
DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks

Paper #235, 14 pages

ABSTRACT
Web applications have now become so sophisticated that ren-
dering a typical page may require hundreds of intra-datacenter
flows. At the same time, web sites must meet strict page cre-
ation deadlines of 200-300ms to satisfy user demands for in-
teractivity. Long-tailed flow completion times make it chal-
lenging for web sites to meet these constraints. They are
forced to choose between rendering a subset of the complex
page, or delay its rendering, thus missing deadlines and sac-
rificing either quality or responsiveness. Either option leads
to potential financial loss.

In this paper, we present a new cross-layer network stack
aimed at reducing the long tail of flow completion times. The
approach exploits cross-layer information to reduce packet
drops, prioritize latency-sensitive flows, and evenly distribute
network load, effectively reducing the long tail of flow com-
pletion times. We evaluate our approach through NS-3 based
simulation and Click-based implementation demonstrating
our ability to consistently reduce the tail across a wide range
of workloads. We commonly achieve reductions of over 50%
in 99.9th percentile flow completion times without signifi-
cantly impacting the median.

1. INTRODUCTION
Web sites have grown complex in their quest to provide

increasingly rich and dynamic content. A typical Facebook
page consists of a timeline-organized “wall" that is write-
able by the user and her friends, a real-time cascade of friend
event notifications, a chat application listing friends currently
on-line, and of course, advertisements selected by displayed
content. Modern web pages such as these are made up of
many components, generated by independent subsystems and
“mixed" together to provide a rich presentation of informa-
tion.

Building such systems is not easy. They exploit high-level
parallelism to assemble the independent page parts in a timely
fashion, and present these incrementally, subject to deadlines
to provide an interactive response. The final mixing system
must wait for all subsystems to deliver some of their content,
potentially sacrificing responsiveness if a small number of
subsystems are delayed. Alternatively, it must present what
it has at the deadline, sacrificing page quality and wasting
resources consumed in creating parts of a page that a user
never sees.

In this paper, we investigate how the network complicates

such application construction, because of the high variation
in performance of the network flows underlying their dis-
tributed workflows. By improving the statistics of network
flow completion, in particular by reducing the long flow com-
pletion tail, the application gains better worst case perfor-
mance from the network. Applying the end-to-end princi-
ple, while the mixer software must still deal with subsystems
that fail to respond by the deadline, an underlying network
that yields better flow statistics reduces the conservativeness
of time-outs while reducing the frequency with which they
are triggered. The ultimate application-layer result is better
quality and responsiveness of presented pages.

Deadlines are an essential constraint on how these systems
are constructed. Experiments at Amazon [25] demonstrated
that failing to provide a highly interactive web site leads to
significant financial loss. Increasing page presentation times
by as little as 100 ms significantly reduces user satisfaction.
To meet these demands, web sites seek to meet deadlines of
200-300 ms 99.9% of the time [13, 33].

Highly variable flow completion times complicate the meet-
ing of interactivity deadlines. Application workflows that span
the network depend on the performance of the underlying
network flows. Packet arrival pacing is dictated by roundtrip
delays and congestion can significantly affect performance.
While datacenter network roundtrip times can be as low as
250µs, in the presence of congestion, these delays can grow
by two orders of magnitude, forming a long tail distribu-
tion [13]. Average roundtrip times of hundreds of microsec-
onds can occasionally take tens of milliseconds, with impli-
cations for how long a mixer application must wait before
timing-out on receiving results from its subsystems.

Flash congestion is the culprit and it cannot be managed
through conventional transport-layer means. Traffic bursts
commonly cause packet losses and retransmissions [13]. Un-
even load balancing often causes a subset of flows to ex-
perience unnecessarily high congestion [12]. The absence
of traffic prioritization causes latency-sensitive foreground
flows to wait behind latency-insensitive background flows
[33]. Each contributes to increasing the long tail of flow
completion. While partial solutions exist [12, 13, 29, 33], no
existing approach solves the whole problem. Fortunately, dat-
acenter networks already contain the key enabling technol-
ogy to reduce the long flow completion tail. They employ
high-speed links and a scaled-out network topology, pro-
viding multiple paths between every source and destination
[11, 22, 23].

1

Flash congestion can be reduced if it can be detected and if
network-layer alternatives can be exploited quickly enough.
We address this challenge by constructing a cross-layer net-
work stack that quickly detects congestion at lower network
layers, to drive upper layer routing decisions, to find alter-
native lower-congestion paths to destinations.

In this paper, we present the implementation and experi-
mental evaluation of DeTail. DeTail is a cross-layer network
stack design to reduce long-tailed flow completions in data-
center networks. It provides an effective network foundation
for enabling mixer applications to assemble their complex
content more completely and within responsiveness time con-
straints. Our key contributions of this work are:

• Quantification of the impact of long-tailed flow com-
pletion times on different datacenter workflows;

• Assessment of the causes of long-tailed flow comple-
tion times;

• A cross-layer network stack that addresses them;

• Implementation-validated simulations demonstrating De-
Tail’s reduction of 99.9th percentile flow completion
times by over 50% for a range of workloads without
significantly increasing the median

In the following section, we analyze how long-tailed flow
completion times affect workflows’ interactive deadlines. In
Section 3, we describe the causes of long-tailed flow com-
pletion times and the inadequacy of partial solutions. In Sec-
tion 4, we introduce the cross-layer network-based approach
DeTail uses to overcome these issues. In Section 5, we de-
scribe the NS-3-based simulation [8] and Click-based imple-
mentation [26] with which we evaluate DeTail. We evaluate
DeTail in Section 6, demonstrating reduced flow completion
times for a wide range of workloads. We discuss various as-
pects of DeTail in Section 7. We describe how DeTail com-
pares with prior work in Section 8 and conclude in Section 9.

2. IMPACT OF THE LONG TAIL
In this section, we begin by analyzing datacenter network

traffic measurements, describing the phenomenon of the long
tail. Next, we present two workflows commonly used by
page creation subsystems and quantify the impact of the long
flow completion time tail on their ability to provide rich, in-
teractive content. We compare this with the performance that
could be achieved with shorter-tailed distributions. We con-
clude this section with a discussion of how to quantify the
long tail.

2.1 Traffic Measurements
Recently, Microsoft researchers [13] published datacen-

ter traffic measurements for production networks performing
services like web search. These traces captured three traffic
types: (i) soft real-time queries, (ii) urgent short messages,
and (iii) large deadline-insensitive background updates. Fig-
ure 1 reproduces graphs from [13], showing the distribution

0 5 10 15
0

0.5

1

msecs

C
D

F
 o

f
R

T
T

normal

measured

(a) Complete Distribution

0 5 10 15
0.9

0.95

1

msecs

C
D

F
 o

f
R

T
T

normal

measured

(b) 90th-100th Percentile

Figure 1: CDF of RTTs from the worker to the aggregator. We compare the
Microsoft’s measured distribution [13] with a synthetic normal one having
a 50% larger median.

of measured round-trip-times (RTTs) from worker nodes to
aggregators. The former typically communicate with mid-
level aggregators (MLAs) located on the same rack. This
graph represents the distribution of intra-rack RTTs.

Figure 1 shows that while the measured intra-rack RTTs
are typically low, congestion causes them to vary by two or-
ders of magnitude, forming a long-tail distribution. In this
particular environment, intra-rack RTTs take as little as 61µs
and have a median duration of 334µs. But, in 10% of the
cases, RTTs take over 1ms. In fact, RTTs can be as high
as 14ms. Since these RTTs are the measured time between
the transmission of a TCP packet and the receipt of its ac-
knowledgment, the variation in RTTs is caused primarily by
congestion.

For comparison, Figure 1 includes a synthetic distribution
of RTTs following a normal distribution. While we set this
distribution to have a median value that is 50% higher than
that of the measured one, it has a much shorter tail.

As a measured distribution of datacenter flow comple-
tion times is unavailable, we conservatively assume that each
flow takes one RTT.

2.2 Impact on Workflows
Here we introduce the partition-aggregate and sequential

workflows commonly used by page creation subsystems. For
both workflows, we compare the impact of the long-tailed
measured distribution with a shorter-tailed one. For this com-
parison, we focus on 99.9th percentile performance as this is
the common metric used for page creation [13, 33]. We see
that a long-tailed distribution performs significantly worse
than a shorter-tailed distribution, even when the latter has a
higher median. We conclude this analysis with the key take-
aways.

