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Abstract

Data-driven approaches for edge detection have proven
effective and achieve top results on modern benchmarks.
However, all current data-driven edge detectors require
manual supervision for training in the form of hand-labeled
region segments or object boundaries. Specifically, human
annotators mark semantically meaningful edges which are
subsequently used for training. Is this form of strong, high-
level supervision actually necessary to learn to accurately
detect edges? In this work we present a simple yet effective
approach for training edge detectors without human super-
vision. To this end we utilize motion, and more specifically,
the only input to our method is noisy semi-dense matches
between frames. We begin with only a rudimentary knowl-
edge of edges (in the form of image gradients), and alter-
nate between improving motion estimation and edge detec-
tion in turn. Using a large corpus of video data, we show
that edge detectors trained using our unsupervised scheme
approach the performance of the same methods trained with
full supervision (within 3-5%). Finally, we show that when
using a deep network for the edge detector, our approach
provides a novel pre-training scheme for object detection.

1. Introduction
The human visual system can easily identify perceptu-

ally salient edges in an image. Endowing machine vision
systems with similar capabilities is of interest as edges
are useful for diverse tasks such as optical flow [31],
object detection [40, 13], and object proposals [39, 46, 3].
However, edge detection has proven challenging. Early
approaches [14, 8, 15] relied on low-level cues such as
brightness and color gradients. Reasoning about tex-
ture [25] markedly improved results, nevertheless, accuracy
still substantially lagged human performance.

The introduction of the BSDS dataset [2], composed of
human annotated region boundaries, laid the foundations
for a fundamental shift in edge detection. Rather than rely
on complex hand-designed features, Dollár et al. [10] pro-
posed a data-driven, supervised approach for learning to

(a)	unsupervised	 semi-dense	 correspondence

(b)	motion	discontinuities	à image	edges (c)	image	edges		à motion	discontinuities

Figure 1. Our goal is to train an edge detector given only semi-
dense matches between frames (a). While motion discontinuities
imply the presence of image edges (b), the converse is not neces-
sarily true as distinct image regions may undergo similar motion
(c). In this work we exploit the sparsity of edges to overcome the
latter difficulty. We show that the signal obtained from matches
computed over a large corpus of video data is sufficient to train
top-performing edge detectors.

detect edges. Modern edge detectors have built on this idea
and substantially pushed the state-of-the-art forward using
more sophisticated learning paradigms [30, 23, 11, 44].

However, existing data-driven methods require strong
supervision for training. Specifically, in datasets such as
BSDS [2], human annotators use their knowledge of scene
structure and object presence to mark semantically mean-
ingful edges.1 Moreover, recent edge detectors use Image-
Net pre-training [5, 44]. In this paper, we explore whether
this is necessary: Is object-level supervision indispensable
for edge detection? Moreover, can edge detectors be trained
entirely without human supervision?

1Human annotation of edge structure in local patches (without context)
is quite noisy and is matched by machine vision approaches. Humans excel
when given context and the ability to reason about object presence [47].
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(3) train edge detector

(1) compute flow (2) compute motion edges

(4) compute edges

semi-dense matches
Figure 2. The only input to our approach is semi-dense matching results from [42]. During training we alternate between: (1) computing
flow based on the matches and edge maps (initialized to simple gradients), (2) computing motion edges from the flow fields (green: positive
edge samples; blue: discarded motion edges), (3) training an edge detector using the motion edges as supervision, and (4) recomputing
image edges using the new detector. The process is iterated on a large corpus of videos leading to increasingly accurate flow and edges.

We propose to train edge detectors using motion in place
of human supervision. Motion edges are a subset of image
edges, see Figure 1. Therefore motion edges can be used
to harvest positive training samples. On the other hand,
locations away from motion edges may also contain image
edges. Fortunately, as edges are sparse, simply sampling
such locations at random can provide good negative train-
ing data with few false negatives. Thus, assuming accu-
rate motion estimates, we can potentially harvest unlimited
training data for edge detection.

While it would be tempting to assume access to accu-
rate motion estimates, this is arguably an unreasonably
strong requirement. Indeed, optical flow and edge detec-
tion are tightly coupled. Recently, Revaud et al. proposed
EpicFlow [31]: given an accurate edge map [11] and semi-
dense matches between frames [42], EpicFlow generates a
dense edge-respecting interpolation of the matches. The
result is a state-of-the-art optical flow estimate.

