
Convolutional Sequence to Sequence Learning

Jonas Gehring
Michael Auli
David Grangier
Denis Yarats
Yann N. Dauphin
Facebook AI Research

Abstract

The prevalent approach to sequence to sequence
learning maps an input sequence to a variable
length output sequence via recurrent neural net-
works. We introduce an architecture based en-
tirely on convolutional neural networks.1 Com-
pared to recurrent models, computations over all
elements can be fully parallelized during training
to better exploit the GPU hardware and optimiza-
tion is easier since the number of non-linearities
is fixed and independent of the input length. Our
use of gated linear units eases gradient propaga-
tion and we equip each decoder layer with a sep-
arate attention module. We outperform the accu-
racy of the deep LSTM setup of Wu et al. (2016)
on both WMT’14 English-German and WMT’14
English-French translation at an order of magni-
tude faster speed, both on GPU and CPU.

1. Introduction
Sequence to sequence learning has been successful in
many tasks such as machine translation, speech recogni-
tion (Sutskever et al., 2014; Chorowski et al., 2015) and
text summarization (Rush et al., 2015; Nallapati et al.,
2016; Shen et al., 2016) amongst others. The dominant
approach to date encodes the input sequence with a se-
ries of bi-directional recurrent neural networks (RNN) and
generates a variable length output with another set of de-
coder RNNs, both of which interface via a soft-attention
mechanism (Bahdanau et al., 2014; Luong et al., 2015).
In machine translation, this architecture has been demon-
strated to outperform traditional phrase-based models by
large margins (Sennrich et al., 2016b; Zhou et al., 2016;
Wu et al., 2016; §2).

1The source code and models are available at https://
github.com/facebookresearch/fairseq.

Convolutional neural networks are less common for se-
quence modeling, despite several advantages (Waibel et al.,
1989; LeCun & Bengio, 1995). Compared to recurrent lay-
ers, convolutions create representations for fixed size con-
texts, however, the effective context size of the network can
easily be made larger by stacking several layers on top of
each other. This allows to precisely control the maximum
length of dependencies to be modeled. Convolutional net-
works do not depend on the computations of the previous
time step and therefore allow parallelization over every ele-
ment in a sequence. This contrasts with RNNs which main-
tain a hidden state of the entire past that prevents parallel
computation within a sequence.

Multi-layer convolutional neural networks create hierarchi-
cal representations over the input sequence in which nearby
input elements interact at lower layers while distant ele-
ments interact at higher layers. Hierarchical structure pro-
vides a shorter path to capture long-range dependencies
compared to the chain structure modeled by recurrent net-
works, e.g. we can obtain a feature representation captur-
ing relationships within a window of n words by applying
only O(nk) convolutional operations for kernels of width
k, compared to a linear number O(n) for recurrent neu-
ral networks. Inputs to a convolutional network are fed
through a constant number of kernels and non-linearities,
whereas recurrent networks apply up to n operations and
non-linearities to the first word and only a single set of
operations to the last word. Fixing the number of non-
linearities applied to the inputs also eases learning.

Recent work has applied convolutional neural networks to
sequence modeling such as Bradbury et al. (2016) who in-
troduce recurrent pooling between a succession of convo-
lutional layers or Kalchbrenner et al. (2016) who tackle
neural translation without attention. However, none of
these approaches has been demonstrated improvements
over state of the art results on large benchmark datasets.
Gated convolutions have been previously explored for ma-
chine translation by Meng et al. (2015) but their evaluation
was restricted to a small dataset and the model was used
in tandem with a traditional count-based model. Architec-

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq

Convolutional Sequence to Sequence Learning

tures which are partially convolutional have shown strong
performance on larger tasks but their decoder is still recur-
rent (Gehring et al., 2016).

In this paper we propose an architecture for sequence to se-
quence modeling that is entirely convolutional. Our model
is equipped with gated linear units (Dauphin et al., 2016)
and residual connections (He et al., 2015a). We also use
attention in every decoder layer and demonstrate that each
attention layer only adds a negligible amount of overhead.
The combination of these choices enables us to tackle large
scale problems (§3).

We evaluate our approach on several large datasets for ma-
chine translation as well as summarization and compare to
the current best architectures reported in the literature. On
WMT’16 English-Romanian translation we achieve a new
state of the art, outperforming the previous best result by
1.9 BLEU. On WMT’14 English-German we outperform
the strong LSTM setup of Wu et al. (2016) by 0.5 BLEU
and on WMT’14 English-French we outperform the like-
lihood trained system of Wu et al. (2016) by 1.6 BLEU.
Furthermore, our model can translate unseen sentences at
an order of magnitude faster speed than Wu et al. (2016)
on GPU and CPU hardware (§4, §5).

2. Recurrent Sequence to Sequence Learning
Sequence to sequence modeling has been synonymous
with recurrent neural network based encoder-decoder ar-
chitectures (Sutskever et al., 2014; Bahdanau et al., 2014).
The encoder RNN processes an input sequence x =
(x1, . . . , xm) of m elements and returns state representa-
tions z = (z1. . . . , zm). The decoder RNN takes z and
generates the output sequence y = (y1, . . . , yn) left to
right, one element at a time. To generate output yi+1, the
decoder computes a new hidden state hi+1 based on the
previous state hi, an embedding gi of the previous target
language word yi, as well as a conditional input ci derived
from the encoder output z. Based on this generic formula-
tion, various encoder-decoder architectures have been pro-
posed, which differ mainly in the conditional input and the
type of RNN.

Models without attention consider only the final encoder
state zm by setting ci = zm for all i (Cho et al., 2014), or
simply initialize the first decoder state with zm (Sutskever
et al., 2014), in which case ci is not used. Architectures
with attention (Bahdanau et al., 2014; Luong et al., 2015)
compute ci as a weighted sum of (z1. . . . , zm) at each time
step. The weights of the sum are referred to as attention
scores and allow the network to focus on different parts of
the input sequence as it generates the output sequences. At-
tention scores are computed by essentially comparing each
encoder state zj to a combination of the previous decoder

state hi and the last prediction yi; the result is normalized
to be a distribution over input elements.

Popular choices for recurrent networks in encoder-decoder
models are long short term memory networks (LSTM;
Hochreiter & Schmidhuber, 1997) and gated recurrent units
(GRU; Cho et al., 2014). Both extend Elman RNNs (El-
man, 1990) with a gating mechanism that allows the mem-
orization of information from previous time steps in order
to model long-term dependencies. Most recent approaches
also rely on bi-directional encoders to build representations
of both past and future contexts (Bahdanau et al., 2014;
Zhou et al., 2016; Wu et al., 2016). Models with many lay-
ers often rely on shortcut or residual connections (He et al.,
2015a; Zhou et al., 2016; Wu et al., 2016).

3. A Convolutional Architecture
Next we introduce a fully convolutional architecture for se-
quence to sequence modeling. Instead of relying on RNNs
to compute intermediate encoder states z and decoder states
h we use convolutional neural networks (CNN).