2.2.1 Partition-Aggregate
Partition-aggregate workflows are used by subsystems such

as web search. Top-level aggregators (TLAs) receive requests.
They divide (partition) the computation required to perform
the request across multiple mid-level aggregators (MLAs),
who further partition computation across worker nodes. Worker
nodes perform the computation in parallel and send their re-
sults back to their MLA. Each MLA combines the results it

2

0 2 4 6
0

0.5

1

Number of Missed Deadlines

C
D

F

measured

(a) 40 workers

0 5 10 15 20
0

0.5

1

Number of Missed Deadlines

C
D

F

measured

(b) 400 workers

Figure 2: Probability that a workflow will have a certain number of workers
miss their 10ms deadline. All workers would meet their deadlines if RTTs
followed the normal distribution.

0 200 400 600
0

200

400

600

800

Number of Sequential Data Transfers

C
o

m
p

le
ti
o

n
 T

im
e

 (
m

s
)

normal

measured

Figure 3: 99.9th percentile completion times of sequential workflows. A
web site could use twice as many sequential request per page creation under
a shorter-tailed distribution.

receives and forwards them on to the TLA.
To ensure that the response is provided in a timely manner,

it is common practice to give worker nodes as little as 10ms
to perform their computation and deliver their result [13].
If a worker node does not meet its deadline, its results are
typically discarded, ultimately degrading the quality of the
response.

To assess the impact of the measured RTT distribution on
partition-aggregate workers meeting such deadlines, we ana-
lyze two hypothetical workflows. One has 40 workers while
the other has 400. In Figure 2, we show the probability that
a workflow will have a certain number of workers miss their
deadlines. We assigned completion times to each worker by
sampling from the measured RTT. Those with completion
times greater than 10ms were considered to have missed
their deadlines. We performed this calculation 10,000 times.
Under the measured distribution, at the 99.9th percentile, a
40-worker workflow has 4 workers (10%) miss their dead-
lines, while a 400-worker workflow has 14 (3.50%) miss
theirs. Had RTTs followed the normal distribution, no work-
ers would have missed their deadlines. This is despite the
distribution having a 50% higher median than the measured
one. This shows the hazard of designing for the median rather
than long-tail performance.

These results assume that worker nodes do not spend any
time computing the result they transmit. As the pressure for
workers to perform more computation increases, the fraction
of workers missing their deadlines will increase as well.

2.2.2 Sequential
In sequential workflows, a single front-end server fetches

data from back-end servers (datastores) for every page cre-
ation. Future requests depend on the results of previous ones.

To quantify the impact of the long tail, we generated se-
quential workflows with varying numbers of data retrievals.
We assumed that each data retrieval would use one flow and
obtained values for retrievals by sampling from the appropri-
ate distribution in Figure 1. We took the completion time of
sequential workflows to be the sum of the randomly gen-
erated data retrieval times. We performed this calculation
10,000 times.

In Figure 3, we report 99.9th percentile completion times
for different RTT distributions. Under the measured RTT
distribution, to meet 200ms page creation deadlines, web
sites are limited to less than 150 sequential data retrievals
per page creation. Had RTTs followed the normal distribu-
tion, web sites could employ more than 350 sequential data
retrievals per page. This is despite the distribution having a
50% higher median than the measured one. Again, designing
for the median rather than long-tail performance is a mistake.

2.2.3 Takeaways
Long-tailed RTT distributions make it challenging for work-

flows used by page creation subsystems to meet interactivity
deadlines. While events at the long tail occur rarely, work-
flows use so many flows, that it is likely that several will
experience long delays for every page creation. Hitting the
long tail is so significant that workflows actually perform
better under distributions that have higher medians but shorter
tails.

The impact is likely to be even greater than that presented
here. Our analysis did not capture packet losses and retrans-
missions that are likely to cause more flows to hit the long
tail.

Facebook engineers tell us that the long tail of flow com-
pletions forces their applications to choose between two poor
options. They can set tight data retrieval timeouts for retry-
ing requests. While this increases the likelihood that they
will render complete pages, long tail flows generate spuri-
ous requests that increase server load. Alternatively, they can
use conservative timeouts that avoid spurious requests, but
limit complete web page rendering by waiting too long for
retrievals that never arrive. A network that reduces the flow
completion time tail allows such applications to use tighter
timeouts to render more complete pages without increasing
server load.

2.3 Quantifying the Tail
Median flow completion time is an insufficient indicator

of workflow performance. However, determining the right
metric is challenging. Workflows only requiring 10 flows
are much less likely to be affected by 99.9th percentile flow
completion times versus those with 1000 flows. To capture
the effect of the long tail on a range of different workflow
sizes, we report both 99th and 99.9th percentile flow com-
pletion times.

3

3. CAUSES OF LONG TAILS
Section 2 showed how the long tail of flow completion

times impacts page creation workflows. As mentioned ear-
lier, flash congestion aggravates three problems that lead to
long-tailed flow completion times: packet losses and retrans-
missions, absence of prioritization, and uneven load balanc-
ing. In this section, we describe these problems. We con-
clude by discussing why current solutions fall short.

3.1 Packet Losses and Retransmissions
[13, 15, 31] study the effect of packet losses and retrans-

missions on network performance in datacenters. Packet losses
often lead to flow timeouts, particularly in short flows where
window sizes are not large enough to perform fast recov-
ery. In datacenters, these timeouts are typically set to 10
ms [13, 31]. Since datacenter RTTs are commonly of the
order of 250µs, just one timeout guarantees that the short
flow will hit the long tail. It will complete too late, making it
unusable for page creation. Using shorter timeouts may mit-
igate this problem, but it increases the likelihood of spurious
retransmissions that increase network and server load.

Additionally, partition-aggregate workflows make incast
more likely [13, 33]. Workers performing computation typi-
cally respond simultaneously to the same aggregator, send-
ing it short flows. This sometimes leads to correlated losses
that cause many flows to timeout and hit the long tail.

3.2 Absence of Prioritization
Datacenter networks represent a shared environment where

many flows have different sizes and timeliness requirements.
The traces from Section 2 show us that datacenters must
support both latency-sensitive and latency-insensitive flows,
with sizes that typically range from 2KB to 100MB [13].

During periods of flash congestion, short latency-sensitive
flows can become enqueued behind long latency-insensitive
flows. This increases the likelihood that latency-sensitive flows
will hit the long tail and miss their deadlines. Approaches
that do not consider different flow requirements can harm
latency-sensitive flows.

3.3 Uneven Load Balancing
Modern datacenter networks have scaled out, creating many

paths between every source and destination [11,22,23]. Flow
hashing is typically used to spread load across these paths
while maintaining the single-path assumption commonly em-
ployed by transport protocols. Imperfect hashing, as well as
varying flow sizes often lead to uneven flow assignments.
These flows are unnecessarily assigned to a more congested
path, despite the availability of less congested ones. This in-
creases the likelihood that they will hit the long tail.

This phenomena has been observed before for large flow
sizes [12, 29]. Here we show it is also a problem for the
short flows common in page creation. We present a sim-
ulation on a 128-server FatTree topology with a moderate
oversubscription factor of four (two from top-of-rack to ag-

5.
04
	

5.
04
	

5.
69
	

1.
94
	

2.
09
	

2.
39
	

0	

2	

4	

6	

8	

2	 KB	 8	 KB	 32	 KB	

99
.9
%
	 C
om

pl
e2

on
	

Ti
m
e	
(m

s)
	

Flow	 Size	

FH	 PS	

(a) Regular Topology

44
5.
8	

44
4.
1	

44
8.
2	

57
4.
7	

65
1.
0	

71
2.
1	

0	

200	

400	

600	

800	

2	 KB	 8	 KB	 32	 KB	

	 9
9.
9%

	 C
om

pl
e3

on
	

Ti
m
e	
(m

s)
	

Flow	 Size	

FH	 PS	

(b) Degraded Link

Figure 4: Simulated 99th percentile flow completion times of flow hashing
(FH) and packet scatter (PS) in a bursty workload.

gregate switches and two from aggregate to core switches).
For this experiment, we ran an all-to-all workload consist-
ing solely of high-priority, uniformly chosen 2KB, 8KB, and
32KB flows. These sizes span the range of latency-sensitive
flows common in datacenter networks [13].

In Figure 4(a), we compare the performance of flow hash-
ing and a simple multipath approach; packet scatter. Packet
scatter randomly picks the output port on which to send pack-
ets when multiple shortest paths are available. To factor out
transport-layer effects, we used infinitely large switch buffers
and also disabled rate-limiting and packet retransmission mech-
anisms. We see that packet scatter significantly outperforms
traditional flow hashing, cutting the 99.9th percentile flow
completion time in half. As we have removed transport-layer
effects, these results show that single path approaches re-
liant of flow hashing significantly underperform multipath
ones.

Multipath approaches that do not dynamically respond to
congestion, like packet scatter, may perform significantly
worse than flow hashing for topological asymmetries. Con-
sider a common type of failure, where a 1 Gbps link between
a core and aggregate switch has been degraded and now op-
erates at 100 Mbps [29]. Figure 4(b) shows that for the same
workload, packet scatter can perform over 50% worse than
flow hashing. As we will see in Section 6, flow hashing itself
performs poorly.