This motivates our approach. We begin with only semi-
dense matches between frames [42] and a rudimentary
knowledge of edges (simple image gradients). We then
repeatedly alternate between computing flow based on the
matches and most recent edge maps and retraining an edge
detector based on signal obtained from the flow fields.
Specifically, at each iteration, we first estimate dense flow
fields by interpolating the matching results using the edge
maps obtained from the previous iteration. Given a large
corpus of videos, we next harvest highly confident motion
edges as positives and randomly sample negatives, and use
this data to train an improved edge detector. The process is
iterated leading to increasingly accurate flow and edges. An
overview of our method is shown in Figure 2.

We perform experiments with the Structured Edge

(SE) [11] and Holistic Edge (HE) [44] detectors. SE is
based on structured forests, HE on deep networks; SE is
faster, HE more accurate. Both detectors achieve state-of-
the-art results. The main result of our paper is that both
methods, trained using our unsupervised scheme, approach
the level of performance of fully supervised training.

Finally, we demonstrate that our approach can serve
as a novel unsupervised pre-training scheme for deep net-
works [41, 9]. Specifically, we show that when fine-
tuning a network for object detection [12], starting with
the weights learned for edge detection improves perfor-
mance over starting with a network with randomly initial-
ized weights. While the gains are modest, we believe this is
a promising direction for future exploration.

2. Related Work

Edge Detection: Early edge detectors were manually
designed to use image gradients [14, 8, 15] and later tex-
ture gradients [2]. Of more relevance to this work are
edge detectors trained in a data-driven manner. Since the
work of [10], which formulated edge detection as a binary
classification problem, progressively more powerful learn-
ing paradigms have been employed, including multi-class
classification [23], feature learning [30], regression [35],
structured prediction [11], and deep learning [20, 5, 44].
Recently, Weinzaepfel et al. [43] extended [11] to motion
edge estimation. These methods all require strong supervi-
sion for training. In this work we explore whether unsuper-
vised learning can be used instead (and as discussed select
[11, 44] for our experiments).

Optical Flow: The estimation of optical flow is a classic
problem in computer vision [18, 24]. A full overview is out-



side of our scope, instead, our work is most closely related
to methods that leverage sparse matches or image edges for
flow estimation [6, 42, 31]. In particular, as in [31], we use
edge-respecting sparse-to-dense interpolation of matches to
obtain dense motion estimates. Our focus, however, is not
on optical flow estimation, instead, we exploit the tight cou-
pling between edge and flow estimation to train edge detec-
tors without human supervision.

Perceptual Grouping using Motion: Motion plays a
key role for grouping and object recognition in the human
visual system [21]. In particular, Ostrovsky et al. [27] stud-
ied the visual skills of individuals recovering from congeni-
tal blindness and showed that motion cues were essential to
help facilitate the development of object grouping and rep-
resentation. Our work is inspired by these findings: we aim
to learn an edge detector using motion cues.

Learning from Video: There is an emerging interest
for learning visual representations using video as a super-
visory signal, for example by enforcing that neighboring
frames have a similar representation [26], learning latent
representations for successive frames [38], or learning to
predict missing or future frames [29, 36]. Instead of simply
enforcing various constraints on successive video frames,
Wang and Gupta [41] utilized object tracking and enforce
that tracked patches in a video should have a similar visual
representation. The resulting network generalizes well to
surface normal estimation and object detection. As we will
demonstrate, our approach can also serve as a novel unsu-
pervised pre-training scheme. However, while in previous
approaches the training objective was used as a surrogate
to encourage the network to learn a useful representation,
our primary goal is to train an edge detector and the learned
representation is simply a useful byproduct.

3. Learning Edges from Video
We start with a set of low level cues using standard

tools in computer vision, including point correspondences
and image gradients. We use DeepMatching [42] to obtain
semi-dense matches M between two consecutive frames
(I, I ′). DeepMatching computes correlations at different
locations and scales to generate the matches. Note that con-
trary to its name, the method involves no deep learning. For
the rest of the paper, we fix the matching results M .

Our proposed iterative process is described in Figure 2
and Algorithm 1. We denote the edge detector at iteration
t by Et. For each image Ij , we use Et

j and Gt
j to denote

its image edges and motion edges at iteration t. We initial-
ize E0

j to the raw image gradient magnitude of Ij , defined
as the maximum gradient magnitude over color channels.
The gradient magnitude is a simple approximation of image
edges, and thus serves as a reasonable starting point.

