do not measure multi-GET
requests because they exhibit the same read TPS performance as individual
GET requests. Finally, we also measure the power usage of the various systems
using Yokogawa WT210 power meter, measuring the wall power directly.

5.2 Hardware Configuration

The TILEPro64 S2Q system comprises a total of eight nodes, but we will fo-
cus our initial evaluation on a single node for a fairer comparison to the x86



nodes. In practice, all nodes have independent processors, memory, and net-
working, so the aggregate performance of multiple nodes scales linearly, and can
be extrapolated from a single node’s performance (we verified this assumption
experimentally).

Our load-generating host contained a dual-socket quad-core Intel Xeon L5520
processor clocked at 2.27GHz, with 72GB of ECC DDR3 memory. It was also
equipped with an Intel 82576 Gigabit ET Dual Port Server Adapter network in-
terface controller that can handle transaction rates of over 500,000 packets/sec.

We used these systems in our evaluation:

e 1U server with single/dual socket quad-core Intel Xeon L5520 processor
clocked at 2.27GHz (65W TDP) and a varying number of ECC DDR3
8GB 1.35V DIMMs.

e 1U server single/dual socket octa-core AMD Opteron 6128 HE processor
clocked at 2.0GHz (85W TDP) and a varying number of ECC DDR3 RAM
DIMMs.

e Tilera S2Q°: a 2U server built by Quanta Computer containing eight
TILEPro64 processors clocked at 866MHz, for a total of 512 cores. The
system uses two power supplies (PSUs), each supporting two trays, which
in turn each hold two TILEPro64 nodes. Each node holds 32GB of ECC
DDR2 memory, a BMC, two GbE ports (we used one of these for this
study), and two 10 Gigabit XAUI Ethernet ports.

We chose these low-power processors because they deliver a good compro-
mise between performance and power compared to purely performance-oriented
processors.

The Xeon server used the Intel 82576 GbE network controller. We turned
hyperthreading off since it empirically shows little performance benefit for Mem-
cached, while incurring additional power cost. The Opteron server used the Intel
82580 GbE controller. Both network controllers can handle packet rates well
above our requirements for this study.

In most of our tests we used Memcached version 1.2.3i, running under
CentOS Linux with kernel version 2.6.38.

5.3 Experimental Setting
Core Allocation

In our previous work [13] we focused mostly on exploring the significance of the
static core allocation to roles. During our experiments, we observed that differ-
ent core allocations among the 60 available cores (with 4 reserved for the Linux
kernel), have substantial impact on performance. We systematically evaluated
over 100 different allocations, testing for correlations and insights (including
partial allocations that left some cores unallocated). From these experiments
we have garnered the following observations:

5tilera.com/solutions/cloud_computing

10



e The number of hash table processes determines the node’s total table size,
since each process owns an independent shard. But allocating cores be-
yond the memory requirements (in our case, 6 cores for a total of 24GB,
leaving room for Linux and other processes), does not improve perfor-
mance.

e The amount of networking cores does affect performance, but only up
to a point. Above 12 networking cores, performance does not improve
significantly, regardless of the number of UDP/TCP cores.

e TCP cores have little effect on UDP read performance, and do not con-
tribute much after the initialization phase for read-only workloads. They
do, however, affect TCP read and write capacity. This paper explores the
significance of this choice further.

e Symmetrically, UDP cores play a role for UDP read capacity, so we have
to balance the number of TCP and UDP cores to achieve satisfactory
throughput meeting requirements for a given workload.

These experiments served to identify the highest-performance configurations
for our evaluations. We thus fix the number of memory partitions to 6 and num-
ber of network cores to 8. We vary the number of TCP and UDP cores such that
they sum up to 46 cores. The remaining cores are reserved for the operating sys-
tem and hardware drivers. We justify this allocation based on the observations
that the number of hash partitions only determines the amount of accessible
memory but does not affect the overall performance, and the sufficiency of 8
network cores for virtually all evaluated workloads.

Aggregating Read and Write Throughput

Typically, a production caching layer is used in read-dominated workloads, since
that is its primary purpose. In this paper, however, we expand our evaluation to
include more comprehensive workload compositions that include varying degrees
of writes, and evaluate their effect on both performance and power consumption.

To evaluate these mixed workloads, we can no longer focus on read-only
throughput as our performance metric. In this study, we define throughput as
the aggregate of read and write transactions per second. We measured through-
put while changing allocations of roles between worker cores. The configurations
we used in the experiments are presented in table 1. The 6 different mixes of
operations were:

e 100% reads,

e 80% reads and 20% writes,
e 60% reads and 40% writes,
e 40% reads and 60% writes,

11
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Figure 6: System capacity at various core allocations for a read-only workload. The numbers
in each sequence represent the cores allocated to the TCP (green) and UDP (red) workers.
The remaining cores are fixed and represent network cores (light blue) and hash table (dark
blue). Linux always runs on 4 cores (white).