Topological asymmetries occur for a variety of reasons.
Datacenter network failures are common [17]. Asymmetries
can be caused by incremental deployments or network re-
configurations. Both static approaches (packet scatter and
flow hashing) are unaware of the different capabilities of
different paths and cannot adjust to these environments. An
adaptive multipath approach would be able to manage such
asymmetries.

3.4 Current Solutions Insufficient
DCTCP and D3 [13, 33] are two single path solutions re-

cently proposed to reduce the completion times of latency-
sensitive flows. The datacenter bridging effort [3] has pro-
posed fairness and congestion control protocols. These re-
duce packet losses and prioritize latency-sensitive flows. But
they do not address the uneven load balancing caused by
flow hashing, and hence suffer the performance loss illus-
trated in Figure 4(a).

4

Physical

Link

Network

Transport

Application

Reorder-Resistant

Transport

ComponentsLayer Info Exchanged

Flow Priority

Port

Occupancy

Congestion

Notification

Adaptive Load

Balancing

Lossless

Interconnect

Figure 5: The DeTail network stack uses cross-layer information to address
the sources of long tail in flow completion times.

Recently two solutions have been proposed to more evenly
balance flows across multiple paths. Hedera monitors link
state and periodically remaps flows to alleviate hotspots [12].
Since Hedera remaps flows every five seconds and focuses
on flows taking more than 10% of link capacity, it cannot
improve performance for the short flows common in page
creation.

The other is MPTCP [29]. MPTCP launches multiple TCP
subflows and balances traffic across them based on conges-
tion. MPTCP uses standard TCP congestion detection mech-
anisms that have been shown by DCTCP to be insufficient
for preventing packet drops and retransmissions [13]. Also,
while MPTCP is effective for flow sizes larger than 70KB,
it is worse than TCP for flows with less than 10 packets
[29]. As small flows typically complete in just a few RTTs,
host-based solutions do not have sufficient time to react to
congested links and rebalance their load. Current multipath-
aware solutions cannot support the short flows common in
page creation workflows.

4. DETAIL
In this section, we first provide an overview of DeTail’s

functionality and discuss how it addresses the causes of long-
tailed flow completion times. We then describe the mecha-
nisms DeTail uses to achieve this functionality and their pa-
rameterization.

4.1 Overview
DeTail is a cross-layer network-based approach for reduc-

ing the long flow completion time tail. The major compo-
nents of the DeTail stack and the cross-layer information ex-
changed is depicted in Figure 5.

At the link layer, DeTail uses port buffer occupancies to
construct a lossless interconnect. By responding quickly, loss-
less interconnects ensure that packets are never dropped due
to flash congestion. They are only dropped due to hardware

RX Port
0

RX Port
1

RX Port
2

RX Port
3

IP
Lookup

IP
Lookup

IP
Lookup

IP
Lookup

InQueue
0

InQueue
1

InQueue
2

InQueue
3

C
ro
s
s

b
a
r

EgQueue
0

EgQueue
1

EgQueue
2

EgQueue
3

TX Port
0

TX Port
1

TX Port
2

TX Port
3

PFC Message

Queue Occupancy

Figure 6: Assumed CIOQ Switch Architecture

errors and/or failures. Preventing congestion-related losses
reduces the number of flows that experience long comple-
tion times.

At the network layer, DeTail performs per-packet adaptive
load balancing of packet routes. At every hop, switches use
the congestion information obtained from port buffer occu-
pancies to dynamically pick a packet’s next hop. This ap-
proach evenly smooths network load across available paths,
reducing the likelihood of encountering a congested portion
of the network. Since it is adaptive, it performs well even
given topologic asymmetries.

DeTail’s choices at the link and network layers have impli-
cations for transport. Since packets are no longer lost due to
congestion, our transport protocol relies upon congestion no-
tifications derived from port buffer occupancies. Since routes
are load balanced one packet at a time, out-of-order packet
delivery cannot be used as an early indication of congestion
to the transport layer.

Finally, DeTail allows applications to specify flow prior-
ities. Applications typically know which flows are latency-
sensitive foreground flows and which are latency-insensitive
background flows. By allowing applications to set these pri-
orities, and responding to them at the link and network lay-
ers, DeTail ensures that high-priority packets do not get stuck
behind low-priority ones. This assumes that applications are
trusted, capable of specifying which flows are high priority.
We believe that this assumption is appropriate for the kind
of environment targeted by DeTail.

4.2 DeTail’s Details
Now we discuss the detailed mechanisms DeTail uses to

realize the functionality presented earlier. We begin by de-
scribing our assumed switch architecture. Then we go up
the stack, discussing what DeTail does at every layer. We
conclude with a feasibility analysis for datacenter networks.

4.2.1 Assumed Switch Architecture
In Figure 6, we depict a simplified four-port representa-

tion of a Combined Input/Output Queue (CIOQ) Switch. The
CIOQ architecture is commonly used in today’s switches
[2,28]. While we discuss DeTail’s mechanisms in the context
of this architecture, they should be implementable on others

5

as well. This architecture employs both ingress and egress
queues, which we denote as InQueue and EgQueue, respec-
tively. A crossbar moves packets between these queues.

When a packet arrives at an input port (e.g., RX Port 0),
it is passed to the forwarding engine (IP Lookup). The for-
warding engine determines on which output port (e.g.,TX
Port 2) the packet should be sent. Once the output port has
been determined, the packet is stored in the ingress queue
(i.e., InQueue 0) until the crossbar becomes available. When
this happens, the packet is passed from the ingress queue to
the egress queue corresponding to the desired output port
(i.e., InQueue 0 to EgQueue 2). Finally, when the packet
reaches the head of the egress queue, it is transmitted on the
corresponding output port (i.e., TX Port 2).

To ensure that high-priority packets do not wait behind
those with low-priority, the switch’s ingress and egress queues
perform strict priority queueing. Switches are typically ca-
pable of performing strict priority queueing between eight
different priorities [6]. We use strict prioritization at both
ingress and egress queues.

DeTail requires that the switch provide per-priority ingress
and egress queue occupancies to higher layers in the stack.
Each queue maintains a drain bytes counter per priority. This
is the number of bytes of equal or higher priority in front
of a newly arriving packet. The switch maintains this value
by incrementing/decrementing the counters for each arriv-
ing/departing packet.

Having higher layers continuously poll the counter values
of each queue may be prohibitively expensive. To address
this issue, the switch associates a signal with each counter.
Whenever the value of the counter is below a pre-defined
threshold, the switch asserts the associated signal. These sig-
nals enable higher layers to quickly select queues without
having to obtain the counter values from each. When multi-
ple thresholds are used, a signal per threshold is associated
with each counter. We describe how these thresholds are set
in Section 4.3.2.

4.2.2 Link Layer
At the link layer, DeTail employs flow control to create

a lossless interconnect. While many variants of flow control
exist [10], we chose to use the one that is becoming part
of the Ethernet standard: Priority Flow Control (PFC) [9].
PFC has already been adopted by vendors and is available
on newer Ethernet switches [6].

The switch monitors ingress queue occupancy to detect
congestion. When the drain byte counters of an ingress queue
pass a threshold, the switch reacts by sending a Pause mes-
sage informing the previous hop that it should stop trans-
mitting packets with the specified priorities. When the drain
byte counters reduce, it sends an Unpause message to the
previous hop asking it to resume transmission of packets
with the selected priorities1.

1PFC messages specify the duration for which packet transmis-
sions should be delayed. We use them here in an on/off fashion.

During periods of persistent congestion, the buffers at the
previous hop fill, forcing it to generate its own Pause mes-
sage. In this way, flow control messages can propagate back
to the source, quenching it.

We chose to generate Pause/Unpause messages based on
ingress queue occupancies because packets stored in these
queues are attributed to the port on which they arrived. By
sending Pause messages to the corresponding port when an
ingress queue fills, DeTail ensures that the correct source
postpones transmission.

Our choice of using PFC is based on the fact that packets
in lossless interconnects can experience head-of-line block-
ing. With traditional flow control mechanisms, when the pre-
vious hop receives a Pause message, it must stop transmit-
ting all packets on the link, not just those contributing to con-
gestion. As a result, packets at the previous hop that are not
contributing to congestion may be unnecessarily delayed. By
allowing eight different priorities to be paused individually,
PFC reduces the likelihood that low-priority packets will de-
lay high priority ones. We describe how packet priorities are
set in Section 4.2.5.

4.2.3 Network Layer
At the network layer, DeTail makes congestion-based load

balancing decisions. Since datacenter networks have many
paths between the source and destination, multiple shortest
path options exist. When a packet arrives at a switch, it is
forwarded on to the shortest path that is least congested.