At each iteration t, we use EpicFlow [31] to generate
edge-preserving flow maps F t

j given matches Mj and pre-

Algorithm 1 Iterative Learning Procedure
Require: Pairs of frames (Ij , I ′j), matches Mj

1: E0 = gradient magnitude operator, E0
j = E0(Ij) ∀j

2: for t in 1...T do
3: Estimate flow F t

j using previous edge maps Et−1
j

F t
j = EpicF low(Ij , I

′
j ,Mj , E

t−1
j ) ∀j

4: Detect motion edges Gt
j by applying Et−1 to F t

j

Gt
j = Et−1(FlowToRgb(F t

j )) ∀j
5: Train new edge detector Et using motion edges Gt

j

Et = TrainEdgeDetector({Ij , Gt
j})

6: Apply edge detector Et to all frames
Et

j = Et(Ij) ∀j
7: end for
8: return ET and {ET

j , F
T
j , GT

j }

vious edges Et−1
j . We next apply Et−1 on a colored version

of F t
j to get an estimate of motion edges Gt

j . Gt
j is further

refined by aligning to superpixel edges. Next, for training
our new edge detector Et, we harvest positives instances
using a high threshold on Gt

j and sample random negatives
away from any motion edges.

The above process is iterated until convergence (typi-
cally 3 to 4 iterations suffice). At each iteration the flow
F t
j and edge maps Et

j and Gt
j improve. In the following

sections we describe the process in additional detail.

3.1. Method Details

EpicFlow: EpicFlow [31] takes as input an image pair
(I, I ′), semi-dense matches M between the images, and
an edge map E for the first frame. It efficiently com-
putes approximate geodesic distance defined by E between
all pixels and matched points in M . For every pixel, the
geodesic distance is used to find its K nearest matches,
and the weighted combination of their motion vectors deter-
mines the source pixel’s motion. A final optimization is
performed by a variational energy minimization to produce
an edge-preserving flow map with high accuracy. We refer
readers to [31] for additional details.

Motion Edge Detection: Detecting motion edges given
optical flow estimates can be challenging, see Figure 3.
Weinzaepfel et al. [43] showed that simply computing gra-
dients over a flow map produces unsatisfactory results and
instead proposed a data-driven approach for motion edge
detection (for a full review of earlier approaches see [43]).
In this work we employ a simpler yet surprisingly effective
approach. We use an edge detector trained on image edges
for motion edge estimation by applying the (image) edge
detector to a color-coded flow map. The standard color-
coding scheme for optical flow maps 2D flow vectors into
a 3D color space by encoding flow orientation via hue and
magnitude via saturation [4]. Motion edges become clearly
visible in this encoding (3b) (we tried other color spaces
but HSV worked best). Running an edge detector E on the



(c) motion edges G (d) positive samples

(b) optical flow F(a) image pair (I,I’)

Figure 3. Illustration of motion edge detection. (a) Input images.
(b) Colorized EpicFlow results F on the input images. (c) Motion
edges G computed by applying an edge detector E to the colorized
flow. (d) Motion edges G after alignment, non-maximum suppres-
sion, and aggressive thresholding. The aligned motion edge map
G serves as a supervisory signal for training an edge detector.

colored flow map gives us a simple mechanism for motion
edge detection (3c). Moreover, in our iterative scheme, as
both our edge detector Et−1 and flow estimate F t improve
with each iteration t, so do our resulting estimates of motion
edges Gt = Et−1(FlowToRgb(F t)).

Motion Edge Alignment: Motion edges computed from
flow exhibit slight misalignment with their corresponding
image edges. We found that this can adversely affect train-
ing, especially for HE which produces thick edges. To
align the motion edges we apply a simple heuristic: after
applying non-maximum suppression and thresholding, we
align the motion edges to superpixels detected in the color
image. Specifically, we utilize SLIC super-pixels [1], which
cover over 90% of all image edges, and match motion and
superpixel edge pixels using bipartite matching (also used
in BSDS evaluation) with a tolerance of 3 pixels. Matched
motion edge pixels are shifted to the superpixel edge loca-
tions and unmatched motion edges are discarded. This
refinement, illustrated in Figure 3d, helps to filter out edges
with weak image gradients and improves localization.