3.1. Position Embeddings

First, we embed input elements x = (x1, . . . , xm) in dis-
tributional space as w = (w1, . . . , wm), where wj ∈ Rf
is a column in an embedding matrix D ∈ RV×f . We also
equip our model with a sense of order by embedding the ab-
solute position of input elements p = (p1, . . . , pm) where
pj ∈ Rf . Both are combined to obtain input element rep-
resentations e = (w1 + p1, . . . , wm + pm). We proceed
similarly for output elements that were already generated
by the decoder network to yield output element represen-
tations that are being fed back into the decoder network
g = (g1, . . . , gn). Position embeddings are useful in our
architecture since they give our model a sense of which
portion of the sequence in the input or output it is currently
dealing with (§5.4).

3.2. Convolutional Block Structure

Both encoder and decoder networks share a simple block
structure that computes intermediate states based on a fixed
number of input elements. We denote the output of the l-
th block as hl = (hl1, . . . , h

l
n) for the decoder network,

and zl = (zl1, . . . , z
l
m) for the encoder network; we refer

to blocks and layers interchangeably. Each block contains
a one dimensional convolution followed by a non-linearity.
For a decoder network with a single block and kernel width
k, each resulting state h1i contains information over k input
elements. Stacking several blocks on top of each other in-
creases the number of input elements represented in a state.
For instance, stacking 6 blocks with k = 5 results in an in-
put field of 25 elements, i.e. each output depends on 25

Convolutional Sequence to Sequence Learning

inputs. Non-linearities allow the networks to exploit the
full input field, or to focus on fewer elements if needed.

Each convolution kernel is parameterized as W ∈ R2d×kd,
bw ∈ R2d and takes as input X ∈ Rk×d which is a
concatenation of k input elements embedded in d dimen-
sions and maps them to a single output element Y ∈ R2d

that has twice the dimensionality of the input elements;
subsequent layers operate over the k output elements of
the previous layer. We choose gated linear units (GLU;
Dauphin et al., 2016) as non-linearity which implement a
simple gating mechanism over the output of the convolu-
tion Y = [A B] ∈ R2d:

v([A B]) = A⊗ σ(B)

where A,B ∈ Rd are the inputs to the non-linearity, ⊗ is
the point-wise multiplication and the output v([A B]) ∈
Rd is half the size of Y . The gates σ(B) control which
inputs A of the current context are relevant. A similar non-
linearity has been introduced in Oord et al. (2016b) who
apply tanh toA but Dauphin et al. (2016) shows that GLUs
perform better in the context of language modelling.

To enable deep convolutional networks, we add residual
connections from the input of each convolution to the out-
put of the block (He et al., 2015a).

hli = v(W l[hl−1i−k/2, . . . , h
l−1
i+k/2] + blw) + hl−1i

For encoder networks we ensure that the output of the con-
volutional layers matches the input length by padding the
input at each layer. However, for decoder networks we have
to take care that no future information is available to the de-
coder (Oord et al., 2016a). Specifically, we pad the input
by k − 1 elements on both the left and right side by zero
vectors, and then remove k elements from the end of the
convolution output.

We also add linear mappings to project between the embed-
ding size f and the convolution outputs that are of size 2d.
We apply such a transform to w when feeding embeddings
to the encoder network, to the encoder output zuj , to the fi-
nal layer of the decoder just before the softmax hL, and to
all decoder layers hl before computing attention scores (1).

Finally, we compute a distribution over the T possible next
target elements yi+1 by transforming the top decoder out-
put hLi via a linear layer with weights Wo and bias bo:

p(yi+1|y1, . . . , yi,x) = softmax(Woh
L
i + bo) ∈ RT

3.3. Multi-step Attention

We introduce a separate attention mechanism for each de-
coder layer. To compute the attention, we combine the cur-
rent decoder state hli with an embedding of the previous

Figure 1. Illustration of batching during training. The English
source sentence is encoded (top) and we compute all attention
values for the four German target words (center) simultaneously.
Our attentions are just dot products between decoder context rep-
resentations (bottom left) and encoder representations. We add
the conditional inputs computed by the attention (center right) to
the decoder states which then predict the target words (bottom
right). The sigmoid and multiplicative boxes illustrate Gated Lin-
ear Units.

target element gi:

dli = W l
dh
l
i + bld + gi (1)

For decoder layer l the attention alij of state i and source el-
ement j is computed as a dot-product between the decoder
state summary dli and each output zuj of the last encoder
block u:

alij =
exp

(
dli · zuj

)∑m
t=1 exp

(
dli · zut

)
The conditional input cli to the current decoder layer is a
weighted sum of the encoder outputs as well as the input
element embeddings ej (Figure 1, center right):

cli =

m∑
j=1

alij(z
u
j + ej) (2)

This is slightly different to recurrent approaches which
compute both the attention and the weighted sum over zuj

Convolutional Sequence to Sequence Learning

only. We found adding ej to be beneficial and it resem-
bles key-value memory networks where the keys are the zuj
and the values are the zuj + ej (Miller et al., 2016). En-
coder outputs zuj represent potentially large input contexts
and ej provides point information about a specific input el-
ement that is useful when making a prediction. Once cli
has been computed, it is simply added to the output of the
corresponding decoder layer hli.

This can be seen as attention with multiple ’hops’
(Sukhbaatar et al., 2015) compared to single step attention
(Bahdanau et al., 2014; Luong et al., 2015; Zhou et al.,
2016; Wu et al., 2016). In particular, the attention of
the first layer determines a useful source context which
is then fed to the second layer that takes this information
into account when computing attention etc. The decoder
also has immediate access to the attention history of the
k − 1 previous time steps because the conditional inputs
cl−1i−k, . . . , c

l−1
i are part of hl−1i−k, . . . , h

l−1
i which are input

to hli. This makes it easier for the model to take into ac-
count which previous inputs have been attended to already
compared to recurrent nets where this information is in the
recurrent state and needs to survive several non-linearities.
Overall, our attention mechanism considers which words
we previously attended to (Yang et al., 2016) and performs
multiple attention ’hops’ per time step. In Appendix §C,
we plot attention scores for a deep decoder and show that
at different layers, different portions of the source are at-
tended to.

Our convolutional architecture also allows to batch the at-
tention computation across all elements of a sequence com-
pared to RNNs (Figure 1, middle). We batch the computa-
tions of each decoder layer individually.

3.4. Normalization Strategy

We stabilize learning through careful weight initialization
(§3.5) and by scaling parts of the network to ensure that the
variance throughout the network does not change dramati-
cally. In particular, we scale the output of residual blocks
as well as the attention to preserve the variance of activa-
tions. We multiply the sum of the input and output of a
residual block by

√
0.5 to halve the variance of the sum.

This assumes that both summands have the same variance
which is not always true but effective in practice.

The conditional input cli generated by the attention is a
weighted sum of m vectors (2) and we counteract a change
in variance through scaling by m

√
1/m; we multiply by

m to scale up the inputs to their original size, assuming the
attention scores are uniformly distributed. This is generally
not the case but we found it to work well in practice.

For convolutional decoders with multiple attention, we
scale the gradients for the encoder layers by the number

of attention mechanisms we use; we exclude source word
embeddings. We found this to stabilize learning since the
encoder received too much gradient otherwise.

3.5. Initialization

Normalizing activations when adding the output of dif-
ferent layers, e.g. residual connections, requires careful
weight initialization. The motivation for our initialization
is the same as for the normalization: maintain the variance
of activations throughout the forward and backward passes.
All embeddings are initialized from a normal distribution
with mean 0 and standard deviation 0.1. For layers whose
output is not directly fed to a gated linear unit, we initial-
ize weights from N (0,

√
1/nl) where nl is the number of

input connections to each neuron. This ensures that the
variance of a normally distributed input is retained.