DeTail monitors the egress queue occupancies described
in Section 4.2.1 to make congestion-based decisions. Unlike
traditional Ethernet, egress queue occupancies provide an in-
dication of the congestion being experienced downstream.
As congestion increases, flow control messages are propa-
gated towards the source, causing the queues at each of the
switches in the path to fill. By reacting to local egress queue
occupancies we make globally-aware hop-by-hop decisions
without additional control messages.

We would like to react by picking an acceptable port with
the smallest drain byte counter at its egress queue for every
packet. However, with the large number of ports in today’s
switches, the computational cost of doing so is prohibitively
high. We leverage the threshold-based signals described in
Section 4.2.1. By concatenating all the signals for a given
priority, we obtain a bitmap of the favored ports (F), which
are lightly loaded.

DeTail relies on forwarding engines to obtain the set of
available shortest paths to a destination. We assume that as-
sociated with each forwarding entry is a bitmap of accept-
able ports (A) that lead to shortest paths for matching pack-
ets2.

As shown in Figure 7, when a packet arrives, DeTail sends
its destination IP address to the forwarding engine to de-
termine which entry it belongs to and obtains the associ-

2Bitmaps can be obtained with the TCAM and RAM approach de-
scribed by [11].

6

Forwarding Entry

10.1.2.X

10.1.X.X

Output Ports

0101

1100

0101

Acceptable
Ports (A)

1011

Favored
Ports (F)

0001

Selected
Port

&
Port Occup

1110

1011

Packet
Priority

Packet
Dest Addr

Occupancy
 Signals

Figure 7: Performing Adaptive Load Balancing - A packet’s destination IP
address is used to determine the bitmap of Acceptable Ports (A). Addition-
ally, the packet’s priority and port buffer occupancy signals are used to find
the bitmap of the lightly loaded Favored Ports (F). A bitwise AND (&) of
these two bitmaps gives the set of Selected Ports from which one is chosen.

ated bitmap of acceptable ports (A). It then performs a bit-
wise AND (&) of this bitmap (A) and the set of favored
ports (F) matching the packet’s priority, to obtain the set of
lightly loaded ports that the packet can use. DeTail randomly
chooses from one of these remaining ports and forwards the
packet3.

During periods of high congestion, the set of favored ports
may be empty. In this case, DeTail performs the same oper-
ation with a second, larger threshold. If that does not yield
results either, DeTail randomly picks a port from the bitmap.
We describe how to set these thresholds in Section 4.3.2.

4.2.4 Transport Layer
A transport-layer protocol must address two issues to run

on our load-balanced, lossless interconnect. It must be re-
sistant to packet reordering and it must react to a form of
congestion notification other than packet loss.

Our lossless interconnect simplifies developing a trans-
port protocol that is robust to out-of-order packet delivery.
The lossless interconnect ensures that packets will only be
lost due to relatively infrequent hardware errors/failures. As
packet drops are now much less frequent, it is not neces-
sary that the transport protocol respond agilely to them. We
simply need to disable the monitoring and reaction to out-
of-order packet delivery. For TCP NewReno, we do this by
disabling fast recovery and fast retransmit. While this leads
to increased buffering at the end host, this is an acceptable
tradeoff given the large amount of memory available on mod-
ern servers.

Obtaining congestion information from a lossless inter-
connect is more difficult. Traditionally, transport protocols
monitor packet drops to determine congestion information.
As packet drops no longer happen due to congestion, an-
other approach is necessary. To enable TCP NewReno to op-
erate effectively with DeTail, we task each source node with
monitoring its egress buffer occupancy. When its drain byte
counters rise above a threshold, it reacts by setting outgo-
3In cases where obtaining a random number is too costly, round
robin can be used instead

ing packets’ ECN flags, forcing TCP to reduce its rate. By
placing this functionality at the source, we ensure that the
transport layer reacts only to persistent congestion.

4.2.5 Application Layer
DeTail depends upon applications to properly specify flow

priorities based on how latency-sensitive they are. Applica-
tions express these priorities to DeTail through the sockets
interface. They set each flow (and hence the packets belong-
ing to it) to have one of eight different priorities. As the pri-
orities are relative, applications need not use all of them. In
our evaluation, we only use two.

Applications must also react to extreme congestion events
where the source has been quenched for a long time (Sec-
tion 4.2.2). They need to determine how to reduce network
load while minimally impacting the user.

4.2.6 Feasibility Analysis
DeTail depends on the ability of datacenter networks to

use non-commodity switches. This assumption is appropri-
ate for modern-day datacenters because operators are willing
to influence and adopt new designs [33].

Building custom switches is less of a hurdle than pre-
viously. Switches with enhanced functionality can be built
from reasonably priced commodity ASICs. A PCI-E board
with a 4-port switch ASIC costs as little as $400 [27]. Fur-
thermore, ASIC manufacturers are showing a willingness to
adopt new protocols. For example, the FM 6000 ASIC al-
ready incorporates the recently standardized datacenter bridg-
ing protocols [6].

We recognize that it is advantageous to make as few changes
to switches as possible to minimize the cost per port. Our
choice of using PFC to perform link-layer flow control and
our simple ALB scheme both reflect this consideration.

4.3 Choice of Settings
Now that we have described the mechanisms employed

by DeTail, we provide analysis of how to choose their pa-
rameters. We also assess how end-host parameters should be
chosen when running DeTail.

4.3.1 Link Layer Flow Control
A key parameter is the threshold for triggering PFC mes-

sages. Pausing a link early allows congestion information to
be propagated more quickly, making DeTail’s adaptive load
balancing more agile. At the same time, it increases the num-
ber of control messages. As PFC messages take time to be
sent and responded to, setting the Unpause threshold too low
can lead to buffer underflow, reducing link utilization.

To strike a balance between these competing concerns, we
must first calculate the time to generate PFC messages. We
use the same approach described in [9] to obtain this value.

For GigE, it may take up to 36.456 µs for a PFC message
to take effect4. 4,557 bytes may arrive after a switch gener-
4We do not consider jumbo frames. Also, PFC is only defined for

7

ates a PFC message. As we pause every priority individu-
ally, this can happen for all eight priorities. We must leave
4,557B × 8 = 36,456B of buffer space for receiving pack-
ets after PFC generation. Assuming 128 KB buffers, this im-
plies a maximum Pause threshold of (131,072B - 36,456B)/8
= 11,827 drain bytes per priority. Setting the threshold any
higher can lead to packet loss.

Calculating the Unpause threshold is more challenging
because the specifics of congestion causes queues to drain at
different rates. In our calculations, we assume a drain rate of
1 Gbps. To ensure that the ingress queues do not underflow,
our Unpause threshold must be at least 4,557B. In certain
situations, ingress queues may drain faster or slower than 1
Gbps. If they drain slower, additional control messages may
have to be sent, re-pausing the priority. If they drain faster,
our egress queues reduce the likelihood of link underutiliza-
tion.

These calculations establish the minimum and maximum
threshold values to prevent packet loss and buffer underflow.
Between the desire for agility and reduced control message
overhead, we set the Unpause threshold to the minimum
value of 4,557 drain bytes and the Pause threshold to 8,192
drain bytes (halfway between the minimum and the maxi-
mum). When fewer priorities are used, the Pause threshold
can be raised without suffering packet loss. Given the desire
to agilely respond to congestion, we leave it unmodified.

4.3.2 Adaptive Load Balancing
When performing threshold-based adaptive-load balanc-

ing, we must determine how many thresholds to have for a
given priority (i.e., most favored, favored, and least favored
ports) as well as what these thresholds should be. Clearly, in-
creasing the number of thresholds increases complexity, so
the benefits of each additional threshold must outweigh the
complexity cost.

Through a simulation-based exploration of the design space
with the other parameters as described above, we determined
that having two thresholds of 16 KB and 64 KB yields favor-
able results.

4.3.3 Explicit Congestion Notification
The threshold for setting ECN flags represents a trade-

off. Setting it too low reduces host queue occupancy but
increases the chance high-priority flows will be forced to
reduce their rate. Setting it too high has the opposite ef-
fect. Through experiments, we determined that a threshold
of 64KB drain bytes appropriately makes this tradeoff.

4.3.4 End-Host Timers
Setting end host timers too low leads to spurious retrans-

missions that waste network resources. Setting them too high
10 GigE. We use GigE in this paper for manageable simulation
times. We base PFC response times on the time specified for Pause
Frames. This is appropriate because 10 GigE links are given the
same amount of time to respond to PFC messages are they are to
Pause Frames.

leads to long response-times when packets are dropped.
Traditionally, transport-layer protocols recover from packet

drops caused by congestion and hardware failures. Conges-
tion occurs frequently, so responding quickly to packet drops
is important for achieving high throughput. However, DeTail
ensures that packet drops only occur due to relatively infre-
quent hardware errors/failures. Therefore, it is more impor-
tant for the timeouts to be larger to avoid spurious retrans-
missions.