Configurations
TCP (cores) 4 8§ 12 16 20 23 26 30 34 38 42
UDP (cores) 42 38 34 30 26 23 20 16 12 8 4

Table 1: Allocation of TCP and UDP roles between worker cores.

e 20% reads and 80% writes,
e 100% writes.

The data in the Appendix shows how the read and write throughput indi-
vidually contribute to the overall throughput with difference core allocations.

5.4 Effect of Workload Composition

The best possible throughput for each configuration of cores is when both TCP
and UDP cores are fully utilized. However, processing TCP traffic is much
more involved than processing UDP traffic. The extra work stems from packet-
reception acknowledgment and re-transmissions associated with TCP, as well
as protocol buffer and state management in the Linux kernel. This overhead
renders TCP inherently slower than UDP. Under increasing traffic rate, this
creates a situation wherein TCP cores achieve service latency of 1ms much
faster than UDP cores do. Per our defined methodology, we stop measuring
throughput when either TCP or UDP response time crosses lms, ignoring the
fact that the other cores are still capable of accepting more traffic. This behavior
is demonstrated in Figure 8. We can clearly observe the TCP response latency
reaching 1ms while UDP response latency remains steady at approximately
210psec.

We can also see in Fig. 7 that adding more UDP cores has a positive effect on
the aggregate throughput in read-only or read-heavy workloads, but as we start
adding more write operations to the mix (these use TCP) the throughput drops
steadily. This is a consequence of the TCP processing overhead where TCP

12
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Figure 7: A surface describing the throughput of the TILEPro64 system based on the percent-
age of cores allocated to the UDP processing and the mix of STORE and GET operations.

cores saturate much faster, thus limiting the aggregate throughput. If the 1ms
requirement were dropped, the throughput would have been much higher, since
UDP cores would still be able to accept more traffic in most configurations.
Conversely, removing UDP cores and adding more TCP cores in their stead
limits the read throughput but does not substantially increase the rate of write
operations, effectively limiting the overall system throughput. This supports
our previous finding that a balanced allocation of roles to cores is required for
optimum performance on the TILEPro64.

The x86-based systems used the same Memcached execution model as be-
fore [13], but with some software improvements and tuning to reduce lock con-
tention. In the x86 execution model, there is no need to allocate roles to cores,
so we can measure performance in a single experiment. The throughput mea-
surements for Opteron and Xeon systems are presented in Fig. 9. The clearly
linear relationship between GET requests and read throughput. Similarly, write
throughput grows roughly linearly with the proportion of STORE requests. It
is interesting to note that while the rate of growth is dissimilar between the two
servers and request types: the Xeon server appears to be better optimized for
STORE requests than the Opteron, and in fact its write capacity even exceeds
its own read throughput capacity.

13
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Figure 10: Throughput breakdown for Opteron, Xeon and TILEPro64 processors using TCP
for both STORE and GET requests.

5.5 Effect of Communication Protocol

Another significant parameter is the transmission protocol for read requests.
UDP is often used to trade reliability of TCP for lower latency in production
environments. The performance differences are illustrated in in Fig. 8. We can
see a latency advantage to UDP over TCP on the TILEPro64 (which occurs
also on the x86-based systems). This advantage is readily explained by the fact
that TCP is a transaction-based protocol and as such, it has a higher overhead
associated with a large number of small packets. In fact, this overhead can
grow so large that the faster cores on the x86-based systems can deliver higher
throughput than the x86-based system in TCP-heavy workloads.

In this paper, we explore the effect of protocol on the performance by con-
figuring all systems to use TCP only for both read and write operations. In
TILEPro64’s case this means assigning TCP role to all worker cores. The per-
formance of this system is summarized and compared to x86 based systems in
the Fig. 10. We can observe that when sending traffic over TCP only, both the
Xeon and Opteron systems demonstrate higher capacity than the TILEPro64
system. This is a consequence of the TCP processing overhead as discussed
above.

5.6 Effect of Packet Size

We also tested the effect of packet size (essentially value size) on read per-
formance. Packet sizes are limited to the system’s MTU when using the UDP
protocol for Memcached, which in our system is 1,500 bytes. To test this param-

15
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eter, we fixed the read rate at Ay = 100,000 TPS and varied the payload size
from 8 to 1,200 bytes. The results are presented in Fig. 11. The latency spike at
the right is caused by the network’s bandwidth limitation: sending 1,200-byte
sized packets at the rate of Ay, translates to a data rate of 960Mbps, very close
to the theoretical maximum of the 1Gbps channel. Because packet size hardly
affects read performance across most of the range, and because we typically
observe sizes of less than 100 bytes in real workloads, we set the packet size to
64 bytes in all experiments.