For layers which are followed by a GLU activation, we pro-
pose a weight initialization scheme by adapting the deriva-
tions in (He et al., 2015b; Glorot & Bengio, 2010; Ap-
pendix A). If the GLU inputs are distributed with mean 0
and have sufficiently small variance, then we can approx-
imate the output variance with 1/4 of the input variance
(Appendix A.1). Hence, we initialize the weights so that
the input to the GLU activations have 4 times the variance
of the layer input. This is achieved by drawing their initial
values fromN (0,

√
4/nl). Biases are uniformly set to zero

when the network is constructed.

We apply dropout to the input of some layers so that in-
puts are retained with a probability of p. This can be seen
as multiplication with a Bernoulli random variable taking
value 1/p with probability p and 0 otherwise (Srivastava
et al., 2014). The application of dropout will then cause
the variance to be scaled by 1/p. We aim to restore the
incoming variance by initializing the respective layers with
larger weights. Specifically, we useN (0,

√
4p/nl) for lay-

ers whose output is subject to a GLU and N (0,
√
p/nl)

otherwise (Appendix A.3).

4. Experimental Setup
4.1. Datasets

We consider three major WMT translation tasks as well as
a text summarization task.

WMT’16 English-Romanian. We use the same data and
pre-processing as Sennrich et al. (2016b) but remove sen-
tences with more than 175 words. This results in 2.8M sen-
tence pairs for training and we evaluate on newstest2016.2

2We followed the pre-processing of https://github.
com/rsennrich/wmt16-scripts/blob/80e21e5/
sample/preprocess.sh and added the back-translated data
from http://data.statmt.org/rsennrich/wmt16_

https://github.com/rsennrich/wmt16-scripts/blob/80e21e5/sample/preprocess.sh
https://github.com/rsennrich/wmt16-scripts/blob/80e21e5/sample/preprocess.sh
https://github.com/rsennrich/wmt16-scripts/blob/80e21e5/sample/preprocess.sh
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro

Convolutional Sequence to Sequence Learning

We experiment with word-based models using a source vo-
cabulary of 200K types and a target vocabulary of 80K
types. We also consider a joint source and target byte-pair
encoding (BPE) with 40K types (Sennrich et al., 2016a;b).

WMT’14 English-German. We use the same setup as Lu-
ong et al. (2015) which comprises 4.5M sentence pairs for
training and we test on newstest2014.3 As vocabulary we
use 40K sub-word types based on BPE.

WMT’14 English-French. We use the full training set of
36M sentence pairs, and remove sentences longer than 175
words as well as pairs with a source/target length ratio ex-
ceeding 1.5. This results in 35.5M sentence-pairs for train-
ing. Results are reported on newstest2014. We use a source
and target vocabulary with 40K BPE types.

In all setups a small subset of the training data serves as val-
idation set (about 0.5-1% for each dataset) for early stop-
ping and learning rate annealing.

Abstractive summarization. We train on the Gigaword
corpus (Graff et al., 2003) and pre-process it identically
to Rush et al. (2015) resulting in 3.8M training examples
and 190K for validation. We evaluate on the DUC-2004
test data comprising 500 article-title pairs (Over et al.,
2007) and report three variants of recall-based ROUGE
(Lin, 2004), namely, ROUGE-1 (unigrams), ROUGE-2 (bi-
grams), and ROUGE-L (longest-common substring). We
also evaluate on a Gigaword test set of 2000 pairs which
is identical to the one used by Rush et al. (2015) and we
report F1 ROUGE similar to prior work. Similar to Shen
et al. (2016) we use a source and target vocabulary of 30K
words and require outputs to be at least 14 words long.

4.2. Model Parameters and Optimization

We use 512 hidden units for both encoders and decoders,
unless otherwise stated. All embeddings, including the out-
put produced by the decoder before the final linear layer,
have dimensionality 512; we use the same dimensionalities
for linear layers mapping between the hidden and embed-
ding sizes (§3.2).

We train our convolutional models with Nesterov’s accel-
erated gradient method (Sutskever et al., 2013) using a mo-
mentum value of 0.99 and renormalize gradients if their
norm exceeds 0.1 (Pascanu et al., 2013). We use a learn-
ing rate of 0.25 and once the validation perplexity stops
improving, we reduce the learning rate by an order of mag-
nitude after each epoch until it falls below 10−4.

Unless otherwise stated, we use mini-batches of 64 sen-
tences. We restrict the maximum number of words in a
mini-batch to make sure that batches with long sentences

backtranslations/en-ro.
3http://nlp.stanford.edu/projects/nmt

still fit in GPU memory. If the threshold is exceeded, we
simply split the batch until the threshold is met and pro-
cess the parts separatedly. Gradients are normalized by the
number of non-padding tokens per mini-batch. We also use
weight normalization for all layers except for lookup tables
(Salimans & Kingma, 2016).

Besides dropout on the embeddings and the decoder out-
put, we also apply dropout to the input of the convolu-
tional blocks (Srivastava et al., 2014). All models are im-
plemented in Torch (Collobert et al., 2011) and trained on
a single Nvidia M40 GPU except for WMT’14 English-
French for which we use a multi-GPU setup on a single
machine. We train on up to eight GPUs synchronously by
maintaining copies of the model on each card and split the
batch so that each worker computes 1/8-th of the gradients;
at the end we sum the gradients via Nvidia NCCL.

4.3. Evaluation

We report average results over three runs of each model,
where each differs only in the initial random seed. Trans-
lations are generated by a beam search and we normalize
log-likelihood scores by sentence length. We use a beam
of width 5. We divide the log-likelihoods of the final hy-
pothesis in beam search by their length |y|. For WMT’14
English-German we tune a length normalization constant
on a separate development set (newstest2015) and we nor-
malize log-likelihoods by |y|α (Wu et al., 2016). On other
datasets we did not find any benefit with length normaliza-
tion.

For word-based models, we perform unknown word re-
placement based on attention scores after generation (Jean
et al., 2015). Unknown words are replaced by looking up
the source word with the maximum attention score in a pre-
computed dictionary. If the dictionary contains no trans-
lation, then we simply copy the source word. Dictionar-
ies were extracted from the word aligned training data that
we obtained with fast align (Dyer et al., 2013). Each
source word is mapped to the target word it is most fre-
quently aligned to. In our multi-step attention (§3.3) we
simply average the attention scores over all layers. Fi-
nally, we compute case-sensitive tokenized BLEU, except
for WMT’16 English-Romanian where we use detokenized
BLEU to be comparable with Sennrich et al. (2016b).4

4https://github.com/moses-smt/
mosesdecoder/blob/617e8c8/scripts/generic/
{multi-bleu.perl,mteval-v13a.pl}

http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://nlp.stanford.edu/projects/nmt
https://github.com/moses-smt/mosesdecoder/blob/617e8c8/scripts/generic/{multi-bleu.perl,mteval-v13a.pl}
https://github.com/moses-smt/mosesdecoder/blob/617e8c8/scripts/generic/{multi-bleu.perl,mteval-v13a.pl}
https://github.com/moses-smt/mosesdecoder/blob/617e8c8/scripts/generic/{multi-bleu.perl,mteval-v13a.pl}

Convolutional Sequence to Sequence Learning

5. Results
5.1. Recurrent vs. Convolutional Models

We first evaluate our convolutional model on three transla-
tion tasks. On WMT’16 English-Romanian translation we
compare to Sennrich et al. (2016b) which is the winning
entry on this language pair at WMT’16 (Bojar et al., 2016).
Their model implements the attention-based sequence to
sequence architecture of Bahdanau et al. (2014) and uses
GRU cells both in the encoder and decoder. We test both
word-based and BPE vocabularies (§4).