To determine a robust timeout value for DeTail, we simu-
lated all-to-all incast 25 times with varying numbers of servers
and timeout values. During every incast, one server receives
a total of 1 MB from the remaining servers. We saw that
timeouts 10 ms and larger effectively avoid spurious retrans-
missions.

In this simulation, there is only one switch between all of
the servers. For the experiments with DeTail in Section 6, we
use a timeout of 200 ms to reflect that datacenters topologies
typically have multiple hops.

5. EXPERIMENTAL SETUP
Here we describe the NS-3 based simulator [8] and Click-

based implementation [26] we use to evaluate DeTail.

5.1 NS-3 Simulation
Our NS-3 based simulation closely follows the switch de-

sign depicted in Figure 6. Datacenter switches typically have
128 - 256 KB buffers per port [13]. To meet this constraint,
we chose per-port ingress and egress queues of 128 KB.

Network simulators typically assume that nodes are in-
finitely fast at processing packets, this is inadequate for eval-
uating DeTail. We extended NS-3 to include real-world pro-
cessing delays. Switch delays of 25µs are common in data-
center networks [13]. We rely upon published specifications
to break-down this delay as follows, providing explanations
where possible:

• 12.24µs transmission delay of a full-size 1530B Eth-
ernet frame on a 1 GigE link.

• 3.06µs crossbar delay when using a speedup of 4. Cross-
bar speedups of 4 are commonly used to reduce head
of line blocking [28].

• 0.476µs propagation delay on a copper link [9].

• 5µs transceiver delay (both ends of the link) [9].

• 4.224µs forwarding engine delay (the remainder of the
25µs budget).

We incorporate the transceiver delay into the propagation
delay. The other delays are implemented individually, in-
cluding the response time to PFC messages.

Packet-level simulators are known to have scalability is-
sues, in terms of topology size and simulation duration [29].
We evaluated the feasibility of also developing a flow-level
simulator, but concluded that it would be unable to shed light
on the packet-level dynamics that are the focus of this paper.

8

5.2 Click-based Implementation
To validate our approach, we implemented DeTail in Click

[26]. In general, our implementation mirrors the design deci-
sions specified in Section 4 and portrayed in Figure 6. Here
we describe the salient differences and analyze the impact
they have on our parameters.

5.2.1 Design Differences
Unlike hardware switches, software routers typically do

not emulate a CIOQ switch architecture. Instead, the for-
warding engine places packets directly into the output queue.
This output-queued approach is poorly suited to DeTail be-
cause we rely on ingress queues to determine when to send
PFC messages.

To address this difference, we modified Click to have both
ingress and egress queues. When packets arrive, the forward-
ing engine simply annotates them with the desired output
port and places them in the ingress queue corresponding
to the port on which they arrived. Crossbar elements then
pull packets from the ingress queue to the appropriate egress
queue. Finally, when the output port become free, it pulls
packets from its egress queue.

Software routers also typically do not have direct con-
trol over the underlying hardware. For example, when Click
sends a packet, it is actually enqueued in the driver’s ring
buffer. The packet is then DMAed to the NIC where it waits
in another buffer until it can be placed on the wire. In Linux,
the driver’s ring buffer alone can contain hundreds of pack-
ets. It is difficult for the software router to asses how con-
gested the output link is when performing load balancing.
Also, hundreds of packets may be transmitted between the
time when the software router receives a PFC message and
it takes effect.

To address this issue, we add a rate limiter in Click before
every output port. They clock out packets based on the band-
width of the link. They effectively reduce packet buildup in
the driver’s and NIC’s buffers, instead keeping those packets
in Click’s queues for a longer duration.

5.2.2 Parameter Modifications
The limitations of our software router impact our parame-

ter choices. It does not have hardware support for PFC mes-
sages. Consequently it takes more time for these messages
to be generated and responded to.

Also, our rate limiter allows batching up to 6 KB of data
to ensure efficient DMA use. This may cause PFC messages
to be enqueued for longer before they are placed on the wire
and additional data may be transmitted before a PFC mes-
sage takes effect. This also hurts high-priority packets. High
priority packets will suffer additional delays if they arrive
just after a batch of low priority packets has been passed to
the driver.

To address these limitations, we increased our Pause /
Unpause thresholds. However, instead of increasing ingress
queue sizes, we opted to ensure that only two priorities were

used at a time. This approach allows us to provide a better
assessment of the advantages of DeTail in datacenter net-
works.

6. EXPERIMENTAL RESULTS
In this section, we evaluate DeTail through extensive sim-

ulation and implementation, demonstrating its ability to re-
duce the flow completion time tail for a wide range of work-
loads. We begin with an overview describing our traffic work-
loads and touching on key results. Next, we compare simu-
lation and implementation results, validating our simulator.
Later, we subject DeTail to a wide range of workloads under
a larger topology than permitted by the implementation and
investigate its scaled-up performance.

6.1 Overview
To evaluate DeTail’s ability to reduce the flow completion

time tail, we focus on the following scenarios:

Flow Hashing (FH): Switches employ flow-level hashing.
This is the status quo and is our baseline for comparing
the performance of DeTail.

Lossless Packet Scatter (LPS): Switches employ packet scat-
ter (as already explained in Section 3) along with Pri-
ority Flow Control (PFC). While not being an industry
standard, LPS is a naive multipath approach that can be
deployed in current datacenters, as both packet scatter
and PFC exist in the latest Ethernet switches. We use
LPS to highlight the advantage of Adaptive Load Bal-
ancing (ALB) employed by DeTail over existing mech-
anisms.

DeTail: As already explained in previous sections, switches
employ PFC and ALB.

All three cases use strict priority queueing and use TCP
NewReno as the transport layer protocol. For FH, we use a
TCP timeout of 10 ms, as suggested by prior work [13, 31].
Since, LPS and DeTail use PFC to avoid packet losses, we
use the standard TCP timeout of 200 ms (as discussed in
Section 4.3.4). Also, we use reorder buffers at the end-hosts
to deal with out-of-order packet delivery.

We evaluate DeTail against LPS only in Section 6.4. For
all other workloads, LPS shows similar improvements as De-
Tail and has been omitted for space constraints.

In NS-3, we were unable to simulate explicit congestion
notification (as discussed in Section 4.2.4) employed by De-
Tail due to the lack of ECN support in the TCP model of
NS-3. However, we implemented it and our results show that
it minimally affects high-priority short flows.

Traffic Model: Our traffic model consists primarily of high-
priority data retrievals. For each retrieval, a server sends a
10-byte request to and obtains a variable sized response (i.e.,
data) from another server. The size of the data (henceforth
referred to as retrieval data size) is randomly chosen to be

9

0	

20	

40	

60	

80	

100	

0	 300	 600	 900	 1200	 1500	

%
	 R
ed

uc
(o

n	
in
	 9
9%

	
Co

m
pl
e(

on
	 T
im

e	 99th	 percen(le	

Simula(on	

Implementa(on	

0	

20	

40	

60	

80	

100	

0	 300	 600	 900	 1200	 1500	

%
	 R
ed

uc
(o

n	
in
	 9
9.
9%

	
Co

m
pl
e(

on
	 T
im

e	

Retrieval	 Rates	 (retrievals/second)	

99.9th	 percen(le	

Simula(on	

Implementa(on	

(a) 2 KB

0	

20	

40	

60	

80	

100	

0	 300	 600	 900	 1200	 1500	

%
	 R
ed

uc
(o

n	
in
	 9
9%

	
Co

m
pl
e(

on
	 T
im

e	 99th	 percen(le	

Simula(on	

Implementa(on	

0	

20	

40	

60	

80	

100	

0	 300	 600	 900	 1200	 1500	
%
	 R
ed

uc
(o

n	
in
	 9
9.
9%

	
Co

m
pl
e(

on
	 T
im

e	
Retrieval	 Rates	 (retrievals/second)	

99.9th	 percen(le	

Simula(on	

Implementa(on	

(b) 8 KB

Figure 8: Comparison of simulation and implementation results - Re-
duction under DeTail over FH in 99% and 99.9% completion times of 2 KB
and 8 KB data retrievals

2 KB, 8 KB, or 32 KB, with equal probability. We chose
discrete data sizes for more effective analysis of 99th and
99.9th percentile performance. The rate of generation of these
data retrievals (henceforth called data retrieval rate) is de-
fined by the traffic workload. Where specified, we also run
low-priority background data transfers.

Key results: Throughout our evaluation, we focus on 99th

and 99.9th percentile completion times of data retrievals to
assess DeTail’s effectiveness. We use the percentage reduc-
tion in the completion times provided by DeTail over Flow
Hashing as the metric of improvement. Our key results are:

• DeTail completely avoids congestion-related losses, re-
ducing 99.9th percentile completion times of data re-
trievals in bursty all-to-all workloads by up to 83%
over Flow Hashing.