5.7 Read Capacity Comparison Across Architectures

Fig. 8 shows the median response time for GET requests under increasing load
for TCP and UDP protocols, respectively. It is worth noting that UDP’s lower
latency often justifies its use over TCP, despite the latter’s higher reliability
and even throughput. Normal production traffic is typically below saturation
throughput, so UDP’s lower latencies are preferable to TCP.

We had previously exposed the difference between processors optimized for
single-threaded performance vs. multi-threaded throughput [13]. The x86-based
processors, with faster clock speeds and deeper pipelines, complete individual
UDP GET requests ~ 20% faster than the TILEPro64 across most load points.
(Much of the response time is related to memory and network performance,
where the differences are less pronounced.) This performance advantage is not
qualitatively meaningful, because these latency levels are all under the 1ms ca-
pacity threshold, providing adequate responsiveness. On the other hand, fewer
cores, combined with centralized table and network management, translate to a
lower saturation point and significantly reduced throughput for the x86-based
servers when using a combination of TCP and UDP protocols. (When us-
ing TCP-only communication, session and state management overhead requires
more powerful cores.)

This claim is corroborated when we analyze the scalability of Memcached as
we vary the number of cores (Fig. 12 and 13). Here, the serialization in Mem-
cached and the network stack prevents the x86-based architectures from scaling
to even a few cores. The figure clearly shows that even within a single socket
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Figure 12: Scalability of Memcached on Xeon and Opteron systems with increasing number
of cores. For x86, we simply change the number of Memcached threads with the -t parameter,
since threads are pinned to individual cores.
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Figure 13: Scalability of TILEPro64 under the increasing number of cores. For TILEPro64
we turn off a number of cores and reallocate threads as in Fig. 6.

and with just 8 cores, performance scales poorly and cannot take advantage of
additional threads. In fact, we must limit the thread count to 7 on the Opteron
to maximize its performance. On the other hand, the TILEPro64 implementa-
tion can easily take advantage of (and actually requires) more cores for higher
performance. Another aspect of this scaling shows in Fig. 6(e)—(f),(a), where
UDP capacity roughly grows with the number of UDP cores. We do not know
where this scaling would start to taper off, and will follow up with experiments
on the 100-core TILE-Gx when it becomes available.

The sub-linear scaling on x86 suggests there is room for improvement in the
Memcached software even for commodity servers. This is not a novel claim [15]
and in fact we have managed to eek out much improved scalability compared
to our previous effort [13]. But it drives the point that a different parallel
architecture and execution model can scale much better.

5.8 Power

Table 2 shows the throughput and wall power drawn by each system while
running at read capacity throughput. Node-for-node, the TILEPro64 delivers
higher performance than the x86-based servers at comparable power. But the
S2Q server also aggregates some components over several logical servers to save
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Figure 14: Power consumption of a TILEPro64 node as a function of the core configuration
and workload mix.

power, such as: fans, BMC, and PSU. In a large data center environment with
many Memcached servers, this feature can be very useful. Let us extrapolate
these power and performance numbers to 256GB worth of data, the maximum
amount in a single S2Q appliance (extrapolating further involves mere multipli-
cation).

As a comparison basis, we could populate the x86-based servers with many
more DIMMSs (up to a theoretical 384GB in the Opteron’s case, or twice that if
using 16GB DIMMs). But there are two operational limitations that render this
choice impractical. First, the throughput requirement of the server grows with
the amount of data and can easily exceed the processor or network interface
capacity in a single commodity server. Second, placing this much data in a
single server is risky: all servers fail eventually, and rebuilding the KV store
for so much data, key by key, is prohibitively slow. So in practice, we rarely
place much more than 64GB of table data in a single failure domain. (In the
S2Q case, CPUs, RAM, BMC, and NICs are independent at the 32GB level;
motherboard are independent and hot-swappable at the 64GB level; and only
the PSU is shared among 128GB worth of data.)

Table 3 shows power and performance results for these configurations. Not
only is the S2Q capable of higher throughput per node when using UDP than
the x86-based servers, it also achieves it at lower power.