We emphasize that our goal is not to detect all motion
edges. A subset with high precision is sufficient for training.
Given a large video corpus, high-precision motion edges
should provide a dense coverage of image edges. However,
due to our alignment procedure our sampling is slightly
biased. In particular, motion edges with weak correspond-
ing image edges are often missing. This limitation and its
impact on performance is discussed in Section 4.

Training E: The aligned motion edge maps Gt serve as

a supervisory signal for training an edge detector Et. Pos-
itives are sampled at locations with high scoring motion
edges in Gt. Negatives are uniformly sampled from loca-
tion with motion edges below a small threshold. Note that
locations with ambiguous motion edge presence (Gt with
intermediate scores) are not considered in training. As we
will demonstrate, samples harvested in this manner provide
a strong supervisory signal for training E .

Video Dataset: For training, we combine videos from
two different datasets: the Video Segmentation Benchmark
(VSB) [16] and the YouTube Object dataset [28]. We use
all HD videos (100 + 155) in both datasets. We drop all
the annotations for YouTube object dataset. This collection
of videos (∼250) contains more than 500K frames and has
sufficient diversity for training an edge detector.

Frame Filtering: Given the vast amount of available
data, we apply a simple heuristic to select the most promis-
ing frames for motion estimation. We first fit a homography
matrix between consecutive frames using ORB descriptor
matches [32] (which are fast to compute). We then remove
frames with insufficient matches, very slow motion (max
displacement <2 pixels), very large motion (average dis-
placement >15 pixels), or a global translational motion.
These heuristics remove frames where optical flow may be
either unreliable or contain few motion edges. For all exper-
iments we used this pruned set of ∼50K frames.

3.2. Edge Detector Details

We experiment with the Structured Edge (SE) [11] and
Holistic Edge (HE) [44] detectors, based on structured
forests and deep networks, respectively. SE has been used
extensively due to its accuracy and speed, e.g. for flow esti-
mation [31] and object proposals [46, 3]. HE is more recent
but achieves the best reported results to date. When trained
using our unsupervised scheme, both methods approach
similar performance as when trained with full supervision.

Structured Edges (SE): SE extracts low-level image
features, such as color and gradient channels, to predict
edges. The method learns decision trees by using struc-
tured labels (patch edge maps) to determine the split func-
tion at each node. During testing, each decision tree maps
an input patch to a local edge map. The final image edge
map is the average of multiple overlapped masks predicted
by each tree at each location, leading to a robust and smooth
result. We use the same parameters as in [11] for training.
The forest has 8 trees with maximum depth of 64. Each
tree is trained using a random subset (25%) of 106 patches,
with equal number of positives and negatives. During train-
ing, we convert a local edge map to a segmentation mask as
required by SE by computing connected components in the
edge patch. We discard patches that contain edge fragments
that do not span the whole patch (which result in a single
connected component). During each iteration of training,



the forest is learned from scratch. During testing, we run
SE over multiple scales with sharpening for best results.

Holistic Edges (HE): HE uses a modified VGG-16 net-
work [34] with skip-layer connections and deep supervi-
sion [22]. Our implementation generally follows [44]. We
remove all fully connected layers and the last pooling layer,
resulting in an architecture with 13 conv and 4 max pool-
ing layers. Skip-layers are implemented by attaching linear
classifiers (1×1 convolutions) to the last conv layer of each
stage, their outputs are averaged to generate the final edge
map. In our implementation, we remove the deep supervi-
sion (multiple loss functions attached to different layers) as
we found that a single loss function has little performance
penalty (.785 vs .790 in ODS score) but is easier to train.

We experimented with both fine-tuning a network pre-
trained on ImageNet [33] and training a network from
scratch (random initialization). For fine-tuning, we use
the same hyper-parameter as in [44] with learning rate
1e−6, weight decay .0002, momentum .9, and batch size
10. When training from scratch, we add batch normaliza-
tion [19] layers to the end of every conv block. This accel-
erates training and also improves convergence. We also
increase learning rate (1e−5) and weight decay (.0005)
when training from scratch. We train the network for 40
epochs in each iteration, then reduce learning rate by half.
Unlike for SE, we can reuse the network from previous iter-
ations as the starting point for each subsequent iteration.

The somewhat noisy labels, in particular missing pos-
itive labels, prove to be challenging for training HE. The
issue is partially alleviated by discarding ambiguous sam-
ples during back propagation. Furthermore, unlike in [44],
we randomly select negative samples (40× as many nega-
tives as positives) and discard negatives with highest loss
(following the same motivation as in [37]). Without these
steps for dealing with noisy labels convergence is poor.