• DeTail effectively moves packets away from conges-
tion hotspots that may arise due to disconnected links,
reducing 99.9th percentile completion times by up to
94% over Flow Hashing. LPS can perform worse than
FH in this environment.

• Reductions in individual data retrievals translate into
improvements for partition-aggregate and sequential
workflows, reducing their 99.9th percentile comple-
tion times by 31% and 59%, respectively.

6.2 Simulator Verification
To validate our simulator, we ran our Click-based imple-

mentation on Emulab [5]. We constructed a 36-node, 16-
server FatTree topology. Oversubscription is common in dat-
acenter networks [4]. To model the effect of a moderate over-
subscription factor of four, we rate-limited the ToR-to-agg
links to 500 Mbps and the aggregate-to-core links to 250
Mbps.

We designated half of the servers to be front-end (web-
facing) servers and half to be back-end servers. Each front-

0	
0.2	
0.4	
0.6	
0.8	
1	

0	 2	 4	 6	 8	 10	

CD
F	
of
	 	

Co
m
pl
e+

on
	 T
im

es
	

Comple+on	 Time	 (ms)	

FH	
DeTail	

(a) Complete Distribution

0.9	
0.92	
0.94	
0.96	
0.98	

1	

0	 10	 20	 30	

CD
F	
of
	 	

Co
m
pl
e+

on
	 T
im

es
	

Comple+on	 Time	 (ms)	

FH	
DeTail	

(b) 90th-100th Percentile

Figure 9: CDF of completion times of 8 KB data retrievals under a steady
workload of 2000 retrievals/second.

0	
20	
40	
60	
80	

100	

500	 1000	 2000	

%
	 R
ed

uc
(o

n	
in
	 	

Co
m
pl
e(

on
	 T
im

e	

Retrievals	 /	 second	

99%	 99.9%	

(a) 2 KB

0	
20	
40	
60	
80	

100	

500	 1000	 2000	

%
	 R
ed

uc
(o

n	
in
	 	

Co
m
pl
e(

on
	 T
im

e	

Retrievals	 /	 second	

99%	 99.9%	

(b) 8 KB

0	
20	
40	
60	
80	

100	

500	 1000	 2000	

%
	 R
ed

uc
(o

n	
in
	 	

Co
m
pl
e(

on
	 T
im

e	

Retrievals	 /	 second	

99%	 99.9%	

(c) 32 KB

Figure 10: Steady Workload - Reductions provided by DeTail over FH in
99% and 99.9% completion times of 2 KB, 8 KB and 32 KB data retrievals

end server periodically (according to Poisson distribution)
issues a high-priority data retrieval to a randomly chosen
back-end server. Data retrievals are generated at different
steady rates of 100 to 1500 retrievals/second.

We simulated the same workload and topology, with pa-
rameters matched with that of the implementation. Figure 8
compares the simulation results with the implementation mea-
surements. For rates ranging from 500 to 1500 retrievals/sec,
the reduction in completion time predicted by the simulator
is closely matched by implementation measurements, with
the difference in the percentage being within 8% (results for
32 KB data retrievals and LPS have been omitted for space
constraints). Note that this difference increases for lower rates.
We hypothesize that this is due to end-host processing de-
lays that are present only in the implementation (i.e., not
captured by simulation) dominating completion times dur-
ing light traffic loads.

This demonstrates that our simulator is a good predictor of
performance that one may expect in a real implementation.
Next, we use this simulator to evaluate larger topologies and
a wider range of workloads.

6.3 Microbenchmarks
We evaluate the performance of DeTail on a larger Fat-

Tree topology with 128 servers. The servers are distributed
into four pods having four ToR switches and four aggre-
gate switches each. The four pods are connected to eight
core switches. This gives a over-subscription factor of four
in the network (two from top-of-rack to aggregate switches
and two from aggregate to core switches). We subject this
network to all-to-all data retrieval workloads. Each server
periodically (according to a Poisson distribution) retrieves
data from a randomly selected destination server. In addi-

10

0	
20	
40	
60	
80	

100	

20	 40	 80	

%
	 R
ed

uc
(o

n	
in
	 	

Co
m
pl
e(

on
	 T
im

e	

Burst	 Dura(on	 (ms)	

99%	 99.9%	

(a) 2 KB

0	

20	

40	

60	

80	

100	

20	 40	 80	

%
	 R
ed

uc
(o

n	
in
	 	

Co
m
pl
e(

on
	 T
im

e	

Burst	 Dura(on	 (ms)	

99%	 99.9%	

(b) 8 KB

0	
20	
40	
60	
80	

100	

20	 40	 80	

%
	 R
ed

uc
(o

n	
in
	 	

Co
m
pl
e(

on
	 T
im

e	

Burst	 Dura(on	 (ms)	

99%	 99.9%	

(c) 32 KB

Figure 11: Bursty Workload - Reductions provided by DeTail over FH in
99% and 99.9% completion times of 2 KB, 8 KB and 32 KB data retrievals

tion, each server has on average, one 1 MB low-priority back-
ground flow. The rate of retrievals is varied to create either
a steady or a bursty workload. Using a wide range of such
workloads, we illustrate how ALB and PFC employed in De-
Tail reduces the tail of completion times as compared to FH.

Steady Workload: In this workload, all the servers retrieve
data at a steady rate (similar to the workload used for veri-
fying the simulator). This rate was varied from 500 to 2000
retrievals/second, which corresponded to load factors5 of ap-
proximately 0.17 to 0.67.

Figure 9 illustrates the effectiveness of DeTail in reducing
the tail, by presenting the cumulative distribution of com-
pletion times of 8 KB data retrievals under a rate of 2000
retrievals/second. While the 99th and 99.9th percentile com-
pletion times under FH were 6.2 ms and 7.2 ms, respectively,
DeTail reduced them to 2.0 ms and 2.3 ms; a reduction of
about 67% in both cases. Even the median completion time
improved by about 40% from 2.2 ms to 1.3 ms. Furthermore,
the worst case completion time was 27 ms under FH com-
pared to 2.5 ms, which reinforces the phenomenon discussed
in Section 2. Flow completion times can increase by an order
of magnitude due to congestion and mechanisms employed
by DeTail are essential for ensuring tighter bounds on net-
work performance.

Figure 10 presents the reductions in completion times for
three data sizes at three retrieval rates. DeTail provided up
to 70% reduction at the 99th percentile (71% at 99.9th per-
centile) completion times. Specifically, the 99.9th percentile
completion times for all sizes were within 3.6 ms compared
to 11.9 ms under FH. Due to the steady nature of the load,
less than 0.1% of the flows suffered timeouts in FH. This
indicates that PFC (which avoids timeouts) had less role to
play, and packet-level load balancing by ALB provided most
benefits. This further reinforces our arguments in Section 3
that any flow-hashing limits the effectiveness of single path
approaches.

Within each data size, higher rates have greater improve-
ment. This is because higher traffic load exacerbates the ef-
fect of uneven load balancing caused by FH giving a greater
opportunity to ALB to balance the load.

5load factor is the approximate utilization of the aggregate-to-core
links by high-priority traffic only

(a) 2 KB (b) 8 KB

0	

20	

40	

60	

80	

100	

20	 40	 80	 %
	 R
ed

uc
(o

n	
in
	 9
9.
9%

	
Co

m
pl
e(

on
	 T
im

e	

Burst	 Dura(on	 (ms)	

LPS	 DeTail	

(c) 32 KB

Figure 12: Bursty Workload with Disconnected Link - Reductions pro-
vided by LPS and DeTail over FH in 99.9% completion times of 2 KB, 8
KB and 32 KB data retrievals

Bursty Workload: Network traffic is traditionally charac-
terized as bursty. Hence, we evaluated DeTail under a bursty
workload, where the rate of data retrievals on all servers are
periodically increased to generate bursts of traffic. In every
100 ms interval, servers generate all-to-all retrievals at 2500
retrievals/second for a specific burst duration. In the rest of
the interval, retrievals are generated at low rate of 100 re-
trievals/second. The burst duration was varied from 20 ms to
80 ms, which corresponded to load factors of approximately
0.19 to 0.67.

Figure 11 shows that DeTail provided from 43% to 79%
reduction at 99th percentile (47% to 83% at 99.9th percentile)
completion times. The 99.9th percentile completion times
for 8 KB data retrievals under all three burst durations were
within 10 ms for DeTail compared to 41 ms for FH. Unlike
the steady workload, more than 3% of the flows suffered
timeouts under FH. Since these timeouts were eliminated
under DeTail, a significant fraction of the improvement was
due to PFC. As expected, higher burst durations (i.e., higher
traffic loads) have greater chances of packet drops and time-
outs under FH and therefore see greater improvements.