Table 1 shows that our fully convolutional sequence to se-
quence model (ConvS2S) outperforms the WMT’16 win-
ning entry for English-Romanian by 1.9 BLEU with a BPE
encoding and by 1.3 BLEU with a word factored vocabu-
lary. This instance of our architecture has 20 layes in the
encoder and 20 layers in the decoder, both using kernels
of width 3 and hidden size 512 throughout. Training took
between 6 and 7.5 days on a single GPU.

On WMT’14 English to German translation we compare to
the following prior work: Luong et al. (2015) is based on a
four layer LSTM attention model, ByteNet (Kalchbrenner
et al., 2016) propose a convolutional model based on char-
acters without attention, with 30 layers in the encoder and
30 layers in the decoder, GNMT (Wu et al., 2016) repre-
sents the state of the art on this dataset and they use eight
encoder LSTMs as well as eight decoder LSTMs, we quote
their result for a word-based model, such as ours, as well
as a word-piece model (Schuster & Nakajima, 2012).5

The results (Table 1) show that our convolutional model
outpeforms GNMT by 0.5 BLEU. Our encoder has 15 lay-
ers and the decoder has 15 layers, both with 512 hidden
units in the first ten layers and 768 units in the subsequent
three layers, all using kernel width 3. The final two layers
have 2048 units which are just linear mappings with a sin-
gle input. We trained this model on a single GPU over a
period of 18.5 days with a batch size of 48. LSTM sparse
mixtures have shown strong accuracy at 26.03 BLEU for a
single run (Shazeer et al., 2016) which compares to 25.39
BLEU for our best run. This mixture sums the output of
four experts, not unlike an ensemble which sums the output
of multiple networks. ConvS2S also benefits from ensem-
bling (§5.2), therefore mixtures are a promising direction.

Finally, we train on the much larger WMT’14 English-
French task where we compare to the state of the art re-
sult of GNMT (Wu et al., 2016). Our model is trained with
a simple token-level likelihood objective and we improve
over GNMT in the same setting by 1.6 BLEU on average.
We also outperform their reinforcement (RL) models by 0.5

5We did not use the exact same vocabulary size because word
pieces and BPE estimate the vocabulary differently.

WMT’16 English-Romanian BLEU

Sennrich et al. (2016b) GRU (BPE 90K) 28.1

ConvS2S (Word 80K) 29.45
ConvS2S (BPE 40K) 30.02

WMT’14 English-German BLEU

Luong et al. (2015) LSTM (Word 50K) 20.9
Kalchbrenner et al. (2016) ByteNet (Char) 23.75
Wu et al. (2016) GNMT (Word 80K) 23.12
Wu et al. (2016) GNMT (Word pieces) 24.61

ConvS2S (BPE 40K) 25.16

WMT’14 English-French BLEU

Wu et al. (2016) GNMT (Word 80K) 37.90
Wu et al. (2016) GNMT (Word pieces) 38.95
Wu et al. (2016) GNMT (Word pieces) + RL 39.92

ConvS2S (BPE 40K) 40.51

Table 1. Accuracy on WMT tasks comapred to previous work.
ConvS2S and GNMT results are averaged over several runs.

BLEU. Reinforcement learning is equally applicable to our
architecture and we believe that it would further improve
our results.

The ConvS2S model for this experiment uses 15 layers in
the encoder and 15 layers in the decoder, both with 512
hidden units in the first five layers, 768 units in the subse-
quent four layers, 1024 units in the next 3 layers, all using
kernel width 3; the final two layers have 2048 units and
4096 units each but the they are linear mappings with ker-
nel width 1. This model has an effective context size of
only 25 words, beyond which it cannot access any infor-
mation on the target size. Our results are based on training
with 8 GPUs for about 37 days and batch size 32 on each
worker.6 The same configuration as for WMT’14 English-
German achieves 39.41 BLEU in two weeks on this dataset
in an eight GPU setup.

Zhou et al. (2016) report a non-averaged result of 39.2
BLEU. More recently, Ha et al. (2016) showed that one
can generate weights with one LSTM for another LSTM.
This approach achieves 40.03 BLEU but the result is not
averaged. Shazeer et al. (2016) compares at 40.56 BLEU
to our best single run of 40.70 BLEU.

6This is half of the GPU time consumed by a basic model of
Wu et al. (2016) who use 96 GPUs for 6 days. We expect the time
to train our model to decrease substantially in a multi-machine
setup.

Convolutional Sequence to Sequence Learning

WMT’14 English-German BLEU

Wu et al. (2016) GNMT 26.20
Wu et al. (2016) GNMT + RL 26.30

ConvS2S 26.43

WMT’14 English-French BLEU

Zhou et al. (2016) 40.4
Wu et al. (2016) GNMT 40.35
Wu et al. (2016) GNMT + RL 41.16

ConvS2S 41.44
ConvS2S (10 models) 41.62

Table 2. Accuracy of ensembles with eight models. We show
both likelihood and Reinforce (RL) results for GNMT; Zhou et al.
(2016) and ConvS2S use simple likelihood training.

The translations produced by our models often match the
length of the references, particularly for the large WMT’14
English-French task, or are very close for small to medium
data sets such as WMT’14 English-German or WMT’16
English-Romanian.

5.2. Ensemble Results

Next, we ensemble eight likelihood-trained models for both
WMT’14 English-German and WMT’14 English-French
and compare to previous work which also reported ensem-
ble results. For the former, we also show the result when
ensembling 10 models. Table 2 shows that we outperform
the best current ensembles on both datasets.

5.3. Generation Speed

Next, we evaluate the inference speed of our architecture
on the development set of the WMT’14 English-French
task which is the concatenation of newstest2012 and new-
stest2013; it comprises 6003 sentences. We measure gener-
ation speed both on GPU and CPU hardware. Specifically,
we measure GPU speed on three generations of Nvidia
cards: a GTX-1080ti, an M40 as well as an older K40
card. CPU timings are measured on one host with 48 hyper-
threaded cores (Intel Xeon E5-2680 @ 2.50GHz) with 40
workers. In all settings, we batch up to 128 sentences, com-
posing batches with sentences of equal length. Note that
the majority of batches is smaller because of the small size
of the development set. We experiment with beams of size
5 as well as greedy search, i.e beam of size 1. To make gen-
eration fast, we do not recompute convolution states that
have not changed compared to the previous time step but
rather copy (shift) these activations.