4. Experiments and Results
Our method produces motion edges Gt, image edges Et,

and optical flow F t at each iteration t. We provide an exten-
sive benchmark for each task tested with two different edge
detectors (SE and HE). Our main result is that the image
edge detectors, trained using videos only, achieve compa-
rable results as when trained with full supervision. As a
byproduct of our approach, we also generate competitive
optical flow and motion edge results. Finally, we show
that pre-training networks using video improves their per-
formance on object detection over training from scratch.

4.1. Motion Edge Detection

While our focus is not on motion edge detection, identi-
fying motion edges reliably is important as motion edges
serve as our only source of supervision. Thus our first
experiment is to benchmark motion edges.

Method ODS OIS AP P20
HUMAN .63 .63 - -
SE-IMAGE .45 .48 .33 .39
HE-IMAGE .47 .52 .35 .49
EPICFLOW .39 .47 .33 .55
GALASSO [16] .34 .43 .23 .34
WEINZAEPFEL [43] .53 .55 .37 .71
SE-VIDEO .44 .48 .34 .67
HE-VIDEO .45 .47 .32 .66

Table 1. Motion edge results on the VSB benchmark. See text.

We use the Video Segmentation Benchmark (VSB) [16]
which has annotated ground truth motion edges every 20
frames. We report results on the 282 annotated frames in
the test set (we remove frames without motion edges and
the final frame of each video as [43] requires 3 frames).
We evaluate using three standard metrics [2]: fixed con-
tour threshold (ODS), per-image best threshold (OIS), and
average precision (AP). As we are concerned about the high
precision regime, we introduce an additional measure: pre-
cision at 20% recall (P20). Non-maximum suppression is
applied to all motion edges prior to evaluation.

In Table 1 we report results of four baselines and the
motion edges GT obtained from the final iteration of our
approach (SE/HE-VIDEO). The baselines include: image
edges (SE/HE-IMAGE), gradient magnitude of optical flow
(EPICFLOW), a method which combines superpixel segmen-
tation with motion cues (GALASSO [16]), and a recent data-
driven supervised approach (WEINZAEPFEL [43]).

Our method, albeit simple, has a precision .66∼.67 at
20% recall, only slightly worse than [43], even though it
was not trained for motion edge detection. It substantially
outperforms all other baselines in the high precision regime.
While our goal is not motion edge detection per-se, this
result is important as it enables us to obtain high quality
positive samples for training an image edge detector.

4.2. Image Edge Detection

We next investigate edge detection performance. Results
are reported on the Berkeley Segmentation Dataset and
Benchmark (BSDS) [25, 2], composed of 200 train, 100
validation, and 200 test images. Each image is annotated
with ground truth edges. We again evaluate accuracy using
the same three standard metrics: ODS, OIS and AP.

Can an image edge detector be trained using motion
edges? Our first experiment tests this question. We use all
ground truth motion edges available in VSB (591 images)
to train both SE and HE. The results are reported in Table 2
(SE-VSB, HE-VSB). For both methods, results are within 2-4
points ODS compared to training with image edge supervi-
sion (SE-BSDS, HE-BSDS). Our results suggest that using
motion edges to learn an image edge detector is feasible.

We next present results using videos as the supervi-
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Method ODS OIS AP
HUMAN .80 .80 -
SE-BSDS .746 .767 .803
SE-VSB .722 .744 .757
SE-VIDEO .724 .748 .763
HE-BSDS .785 .803 .791
HE-VSB .745 .772 .769
HE-VIDEO .748 .770 .772
HE†-BSDS .760 .774 .790
HE†-VSB .719 .735 .751
HE†-VIDEO .726 .745 .761

Table 2. Edge detection results on BSDS test set. We report results
for SE and HE using three training scenarios: BSDS, VSB, and
VIDEO (unsupervised). HE uses the VGG network pre-trained on
ImageNet, HE† indicates that network is trained from scratch.

sory signal (SE-VIDEO, HE-VIDEO). SE-VIDEO achieves an
ODS of .724 compared to .746 for the supervised case (SE-
BSDS). Results for HE are similar (.748 versus .785). As
these results show, using video supervision achieves com-
petitive results (within 3-5%). Interestingly, learning from
video slightly outperforms training using the ground truth
motion edges. We attribute this to the small size of VSB.