Long Background Flows: DeTail achieves these improve-
ments for data retrievals (i.e., high-priority, short flows) with-
out hurting the performance of long, low-priority background
flows. To illustrate this, we evaluated the average completion
time of such flows. Since these flows are deadline-insensitive,
we focus on the average (which reflects throughput) rather
than the 99.9th percentile. We used the 16-server implemen-
tation (described in the previous subsection) that performs
ECN marking based on end-host buffer occupancies. We ran
a steady workload where each server generates high-priority
data retrievals at 300 retrievals/second. Alongside, each server
is continuously engaged in a low-priority background flow
with another randomly selected server, whose size is ran-
domly chosen to be 1 MB, 16 MB or 64 MB with equal prob-
ability. Figure 14 shows that DeTail provided a 37% to 58%
reduction over FH in the average completion time, which
indicates that PFC and ALB employed in DeTail can even
improve the performance of long flows. A detailed evalua-
tion of DeTail’s impact on long flows is left for future work.

11

0	
20	
40	
60	
80	

100	

20	 40	 80	 %
	 R
ed

uc
(o

n	
in
	 9
9.
9%

	
Co

m
pl
e(

on
	 T
im

e	

Burst	 Dura(on	 (ms)	

LPS	 DeTail	

(a) 2 KB

0	
20	
40	
60	
80	

100	

20	 40	 80	 %
	 R
ed

uc
(o

n	
in
	 9
9.
9%

	
Co

m
pl
e(

on
	 T
im

e	

Burst	 Dura(on	 (ms)	

LPS	 DeTail	

(b) 8 KB

0	

20	

40	

60	

80	

100	

20	 40	 80	 %
	 R
ed

uc
(o

n	
in
	 9
9.
9%

	
Co

m
pl
e(

on
	 T
im

e	

Burst	 Dura(on	 (ms)	

LPS	 DeTail	

(c) 32 KB

Figure 13: Bursty Workload with Degraded Link - Reductions provided
by LPS and DeTail over FH in 99.9% completion times of 2 KB, 8 KB and
32 KB data retrievals

6.4 Topological Asymmetries
As discussed in Section 3.3, a multipath approach must be

robust enough to handle topological asymmetries due to net-
work component failures or reconfigurations. We consider
two types of asymmetries: disconnected links and degraded
links. These asymmetries lead to load imbalance, even with
packet scatter. In this section, we present how ALB can adapt
to the varying traffic demands and overcome the limitations
of packet-level scattering. Besides FH, we evaluate DeTail
against LPS to highlight the strength of ALB over packet
scatter used in LPS. We assume that the routing protocol
used in the network has detected the asymmetry and con-
verged to provide stable multiple routes.

Disconnected Link: We re-evaluated the same bursty work-
load described in the previous section with the assumption of
a disconnected link between a core switch and a aggregate
switch. Figure 12 presents the reduction in 99.9th percentile
completion for both LPS and DeTail (we do not present 99th

percentile for space constraints). DeTail provided 52% to
94% reduction, an order of magnitude improvement (17 ms
under DeTail compared to 210 ms under FH for 2 KB re-
trievals under 80 ms bursts). LPS is unable to match DeTail’s
improvement, thus highlighting the effectiveness of ALB at
evenly distributing load despite asymmetries in available paths.
In fact, LPS can potentially lead to worse 99.9% completion
times than FH, as is evident in case of 2 KB retrievals with
80 ms bursts (refer to Figure 12(a)).

Degraded Link: Instead of disconnecting, links can occa-
sionally be downgraded from 1 Gbps to 100 Mbps. Figure 13
presents the results of the same bursty workload with a de-
graded core-to-agg link. DeTail provided more than 96%
reduction compared to FH. This dramatic improvement is
due to ALB’s inherent capability to route around congestion
hotspots (i.e., switches connected to the degraded link) by
redirecting traffic to alternate paths. While the 99.9th per-
centile completion time for 2 KB with 80 ms bursts (refer to
Figure 13(a)) under FH and LPS was more than 2 seconds,
it was 33 ms under DeTail.

In both cases of faults, the improvement in the tail comes
at the cost of increased median completion times. As we
have argued earlier, this trade off between the median and

the 99.9% performance is appropriate for consistently meet-
ing deadlines.

6.5 Web Workloads
Next, we evaluate how the improvements in individual

data retrievals translate to improvements in the sequential
and partition-aggregate workflows used in page creation work-
loads. Here we assign half the servers to be front-end servers
and half to be back-end servers. The front-end servers ini-
tiate the workflows to retrieve data from randomly chosen
back-end servers. We present the reduction in the 99.9th per-
centile completion times of these workflows.

Sequential Workflows: Each sequential workflow initiated
by a front-end server consists of 10 data retrievals of size
4 KB, 6 KB, 8 KB, 10 KB, and 12 KB (randomly chosen
with equal probability, giving an average of 8 KB [1]). As
described in the Section 2, these retrievals need to be per-
formed one after another. Similar to the bursty workload
used earlier, every 100 ms, each front-end server generates
40 ms bursts at a rate of 800 workflows/second. In the rest of
the interval, they generate workflows at 50 workflows/second.
Figure 15 shows that DeTail provided 68% to 72% reduc-
tion in the 99.9th percentile completion time of individual
data retrievals. In total, there was a 31% improvement in the
99.9th completion time of the sequential workflows, from
from 45 ms to 31 ms.

Partition-Aggregate Workflows: In each partition-aggregate
workflow, a front-end servers retrieves data in parallel from
10, 20, or 40 (randomly chosen with equal probability) back-
end servers. As characterised in [13], the size of individual
data retrievals is set to 2 KB. As before, we evaluate De-
Tail with a bursty workload; every 100 ms, bursts of 800
workflows/second for 20 ms is followed by 80 ms of 100
workflows/second. As shown in Figure 16, DeTail provided
a 52% to 59% reduction in the 99.9th percentile comple-
tion time of individual data retrievals as well as workflows.
Specifically, the 99.9th completion time of partition-aggregate
workflow with 40 servers was 15 ms under DeTail, compared
to 36 ms under FH.

These results demonstrate that DeTail effectively manages
network congestion, providing significant improvements in
the performance of distributed page creation workflows.

7. DISCUSSION
We first discuss how DeTail can be extended to handle

switch errors. Next we present initial ideas on a DeTail-aware
transport protocol. Finally, we discuss why the approach taken
by DeTail will be advantageous as network bandwidth in-
creases.

DeTail depends on flow control messages to be reliably
delivered and processed by the recipient. While these control
messages have the highest priority and will not be dropped

12

0	
20	
40	
60	
80	

100	

1	 16	 64	

%
	 R
ed

uc
(o

n	
in
	

Av
g.
	 	 C
om

p.
	 T
im

e	

Long	 Flow	 Sizes	 (MB)	

DeTail	

Figure 14: Long Flows
Reductions in average
completion time of long,
low-priority flows

0	
20	
40	
60	
80	

100	

4	 KB	 6	 KB	 8	 KB	 10	 KB	 12	 KB	 Seq.	

Individual	 Retrievals	 Workflows	

%
	 R
ed

uc
Ao

n	
in
	 9
9.
9%

	
Co

m
p.
	 T
im

e	

DeTail	

Figure 15: Sequential Workflows - Reductions provided
by DeTail over FH in 99.9% completion time of sequential
workflows and their individual data retrievals

0	
20	
40	
60	
80	

100	

2	 KB	 	 	 10	 servers	 20	 servers	 40	 servers	

Indiv.	 Retr.	 Pari5on-‐Aggregate	 Workflows	

%
	 R
ed

uc
5o

ni
	 in
	

99
.9
%
	 C
om

p.
	 T
im

e	 DeTail	

Figure 16: Partition-Aggregate Workflows - Reductions
provided by DeTail over FH in 99.9% comp. time of
partition-aggregate workflows and their individual retrievals

or delayed, link errors may cause them to be corrupted. Or
switch malfunctions may prevent them from being sent or
processed in a timely manner.

We can employ a number of techniques to reduce the im-
pact of these events. A switch that sends a flow control mes-
sage can make sure that the recipient responds. If the recip-
ient does not respond in the expected amount of time, the
switch should resend the message. If the recipient continues
to ignore flow control messages, the switch can take more
extreme actions such as shutting down the link. Given De-
Tail’s adaptive load balancing and the availability of multi-
ple paths in the datacenter, this should not significantly affect
flow completion times.

Even with the additional robustness these mechanisms pro-
vide, packet drops may still occur. We rely upon the transport
layer to handle these rare events.

The transport layer protocol presented in this paper is a
retrofit of TCP NewReno. Delay-based protocols, such as
TCP Vegas [14], may be better suited in these environments.
Instead of waiting for packet drops that do not occur, they
monitor increases in delay. Increased delay is precisely the
behavior our lossless interconnect exhibits as congestion rises.
We plan to investigate this approach further in the future.