We compare to results reported in Wu et al. (2016) who

BLEU Time (s)

GNMT GPU (K80) 31.20 3,028
GNMT CPU 88 cores 31.20 1,322
GNMT TPU 31.21 384

ConvS2S GPU (K40) b = 1 33.45 327
ConvS2S GPU (M40) b = 1 33.45 221
ConvS2S GPU (GTX-1080ti) b = 1 33.45 142
ConvS2S CPU 48 cores b = 1 33.45 142

ConvS2S GPU (K40) b = 5 34.10 587
ConvS2S CPU 48 cores b = 5 34.10 482
ConvS2S GPU (M40) b = 5 34.10 406
ConvS2S GPU (GTX-1080ti) b = 5 34.10 256

Table 3. CPU and GPU generation speed in seconds on the de-
velopment set of WMT’14 English-French. We show results for
different beam sizes b. GNMT figures are taken from Wu et al.
(2016). CPU speeds are not directly comparable because Wu et al.
(2016) use a 88 core machine versus our 48 core setup.

use Nvidia K80 GPUs which are essentially two K40s. We
did not have such a GPU available and therefore run ex-
periments on an older K40 card which is inferior to a K80,
in addition to the newer M40 and GTX-1080ti cards. The
results (Table 3) show that our model can generate transla-
tions on a K40 GPU at 9.3 times the speed and 2.25 higher
BLEU; on an M40 the speed-up is up to 13.7 times and on
a GTX-1080ti card the speed is 21.3 times faster. A larger
beam of size 5 decreases speed but gives better BLEU.

On CPU, our model is up to 9.3 times faster, however, the
GNMT CPU results were obtained with an 88 core machine
whereas our results were obtained with just over half the
number of cores. On a per CPU core basis, our model is
17 times faster at a better BLEU. Finally, our CPU speed is
2.7 times higher than GNMT on a custom TPU chip which
shows that high speed can be achieved on commodity hard-
ware. We do no report TPU figures as we do not have ac-
cess to this hardware.

5.4. Position Embeddings

In the following sections, we analyze the design choices in
our architecture. The remaining results in this paper are
based on the WMT’14 English-German task with 13 en-
coder layers at kernel size 3 and 5 decoder layers at kernel
size 5. We use a target vocabulary of 160K words as well as
vocabulary selection (Mi et al., 2016; L’Hostis et al., 2016)
to decrease the size of the output layer which speeds up
training and testing. The average vocabulary size for each
training batch is about 20K target words. All figures are av-
eraged over three runs (§4) and BLEU is reported on new-
stest2014 before unknown word replacement.

We start with an experiment that removes the position em-

Convolutional Sequence to Sequence Learning

PPL BLEU

ConvS2S 6.64 21.7
-source position 6.69 21.3
-target position 6.63 21.5
-source & target position 6.68 21.2

Table 4. Effect of removing position embeddings from our model
in terms of validation perplexity (valid PPL) and BLEU.

beddings from the encoder and decoder (§3.1). These em-
beddings allow our model to identify which portion of the
source and target sequence it is dealing with but also im-
pose a restriction on the maximum sentence length. Ta-
ble 4 shows that position embeddings are helpful but that
our model still performs well without them. Removing
the source position embeddings results in a larger accuracy
decrease than target position embeddings. However, re-
moving both source and target positions decreases accuracy
only by 0.5 BLEU. We had assumed that the model would
not be able to calibrate the length of the output sequences
very well without explicit position information, however,
the output lengths of models without position embeddings
closely matches models with position information. This in-
dicates that the models can learn relative position informa-
tion within the contexts visible to the encoder and decoder
networks which can observe up to 27 and 25 words respec-
tively.

Recurrent models typically do not use explicit position em-
beddings since they can learn where they are in the se-
quence through the recurrent hidden state computation. In
our setting, the use of position embeddings requires only a
simple addition to the input word embeddings which is a
negligible overhead.

5.5. Multi-step Attention

The multiple attention mechanism (§3.3) computes a sep-
arate source context vector for each decoder layer. The
computation also takes into account contexts computed for
preceding decoder layers of the current time step as well
as previous time steps that are within the receptive field of
the decoder. How does multiple attention compare to at-
tention in fewer layers or even only in a single layer as is
usual? Table 5 shows that attention in all decoder layers
achieves the best validation perplexity (PPL). Furthermore,
removing more and more attention layers decreases accu-
racy, both in terms of BLEU as well as PPL.

The computational overhead for attention is very small
compared to the rest of the network. Training with atten-
tion in all five decoder layers processes 3624 target words
per second on average on a single GPU, compared to 3772
words per second for attention in a single layer. This is only

Attn Layers PPL BLEU

1,2,3,4,5 6.65 21.63
1,2,3,4 6.70 21.54
1,2,3 6.95 21.36
1,2 6.92 21.47
1,3,5 6.97 21.10

1 7.15 21.26
2 7.09 21.30
3 7.11 21.19
4 7.19 21.31
5 7.66 20.24

Table 5. Multi-step attention in all five decoder layers or fewer
layers in terms of validation perplexity (PPL) and test BLEU.

 19

 19.5

 20

 20.5

 21

 21.5

 22

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BL
EU

Layers

Encoder
Decoder

Figure 2. Encoder and decoder with different number of layers.

a 4% slow down when adding 4 attention modules. Most
neural machine translation systems only use a single mod-
ule. This demonstrates that attention is not the bottleneck
in neural machine translation, even though it is quadratic in
the sequence length (cf. Kalchbrenner et al., 2016). Part of
the reason for the low impact on speed is that we batch the
computation of an attention module over all target words,
similar to Kalchbrenner et al. (2016). However, for RNNs
batching of the attention may be less effective because of
the dependence on the previous time step.

5.6. Kernel size and Depth

Figure 2 shows accuracy when we change the number of
layers in the encoder or decoder. The kernel width for lay-
ers in the encoder is 3 and for the decoder it is 5. Deeper
architectures are particularly beneficial for the encoder but
less so for the decoder. Decoder setups with two layers al-
ready perform well whereas for the encoder accuracy keeps
increasing steadily with more layers until up to 9 layers
when accuracy starts to plateau.

Convolutional Sequence to Sequence Learning

DUC-2004 Gigaword
RG-1 (R) RG-2 (R) RG-L (R) RG-1 (F) RG-2 (F) RG-L (F)

RNN MLE (Shen et al., 2016) 24.92 8.60 22.25 32.67 15.23 30.56
RNN MRT (Shen et al., 2016) 30.41 10.87 26.79 36.54 16.59 33.44
WFE (Suzuki & Nagata, 2017) 32.28 10.54 27.80 36.30 17.31 33.88
ConvS2S 30.44 10.84 26.90 35.88 17.48 33.29

Table 6. Accuracy on two summarization tasks in terms of Rouge-1 (RG-1), Rouge-2 (RG-2), and Rouge-L (RG-L).

Kernel width Encoder layers
5 9 13

3 20.61 21.17 21.63
5 20.80 21.02 21.42
7 20.81 21.30 21.09

Table 7. Encoder with different kernel width in terms of BLEU.

Kernel width Decoder layers
3 5 7

3 21.10 21.71 21.62
5 21.09 21.63 21.24
7 21.40 21.31 21.33

Table 8. Decoder with different kernel width in terms of BLEU.

Aside from increasing the depth of the networks, we can
also change the kernel width. Table 7 shows that encoders
with narrow kernels and many layers perform better than
wider kernels. These networks can also be faster since the
amount of work to compute a kernel operating over 3 input
elements is less than half compared to kernels over 7 ele-
ments. We see a similar picture for decoder networks with
large kernel sizes (Table 8). Dauphin et al. (2016) shows
that context sizes of 20 words are often sufficient to achieve
very good accuracy on language modeling for English.