For HE, we experiment with starting with an ImageNet
pre-trained model (HE) and training from scratch (HE†).
Pre-training on ImageNet benefits HE across all training
scenarios. This is encouraging as it implies that object level
knowledge is useful for edge detection. On the other hand,
our video supervision scheme also benefits from ImageNet
pre-training, thus implying that in our current setup we are
not training the model to its full potential.

To probe how performance evolves, we plot the ODS
scores at each iteration for both methods in Figure 4. Raw
image gradient at iteration 0 has ODS of .543 (not shown).
Our iterative process provides a significant improvement
from the image gradient, with most of the gains coming in
the first iteration. Performance saturates after about 4 itera-
tions (for the last iteration, we use 4 million samples for SE
and 80 epochs for HE, which slightly increases accuracy).

We provide visualizations of edge results (before NMS)
in Figure 5. SE misses some weak edges but edges are
well aligned to the image content. HE generally produces
thicker edges due to use of downsampled conv feature maps
which makes it difficult to produce sharp image edges.
HE-VIDEO/HE†-VIDEO results have thinner edges than HE-
BSDS/HE†-BSDS, potentially due to the sampling strategy
used for training with motion edges. When training using
video, we also observe that the edge detection output is less
well localized and more likely to miss weak edges, which
likely accounts for much of the performance differences.

4.3. Optical Flow

We benchmark optical flow results on the Middlebury [4]
and MPI Sintel [7] datasets. Middlebury is widely used and
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Figure 4. Convergence of ODS and AEE over iterations. See text.

Contour MPI-Sintel Middlebury
GT motion edges 3.588 -
SE-BSDS 3.686 .380
SE-VIDEO 3.681 .385
HE-BSDS 3.608 .298
HE-VIDEO 3.773 .308
HE†-VIDEO 3.896 .390

Table 3. Accuracy of EpicFlow with various edge maps (AEE).

consists of complex motions with small displacements. Sin-
tel is obtained from animated sequences and features large
displacements and challenging lighting conditions. We use
the ‘final’ version of Sintel and test on the train set with pub-
lic ground truth. As our goal is to test the quality of gener-
ated edge maps, we focus only on variants of EpicFlow [31],
the highest performing method on Sintel as of CVPR 2015.

Table 3 shows the average endpoint error (AEE) of
EpicFlow using different edge maps for Sintel and Middle-
burry. Most edge maps give rise to relatively similar results
(AEE around 3.6∼3.8) on Sintel. In particular, originally
EpicFlow used SE-BSDS edges; the results with SE-VIDEO
edges are nearly identical. Top results are obtained with HE-
BSDS, while HE-VIDEO and HE†-VIDEO are slightly worse.
On Middleburry the method rankings are similar.

As an upper bound, we also include EpicFlow given
ground truth (GT) motion edges (derived from the ground
truth flow). Accuracy is only slightly better than with the
best learned edge maps. This suggests that the performance
of EpicFlow is saturated given the current matches.

Finally, in Figure 4 we plot AEE on Sintel for each itera-
tion. All methods improve over the initial flow (AEE 4.016,
not shown) and results again saturate after a few iterations.

4.4. Object Detection

Finally, we test whether our unsupervised training
scheme for edge detection can be used to pre-train a net-
work for object detection. The question of whether strong
supervision is necessary for learning a good visual represen-
tation for object detection is of much recent interest [41, 9].
While not the focus of our work, we demonstrate that our
scheme can likewise be used for network initialization.

For these experiments, we use the HE† edge detector
(without ImageNet pre-training). We perform experiments
using PASCAL VOC 2007 [12] and the Fast R-CNN [17]



pre-training mAP
IMAGENET 66.9
NONE 15.6
HE†-BSDS 42.1
HE†-VIDEO 44.2

pre-training mAP
IMAGENET 58.6
NONE 38.2
HE†-BSDS 41.4
HE†-VIDEO 41.1

Table 4. Object detection results (mean AP) on PASCAL VOC
2007 test using VGG (left) and ZF (right). See text for details.

object detector with proposals from [39]. Results are evalu-
ated by mean Average Precision (mAP). We compare results
using two networks, VGG [34] and ZF [45], and four pre-
training schemes: ImageNet pre-training; no pre-training;
pre-trained on BSDS (HE†-BSDS), and pre-trained using
video (HE†-VIDEO). All networks are fine-tuned using the
train-val set for 40K iterations (120K iterations when train-
ing from scratch). Results are summarized in Table 4.