Future increases in network bandwidth are unlikely to elim-
inate long-tailed flow completion times. Assuming offered
load increases with link speeds, long tails will continue to
be a challenge. While buffers will drain faster, they will also
fill up more quickly, ultimately causing the packet losses
and retransmissions that lead to long tails. Prioritization will
continue to be important as background flows are likely to
remain the dominant fraction of traffic. Finally, load imbal-
ances due to topological asymmetries will continue to be a
problem.

8. RELATED WORK
In this section, we discuss prior work and how it relates

to DeTail in three areas: Internet protocols, datacenters, and
HPC interconnects, discussing each in turn.

8.1 Internet Protocols
The Internet was initially designed as a series of indepen-

dent layers [16] with a focus on placing functionality at the
end-hosts [30]. This approach explicitly sacrificed perfor-
mance for generality. Improvements to this design, in terms

of TCP modifications such as NewReno, Vegas, and SACK
[14,19,24] and in terms of buffer management such as RED
and Fair Queuing [18, 20] were proposed. All of these ap-
proaches focused on improving the notification and response
of end-hosts. Consequently, they operate at coarse-grained
timescales inappropriate for our workload.

DeTail differs from this work by taking a more agile in-
network approach that breaks the single path assumption to
reduce the flow completion time tail.

8.2 Datacenter Networks
Relevant datacenter work has focused on two areas: topolo-

gies and traffic management protocols. New topologies such
as FatTrees, VL2, BCube, and DCell [11, 21–23] were pro-
posed to increase bisection bandwidth. All of these approaches
focused on increasing the number of paths between the source
and destination because increasing link speeds was seen as
impossible or prohibitively expensive.

Prior work has also focused on traffic management pro-
tocols for datacenters. DCTCP proposed mechanisms to im-
prove flow completion time by reducing buffer occupancies
[13].D3 sought to allocate flow resources based on application-
specified deadlines [33]. And, the recent industrial effort known
as Datacenter Bridging extends Ethernet to support traffic
from other protocols that have different link layer assump-
tions [3]. All of these approaches focus on single-path mech-
anisms that are bound by the performance of flow hashing.

Datacenter protocols focused on spreading load across mul-
tiple paths have been proposed. Hedera performs periodic
flow re-mapping of elephant flows [12]. MPTCP takes a step
further, making TCP aware of multiple paths [29]. While
these approaches provide multipath support, they operate at
timescales that are too coarse-grained to improve the short
flow completion time tail.

8.3 HPC Interconnects
DeTail borrows some ideas from HPC interconnects. Credit-

based flow control has been extensively studied and is often
deployed to create lossless interconnects [10]. Adaptive load
balancing algorithms such as UGAL and PAR have also been
proposed [10]. To the best of our knowledge, these mech-
anisms have not been evaluated for web-facing datacenter
networks focused on reducing the flow completion tail.

A commodity HPC interconnect, Infiniband, has made its

13

way into datacenter networks [7]. While Infiniband provides
a priority-aware lossless interconnect, it does not perform
Adaptive Load Balancing (ALB). Without ALB, hotspots
can occur, leading a subset of flows to hit the long tail. Host-
based approaches to performing load-balancing, such as [32]
have been proposed. But these approaches are limited be-
cause they are not sufficiently agile.

9. CONCLUSION
In this paper, we presented DeTail, a cross-layer network-

ing stack designed to reduce the tail of flow completion times.
DeTail is designed to reduce packet losses and retransmis-
sions, prioritize latency-sensitive flows, and evenly balance
traffic across multiple paths, making its flow completion statis-
tics robust to flash congestion. By taking this approach, De-
Tail reduces 99.9th percentile flow completion times by over
50% for a wide range of workloads. This reduction enables
web sites to deliver richer content while still meeting inter-
activity deadlines.

10. REFERENCES
[1] Average web page size septuples since 2003.

http://www.websiteoptimization.com/speed/tweak/average-
web-page/.

[2] Cisco nexus 5000 series architecture.
http://www.cisco.com/en/US/prod/collateral/
switches/ps9441/ps9670/white_paper_c11-462176.html.

[3] Data center bridging. http://www.cisco.com/en/US/solutions/
collateral/ns340/ns517/ns224/ns783/at_a_glance_c45-
460907.pdf.

[4] Datacenter networks are in my way.
http://mvdirona.com/jrh/TalksAndPapers/
JamesHamilton_CleanSlateCTO2009.pdf.

[5] Emulab. http://www.emulab.net.
[6] Fulcrum focalpoint 6000 series.

http://www.fulcrummicro.com/product_library/
FM6000_Product_Brief.pdf.

[7] Infiniband architecture specification release 1.2.1.
http://infinibandta.org/.

[8] Ns3. http://www.nsnam.org/.
[9] Priority flow control: Build reliable layer 2 infrastructure.

http://www.cisco.com/en/US/prod/collateral/switches/
ps9441/ps9670/white_paper_c11-542809.pdf.

[10] ABTS, D., AND KIM, J. High performance datacenter
networks: Architectures, algorithms, and opportunities.
Synthesis Lectures on Computer Architecture 6, 1 (2011).

[11] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A
scalable, commodity data center network architecture. In
SIGCOMM.

[12] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic flow
scheduling for data center networks. In NSDI (2010).

[13] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA, S.,
AND SRIDHARAN, M. Data center tcp (dctcp). In ACM
SIGCOMM Conference (2010).

[14] BRAKMO, L. S., O’MALLEY, S. W., AND PETERSON,
L. L. Tcp vegas: new techniques for congestion detection
and avoidance. In SIGCOMM.

[15] CHEN, Y., GRIFFITH, R., LIU, J., KATZ, R. H., AND
JOSEPH, A. D. Understanding tcp incast throughput collapse
in datacenter networks. In WREN.

[16] CLARK, D. The design philosophy of the darpa internet
protocols. In SIGCOMM.

[17] DEAN, J. Software engineering advice from building
large-scale distributed systems.
http://research.google.com/people/jeff/stanford-295-talk.pdf.

[18] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queueing algorithm. In SIGCOMM
(1989).

[19] FLOYD, S., AND HENDERSON, T. The newreno
modification to tcp’s fast recovery algorithm, 1999.

[20] FLOYD, S., AND JACOBSON, V. Random early detection
gateways for congestion avoidance. IEEE/ACM Trans. Netw.
1 (August 1993).

[21] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA,
S., KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND
SENGUPTA, S. Vl2: a scalable and flexible data center
network. In SIGCOMM (2009).

[22] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y.,
TIAN, C., ZHANG, Y., AND LU, S. Bcube: A high
performance, server-centric network architecture for modular
data centers. In SIGCOMM (2009).

[23] GUO, C., WU, H., TAN, K., SHI, L., ZHANG, Y., AND LU,
S. Dcell: a scalable and fault-tolerant network structure for
data centers. In SIGCOMM (2008).

[24] JACOBSON, V., AND BRADEN, R. T. Tcp extensions for
long-delay paths, 1988.

[25] KOHAVI, R., AND LONGBOTHAM, R. Online experiments:
Lessons learned, September 2007.
http://exp-platform.com/Documents/IEEEComputer2007
OnlineExperiments.pdf.

[26] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Trans.
Comput. Syst. 18 (August 2000).

[27] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H.,
XIONG, Y., GAO, R., AND ZHANG, Y. Serverswitch: A
programmable and high performance platform for data
center networks. In NSDI (2011).

[28] MCKEOWN, N. White paper: A fast switched backplane for
a gigabit switched router.
http://www-2.cs.cmu.edu/ srini/15-744/readings/McK97.pdf.

[29] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A.,
WISCHIK, D., AND HANDLEY, M. Improving datacenter
performance and robustness with multipath tcp. In
SIGCOMM (2011).

[30] SALTZER, J. H., REED, D. P., AND CLARK, D. D.
End-to-end arguments in system design. ACM Trans.
Comput. Syst. 2 (November 1984).

[31] VASUDEVAN, V., PHANISHAYEE, A., SHAH, H., KREVAT,
E., ANDERSEN, D. G., GANGER, G. R., GIBSON, G. A.,
AND MUELLER, B. Safe and effective fine-grained TCP
retransmissions for datacenter communication. In
SIGCOMM (Aug. 2009).

[32] VISHNU, A., KOOP, M., MOODY, A., MAMIDALA, A. R.,
NARRAVULA, S., AND PANDA, D. K. Hot-spot avoidance
with multi-pathing over infiniband: An mpi perspective. In
CCGRID (2007).

[33] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND
ROWTRON, A. Better never than late: meeting deadlines in
datacenter networks. In SIGCOMM (2011).

14