5.7. Summarization

Finally, we evaluate our model on abstractive sentence
summarization which takes a long sentence as input and
outputs a shortened version. The current best models on
this task are recurrent neural networks which either opti-
mize the evaluation metric (Shen et al., 2016) or address
specific problems of summarization such as avoiding re-
peated generations (Suzuki & Nagata, 2017). We use stan-
dard likelhood training for our model and a simple model
with six layers in the encoder and decoder each, hidden
size 256, batch size 128, and we trained on a single GPU in
one night. Table 6 shows that our likelhood trained model
outperforms the likelihood trained model (RNN MLE) of
Shen et al. (2016) and is not far behind the best models on
this task which benefit from task-specific optimization and

model structure. We expect our model to benefit from these
improvements as well.

6. Conclusion and Future Work
We introduce the first fully convolutional model for se-
quence to sequence learning that outperforms strong re-
current models on very large benchmark datasets at an or-
der of magnitude faster speed. Compared to recurrent net-
works, our convolutional approach allows to discover com-
positional structure in the sequences more easily since rep-
resentations are built hierarchically. Our model relies on
gating and performs multiple attention steps.

We achieve a new state of the art on several public trans-
lation benchmark data sets. On the WMT’16 English-
Romanian task we outperform the previous best result by
1.9 BLEU, on WMT’14 English-French translation we im-
prove over the LSTM model of Wu et al. (2016) by 1.6
BLEU in a comparable setting, and on WMT’14 English-
German translation we ouperform the same model by 0.5
BLEU. In future work, we would like to apply convolu-
tional architectures to other sequence to sequence learn-
ing problems which may benefit from learning hierarchical
representations as well.

Acknowledgements
We thank Benjamin Graham for providing a fast 1-D con-
volution, and Ronan Collobert as well as Yann LeCun for
helpful discussions related to this work.

References
Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Ge-

offrey E. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio,
Yoshua. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473,
2014.

Bojar, Ondej, Chatterjee, Rajen, Federmann, Christian,
Graham, Yvette, Haddow, Barry, Huck, Matthias,

Convolutional Sequence to Sequence Learning

Jimeno-Yepes, Antonio, Koehn, Philipp, Logacheva,
Varvara, Monz, Christof, Negri, Matteo, Névéol,
Aurélie, Neves, Mariana L., Popel, Martin, Post, Matt,
Rubino, Raphaël, Scarton, Carolina, Specia, Lucia,
Turchi, Marco, Verspoor, Karin M., and Zampieri, Mar-
cos. Findings of the 2016 conference on machine trans-
lation. In Proc. of WMT, 2016.

Bradbury, James, Merity, Stephen, Xiong, Caiming, and
Socher, Richard. Quasi-Recurrent Neural Networks.
arXiv preprint arXiv:1611.01576, 2016.

Cho, Kyunghyun, Van Merriënboer, Bart, Gulcehre,
Caglar, Bahdanau, Dzmitry, Bougares, Fethi, Schwenk,
Holger, and Bengio, Yoshua. Learning Phrase Represen-
tations using RNN Encoder-Decoder for Statistical Ma-
chine Translation. In Proc. of EMNLP, 2014.

Chorowski, Jan K, Bahdanau, Dzmitry, Serdyuk, Dmitriy,
Cho, Kyunghyun, and Bengio, Yoshua. Attention-based
models for speech recognition. In Advances in Neural
Information Processing Systems, pp. 577–585, 2015.

Collobert, Ronan, Kavukcuoglu, Koray, and Farabet,
Clement. Torch7: A Matlab-like Environment for Ma-
chine Learning. In BigLearn, NIPS Workshop, 2011.
URL http://torch.ch.

Dauphin, Yann N., Fan, Angela, Auli, Michael, and Grang-
ier, David. Language modeling with gated linear units.
arXiv preprint arXiv:1612.08083, 2016.

Dyer, Chris, Chahuneau, Victor, and Smith, Noah A. A
Simple, Fast, and Effective Reparameterization of IBM
Model 2. In Proc. of ACL, 2013.

Elman, Jeffrey L. Finding Structure in Time. Cognitive
Science, 14:179–211, 1990.

Gehring, Jonas, Auli, Michael, Grangier, David, and
Dauphin, Yann N. A Convolutional Encoder Model
for Neural Machine Translation. arXiv preprint
arXiv:1611.02344, 2016.

Glorot, Xavier and Bengio, Yoshua. Understanding the
difficulty of training deep feedforward neural networks.
The handbook of brain theory and neural networks,
2010.

Graff, David, Kong, Junbo, Chen, Ke, and Maeda,
Kazuaki. English gigaword. Linguistic Data Consor-
tium, Philadelphia, 2003.

Ha, David, Dai, Andrew, and Le, Quoc V. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep Residual Learning for Image Recognition. In
Proc. of CVPR, 2015a.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, pp. 1026–1034, 2015b.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of The 32nd International
Conference on Machine Learning, pp. 448–456, 2015.

Jean, Sébastien, Firat, Orhan, Cho, Kyunghyun, Memi-
sevic, Roland, and Bengio, Yoshua. Montreal Neural
Machine Translation systems for WMT15. In Proc. of
WMT, pp. 134–140, 2015.

Kalchbrenner, Nal, Espeholt, Lasse, Simonyan, Karen,
van den Oord, Aaron, Graves, Alex, and Kavukcuoglu,
Koray. Neural Machine Translation in Linear Time.
arXiv, 2016.

LeCun, Yann and Bengio, Yoshua. Convolutional networks
for images, speech, and time series. The handbook of
brain theory and neural networks, 3361(10):1995, 1995.

L’Hostis, Gurvan, Grangier, David, and Auli, Michael. Vo-
cabulary Selection Strategies for Neural Machine Trans-
lation. arXiv preprint arXiv:1610.00072, 2016.

Lin, Chin-Yew. Rouge: A package for automatic evalu-
ation of summaries. In Text Summarization Branches
Out: Proceedings of the ACL-04 Workshop, pp. 74–81,
2004.

Luong, Minh-Thang, Pham, Hieu, and Manning, Christo-
pher D. Effective approaches to attention-based neural
machine translation. In Proc. of EMNLP, 2015.

Meng, Fandong, Lu, Zhengdong, Wang, Mingxuan, Li,
Hang, Jiang, Wenbin, and Liu, Qun. Encoding Source
Language with Convolutional Neural Network for Ma-
chine Translation. In Proc. of ACL, 2015.

Mi, Haitao, Wang, Zhiguo, and Ittycheriah, Abe. Vocab-
ulary Manipulation for Neural Machine Translation. In
Proc. of ACL, 2016.

Miller, Alexander H., Fisch, Adam, Dodge, Jesse, Karimi,
Amir-Hossein, Bordes, Antoine, and Weston, Jason.
Key-value memory networks for directly reading docu-
ments. In Proc. of EMNLP, 2016.

Nallapati, Ramesh, Zhou, Bowen, Gulcehre, Caglar, Xi-
ang, Bing, et al. Abstractive text summarization us-
ing sequence-to-sequence rnns and beyond. In Proc. of
EMNLP, 2016.

http://torch.ch

Convolutional Sequence to Sequence Learning

Oord, Aaron van den, Kalchbrenner, Nal, and
Kavukcuoglu, Koray. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016a.