Another interesting observation is that power changes with workloads in
case of TILEPro64. Figure 14 demonstrates this effect. For example, in read-
dominated workload, the power consumption decreases as we add more TCP
cores. This is explained by the fact that TCP cores are used for writes only,
and they are unused for read operations. With stock x86 Memcached this is
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’ Configuration | RAM (GB) | Capacity (TPS) | Power (Watt) |

1 x TILEPro64 (one node) 32 335,000 94
2 x TILEPro64 (one PCB) 64 670,000 140
4 x TILEPro64 (one PSU) 128 1,340,000 233
Single Opteron (UDP) 64 220,000 109
Single Opteron (TCP) 64 290,000 121
Single Xeon (UDP) 64 260,000 113
Single Xeon (TCP) 64 340,000 116

Table 2: Power and capacity at different configurations. Performance differences at the single-
socket level likely stem from imbalanced memory channels. TILEPro64 measurements are
done with mixed UDP/TCP configuration only—the latency and performance for the TCP-
only configuration do not meet our operating requirements.

Architecture Nodes Capacity | Power | TPS / Watt
TILEPro64 | 8 (1 S2Q) | 2,680,000 | 466 5,751
Opteron 4 880,000 436 2,018
Xeon 4 1,040,000 | 440 2,363

Table 3: Extrapolated power and capacity to 256 GB.

not the case, as every core performs tasks both of TCP and UDP workers. In
addition, switching to TCP-only mode of operation adds an extra 3 Watts of
power in Xeon’s case and 12 Watts in Opteron’s case. We attribute this change
in power consumption to the additional processing required for TCP traffic
such as TCP session state management, packet receipt acknowledgments, buffer
management and handling of fragmented packets; all of these are absent from
UDP processing code. In addition, Opteron has double the number of cores than
Xeon processor which further contributes to increase in power consumption.
Another observation is that for either write-only or read-only workloads the
power consumption is noticeably lower compared to mixed workloads. This
is explained by the fact that TCP cores are unused when the machine serves
UDP-only traffic and vice versa, UDP cores are unused when the machine serves
TCP-only traffic.

Scaling Power and Performance

The TILEPro64 is limited by the total amount of memory per node, which
means we would need more nodes than x86-based ones to fill large data require-
ments. To compare to a full S2Q box with 256GB, we can analyze a number
of combinations of x86-based nodes that represent different performance and
risk trade-offs. But if we are looking for the most efficient choice—in terms
of throughput/Watt—then the best x86-based configurations in Table 2 have
one socket with 64GB. Extrapolating these configurations to 256GB yields the
performance in Table 3.

Even compared to the most efficient Xeon configuration, the TILEPro shows

19



a clear advantage in performance/Watt, and is still potentially twice as dense a
solution in the rack (2U vs. 4U for 256GB).

6 Conclusions and Future Work

Low-power many-core processors are well suited to KV-store read-heavy work-
loads. Despite their low clock speeds, these architectures can perform on-par
or better than comparably powered low-core-count x86 server processors. Our
experiments show that a tuned version of Memcached on the 64-core Tilera
TILEPro64 can yield at least 57% higher throughput than low-power x86 servers
at comparable latency. When taking power and node integration into account
as well, a TILEPro64-based S2Q server with 8 processors handles at least two
and a half times as many transactions per second per Watt as the x86-based
servers with the same memory footprint. In addition, TILEPro64 cores enter
very low power state when idle. Combined with role separation between cores,
this leads to higher power efficiency. We have also found out that the choice of
transport protocol can affect power consumption because of increased complex-
ity. We have observed an increase of ~ 3 Watts on the Xeon and TILEPro64
and ~ 12 Watts on the Opteron when switching from UDP to TCP.

When taking power and node integration into account as well, a TILEPro64-
based S2Q server with 8 processors handles at least twice as many transactions
per second per Watt as the x86-based servers with the same memory footprint.
The main reasons for this advantage are the elimination or parallelization of
serializing bottlenecks using the on-chip network; and the allocation of different
cores to different functions such as kernel networking stack and application
modules. This technique can be very useful across architectures, particularly as
the number of cores increases.

In our study, the TILEPro64 exhibited near-linear throughput scaling with
the number of cores, up to 46 UDP cores. One interesting direction for future
research would be to reevaluate performance and scalability on the upcoming
64-bit 100-core TILE-Gx processor, which also supports 40 bits of physical ad-
dress. Another interesting direction is to transfer the core techniques learned
in this study to other KV stores, port them to TILEPro64 and measure their
performance. Similarly, we could try to apply the same model to x86 proces-
sors using multiple processes with their own table shard and no locks. But this
would require a fast communication mechanism (bypassing main memory) that
does not use global serialization such as memory barriers.
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Appendix: Aggregate Performance on the TILEPro64
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Figure 15: Throughput breakdown of different core allocations. The configuration names
represent the split between UDP and TCP cores. The first number is number of UDP cores,
the second one is the number of TCP cores.
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