VGG Results: We attempted to train VGG [34] from
scratch on VOC (with various learning rates plus batch nor-
malization and dropout) but failed to obtain meaningful
results. Even after 120K iterations detection performance
remains poor (∼15 mAP). When the network is pre-trained
on BSDS for edge detection, we were able to achieve 42.1
mAP on PASCAL. Interestingly, when training using video,
we observe a further 2 point improvement in mAP (even
though the same network is inferior for edge detection).

ZF Results: We also experimented with training a
smaller ZF network [45] which has only 5 convolutional
layers. We modify the network slightly for edge detec-
tion to facilitate the alignment between outputs from differ-
ent layers2. With ImageNet pre-training, Fast R-CNN with
our modified ZF network achieves 58.6 mAP on PASCAL,
which is close to the ZF result originally reported in [17].
With no pre-training, mAP drops to 38.2. Pre-trained for
edge detection, either with or without supervision, improves
results by ∼3 mAP over training from scratch.

Overall we conclude that pre-training for edge detection
(with or without supervision) improves the performance of
training an object detector from scratch. However, Ima-
geNet pre-training still achieves substantially better results.

4.5. Limitations

Why doesn’t unsupervised training outperform super-
vised training for edge detection? In theory, a sufficiently
large corpus of video should provide an unlimited train-
ing set and an edge detector trained on this massive corpus
should outperform the much smaller supervised training set.
However, there are a number of issues that currently limit

2We change kernel size of all pooling layers to 2 and modify padding to
3 and 2 in conv1 and conv2, respectively. We also attach classifiers (1× 1
convs) on all conv layers and up-sample and merge the results into a single
edge map as in [44]. Finally, when training from scratch, we add batch
normalization after every conv layer. The ZF network has an ODS of .715
when trained using BSDS and .681 when trained using videos.

performance. (1) Existing flow methods are less accurate at
weak image edges, in addition, our alignment scheme also
removes weak edges. Thus weak image edges are missing
from our training set. (2) Further improving image edges
does not improve optical flow, see Table 1. We conjecture
that the matches between frames are the limiting factor for
EpicFlow and until these are improved neither optical flow
nor edges will improve in the current scheme. (3) Train-
ing is harmed by noisy labels, and in particular, the missing
positive labels. The false negatives, if not handled properly,
tend to dominate the gradients in the late stages of training.

Is the unsupervised learning scheme capturing object-
level information? The extent of an object is defined by
its edges and conversely many edges can only be identi-
fied with knowledge of objects. Our results on both edge
and object detection support this connection: on one hand,
ImageNet pre-training is useful for edge detection, possibly
because it injects object-level information into the network.
On the other hand, pre-training a network for edge detec-
tion also improves object detection. In principle, an edge
detection network has to learn high-level shape informa-
tion, which might explain the effectiveness of pre-training.
However, we observe that pre-training on ImageNet still
benefits edge detection under all scenarios; moreover, Ima-
geNet pre-training is still substantially better than video
pre-training for object detection. Hence, perhaps unsurpris-
ingly, the current unsupervised scheme is not as effective as
ImageNet pre-training at capturing object level information.

5. Discussion
In this work, we proposed to harvest motion edges to

learn an edge detector from video without explicit super-
vision. We developed an iterative process that alternated
between updating optical flow using edge results, and learn-
ing an edge detector based on the flow fields, leading to
increasingly accurate edges and flows.

The main result of our paper is that edge detectors,
trained using our unsupervised scheme, approach the same
level of performance as fully supervised training.

We additionally demonstrated our approach can serve a
novel unsupervised pre-training scheme for deep networks.
While the gains from pre-training were modest, we believe
this is a promising direction for future exploration.

In the long run we believe that unsupervised learning of
edge detectors has the potential to outperform supervised
training as the unsupervised approach has access to unlim-
ited data. Our work is the first serious step in this direction.
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Figure 5. Illustration of edge detection results on five sample images (same as used in [11]). The first two rows show the original image
and ground truth. The second and third rows are results from SE, trained using BSDS or VIDEO. The remaining rows show the results of
variants of HE on BSDS or VIDEO. HE† indicates that the network is trained from scratch. Use viewer zoom functionality to see fine details.
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