Oord, Aaron van den, Kalchbrenner, Nal, Vinyals, Oriol,
Espeholt, Lasse, Graves, Alex, and Kavukcuoglu, Koray.
Conditional image generation with pixelcnn decoders.
arXiv preprint arXiv:1606.05328, 2016b.

Over, Paul, Dang, Hoa, and Harman, Donna. Duc in con-
text. Information Processing & Management, 43(6):
1506–1520, 2007.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua.
On the difficulty of training recurrent neural networks.
In Proceedings of The 30th International Conference on
Machine Learning, pp. 1310–1318, 2013.

Rush, Alexander M, Chopra, Sumit, and Weston, Jason. A
neural attention model for abstractive sentence summa-
rization. In Proc. of EMNLP, 2015.

Salimans, Tim and Kingma, Diederik P. Weight nor-
malization: A simple reparameterization to acceler-
ate training of deep neural networks. arXiv preprint
arXiv:1602.07868, 2016.

Schuster, Mike and Nakajima, Kaisuke. Japanese and ko-
rean voice search. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2012 IEEE International Conference
on, pp. 5149–5152. IEEE, 2012.

Sennrich, Rico, Haddow, Barry, and Birch, Alexandra.
Neural Machine Translation of Rare Words with Sub-
word Units. In Proc. of ACL, 2016a.

Sennrich, Rico, Haddow, Barry, and Birch, Alexandra. Ed-
inburgh Neural Machine Translation Systems for WMT
16. In Proc. of WMT, 2016b.

Shazeer, Noam, Mirhoseini, Azalia, Maziarz, Krzysztof,
Davis, Andy, Le, Quoc, Hinton, Geoffrey, and Dean,
Jeff. Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer. ArXiv e-prints, January
2016.

Shen, Shiqi, Zhao, Yu, Liu, Zhiyuan, Sun, Maosong,
et al. Neural headline generation with sentence-wise op-
timization. arXiv preprint arXiv:1604.01904, 2016.

Srivastava, Nitish, Hinton, Geoffrey E., Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: a
simple way to prevent Neural Networks from overfitting.
JMLR, 15:1929–1958, 2014.

Sukhbaatar, Sainbayar, Weston, Jason, Fergus, Rob, and
Szlam, Arthur. End-to-end Memory Networks. In Proc.
of NIPS, pp. 2440–2448, 2015.

Sutskever, Ilya, Martens, James, Dahl, George E., and Hin-
ton, Geoffrey E. On the importance of initialization and
momentum in deep learning. In ICML, 2013.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence
to Sequence Learning with Neural Networks. In Proc. of
NIPS, pp. 3104–3112, 2014.

Suzuki, Jun and Nagata, Masaaki. Cutting-off redundant
repeating generations for neural abstractive summariza-
tion. arXiv preprint arXiv:1701.00138, 2017.

Waibel, Alex, Hanazawa, Toshiyuki, Hinton, Geoffrey,
Shikano, Kiyohiro, and Lang, Kevin J. Phoneme Recog-
nition using Time-delay Neural Networks. IEEE trans-
actions on acoustics, speech, and signal processing, 37
(3):328–339, 1989.

Wu, Yonghui, Schuster, Mike, Chen, Zhifeng, Le, Quoc V,
Norouzi, Mohammad, Macherey, Wolfgang, Krikun,
Maxim, Cao, Yuan, Gao, Qin, Macherey, Klaus, et al.
Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation. arXiv
preprint arXiv:1609.08144, 2016.

Yang, Zichao, Hu, Zhiting, Deng, Yuntian, Dyer, Chris,
and Smola, Alex. Neural Machine Translation
with Recurrent Attention Modeling. arXiv preprint
arXiv:1607.05108, 2016.

Zhou, Jie, Cao, Ying, Wang, Xuguang, Li, Peng, and Xu,
Wei. Deep Recurrent Models with Fast-Forward Con-
nections for Neural Machine Translation. arXiv preprint
arXiv:1606.04199, 2016.

Convolutional Sequence to Sequence Learning

A. Weight Initialization
We derive a weight initialization scheme tailored to the
GLU activation function similar to Glorot & Bengio
(2010); He et al. (2015b) by focusing on the variance of
activations within the network for both forward and back-
ward passes. We also detail how we modify the weight
initialization for dropout.

A.1. Forward Pass

Assuming that the inputs xl of a convolutional layer l and
its weights Wl are independent and identically distributed
(i.i.d.), the variance of its output, computed as yl = Wlxl+
bl, is

V ar
[
yl
]

= nlV ar
[
wlxl

]
(3)

where nl is the number inputs to the layer. For one-
dimensional convolutional layers with kernel width k and
input dimension c, this is kc. We adopt the notation in (He
et al., 2015b), i.e. yl, wl and xl represent the random vari-
ables in yl, Wl and xl. With wl and xl independent from
each other and normally distributed with zero mean, this
amounts to

V ar
[
yl
]

= nlV ar
[
wl
]
V ar

[
xl
]
. (4)

xl is the result of the GLU activation function
yal−1 σ(ybl−1) with yl−1 = (yal−1,y

b
l−1), and yal−1,y

b
l−1

i.i.d. Next, we formulate upper and lower bounds in or-
der to approximate V ar[xl]. If yl−1 follows a symmetric
distribution with mean 0, then

V ar
[
xl
]

= V ar
[
yal−1 σ(ybl−1)

]
(5)

= E
[(
yal−1 σ(ybl−1)

)2]− E2
[
yal−1 σ(ybl−1)

]
(6)

= V ar[yal−1]E
[
σ(ybl−1)2

]
. (7)

A lower bound is given by (1/4)V ar[yal−1] when expand-
ing (6) with E2[σ(ybl−1)] = 1/4:

V ar
[
xl
]

= V ar
[
yal−1 σ(ybl−1)

]
(8)

= V ar
[
yal−1

]
E2
[
σ(ybl−1)

]
+

V ar
[
yal−1

]
V ar

[
σ(ybl−1)

] (9)

=
1

4
V ar

[
yal−1

]
+ V ar

[
yal−1

]
V ar

[
σ(ybl−1)

]
(10)

and V ar[yal−1]V ar[σ(ybl−1)] > 0. We utilize the relation
σ(x)2 ≤ (1/16)x2 − 1/4 + σ(x) (Appendix B) to provide
an upper bound on E[σ(x)2]:

E[σ(x)2] ≤ E
[1

16
x2 − 1

4
+ σ(x)

]
(11)

=
1

16
E[x2]− 1

4
+ E[σ(x)] (12)

With x ∼ N (0, std(x)), this yields

E
[
σ(x)2

]
≤ 1

16
E
[
x2
]
− 1

4
+

1

2
(13)

=
1

16
V ar

[
x
]

+
1

4
. (14)

With (7) and V ar[yal−1] = V ar[ybl−1] = V ar[yl−1], this
results in

V ar
[
xl
]
≤ 1

16
V ar

[
yl−1

]2
+

1

4
V ar

[
yl−1

]
. (15)

We initialize the embedding matrices in our network with
small variances (around 0.01), which allows us to dismiss
the quadratic term and approximate the GLU output vari-
ance with

V ar[xl] ≈
1

4
V ar[yl−1]. (16)

If L network layers of equal size and with GLU activations
are combined, the variance of the final output yL is given
by

V ar[yL] ≈ V ar[y1]

 L∏
l=2

1

4
nlV ar[wl]

 . (17)

Following (He et al., 2015b), we aim to satisfy the condi-
tion

1

4
nlV ar

[
wl
]

= 1,∀l (18)

so that the activations in a network are neither exponen-
tially magnified nor reduced. This is achieved by initializ-
ing Wl from N (0,

√
4/nl).

A.2. Backward Pass

The gradient of a convolutional layer is computed via back-
propagation as ∆xl = Ŵlyl. Considering separate gradi-
ents ∆yal and ∆ybl for GLU, the gradient of x is given by

∆xl = Ŵ a
l ∆yal + Ŵ b

l ∆ybl . (19)

Ŵ corresponds to W with re-arranged weights to enable
back-propagation. Analogously to the forward pass, ∆xl,
ŵl and ∆yl represent the random variables for the values
in ∆xl, Ŵl and ∆yl, respectively. Note that W and Ŵ
contain the same values, i.e. ŵ = w. Similar to (3), the
variance of ∆xl is

V ar[∆xl] = n̂l

(
V ar[wal]V ar[∆yal] + V ar[wbl]V ar[∆y

b
l]
)
.

(20)
Here, n̂l is the number of inputs to layer l+1. The gradients
for the GLU inputs are:

∆yal = ∆xl+1 σ(ybl) and (21)

∆ybl = ∆xl+1y
a
l σ
′(ybl). (22)

Convolutional Sequence to Sequence Learning

The approximation for the forward pass can be used for
V ar[∆yal], and for estimating V ar[∆ybl] we assume an up-
per bound on E[σ′(ybl)

2] of 1/16 since σ′(ybl) ∈ [0, 14].
Hence,

V ar[∆yal]− 1

4
V ar[∆xl+1] ≤ 1

16
V ar[∆xl+1]V ar[ybl)]

(23)

V ar[∆ybl] ≤
1

16
∆V ar[∆xl+1]V ar[yal] (24)

We observe relatively small gradients in our network, typ-
ically around 0.001 at the start of training. Therefore, we
approximate by discarding the quadratic terms above, i.e.

V ar[∆yal] ≈ 1

4
V ar[∆xl+1] (25)

V ar[∆ybl] ≈ 0 (26)

V ar[∆xl] ≈
1

4
n̂lV ar[w

a
l]V ar[∆xl+1] (27)

As for the forward pass, the above result can be general-
ized to backpropagation through many successive layers,
resulting in

V ar[∆x2] ≈ V ar[∆xL+1]

 L∏
l=2

1

4
n̂lV ar[w

a
l]

 (28)

and a similar condition, i.e. (1/4)n̂lV ar[w
a
l] = 1. In the

networks we consider, successions of convolutional layers
usually operate on the same number of inputs so that most
cases nl = n̂l. Note that W b

l is discarded in the approx-
imation; however, for the sake of consistency we use the
same initialization for W a

l and W b
l .

For arbitrarily large variances of network inputs and activa-
tions, our approximations are invalid; in that case, the ini-
tial values for W a

l and W b
l would have to be balanced for

the input distribution to be retained. Alternatively, meth-
ods that explicitly control the variance in the network, e.g.
batch normalization (Ioffe & Szegedy, 2015) or layer nor-
malization (Ba et al., 2016) could be employed.

A.3. Dropout

Dropout retains activations in a neural network with a prob-
ability p and sets them to zero otherwise (Srivastava et al.,
2014). It is common practice to scale the retained activa-
tions by 1/p during training so that the weights of the net-
work do not have to be modified at test time when p is set to
1. In this case, dropout amounts to multiplying activations
x by a Bernoulli random variable r where Pr[r = 1/p] = p
and Pr[r = 0] = 1 − p (Srivastava et al., 2014). It holds
that E[r] = 1 and V ar[r] = (1− p)/p. If x is independent

of r and E[x] = 0, the variance after dropout is

V ar[xr] = E[r]2V ar[x] + V ar[r]V ar[x] (29)

=

(
1 +

1− p
p

)
V ar[x] (30)

=
1

p
V ar[x] (31)

Assuming that a the input of a convolutional layer has been
subject to dropout with a retain probability p, the varia-
tions of the forward and backward activations from §A.1
and §A.2 can now be approximated with

V ar[xl+1] ≈ 1

4p
nlV ar[wl]V ar[xl] and (32)

V ar[∆xl] ≈
1

4p
nlV ar[w

a
l]V ar[∆xl+1]. (33)

This amounts to a modified initialization of Wl from a nor-
mal distribution with zero mean and a standard deviation of√

4p/n. For layers without a succeeding GLU activation
function, we initialize weights from N (0,

√
p/n) to cali-

brate for any immediately preceding dropout application.

B. Upper Bound on Squared Sigmoid
The sigmoid function σ(x) can be expressed as a hyper-
bolic tangent by using the identity tanh(x) = 2σ(2x)− 1.
The derivative of tanh is tanh′(x) = 1 − tanh2(x), and
with tanh(x) ∈ [0, 1], x ≥ 0 it holds that

tanh′(x) ≤ 1, x ≥ 0 (34)∫ x

0

tanh′(x) dx ≤
∫ x

0

1 dx (35)

tanh(x) ≤ x, x ≥ 0 (36)

We can express this relation with σ(x) as follows:

2σ(x)− 1 ≤ 1

2
x, x ≥ 0 (37)

Both terms of this inequality have rotational symmetry w.r.t
0, and thus

(
2σ(x)− 1

)2 ≤ (1

2
x

)2

∀x (38)

⇔ σ(x)2 ≤ 1

16
x2 − 1

4
+ σ(x). (39)

C. Attention Visualization
Figure 3 shows attention scores for a generated sentence
from the WMT’14 English-German task. The model used
for this plot has 8 decoder layers and a 80K BPE vocabu-
lary. The attention passes in different decoder layers cap-
ture different portions of the source sentence. Layer 1, 3

Convolutional Sequence to Sequence Learning

and 6 exhibit a linear alignment. The first layer shows the
clearest alignment, although it is slightly off and frequently
attends to the corresponding source word of the previously
generated target word. Layer 2 and 8 lack a clear struc-
ture and are presumably collecting information about the
whole source sentence. The fourth layer shows high align-
ment scores on nouns such as “festival”, “way” and “work”
for both the generated target nouns as well as their preced-
ing words. Note that in German, those preceding words
depend on gender and object relationship of the respec-
tive noun. Finally, the attention scores in layer 5 and 7
focus on “built”, which is reordered in the German trans-
lation and is moved from the beginning to the very end of
the sentence. One interpretation for this is that as genera-
tion progresses, the model repeatedly tries to perform the
re-ordering. “aufgebaut” can be generated after a noun or
pronoun only, which is reflected in the higher scores at po-
sitions 2, 5, 8, 11 and 13.

Convolutional Sequence to Sequence Learning

Layer 1 Layer 2 Layer 3

Layer 4 Layer 5 Layer 6

Layer 7 Layer 8

Figure 3. Attention scores for different decoder layers for a sentence translated from English (y-axis) to German (x-axis). This model
uses 8 decoder layers and a 80k BPE vocabulary.

