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Abstract
Transformers, originally proposed for natural language pro-

cessing (NLP) tasks, have recently achieved great success in
automatic speech recognition (ASR). However, adjacent acous-
tic units (i.e., frames) are highly correlated, and long-distance
dependencies between them are weak, unlike text units. It sug-
gests that ASR will likely benefit from sparse and localized at-
tention. In this paper, we propose Weak-Attention Suppression
(WAS), a method that dynamically induces sparsity in atten-
tion probabilities. We demonstrate that WAS leads to consistent
Word Error Rate (WER) improvement over strong transformer
baselines. On the widely used LibriSpeech benchmark, our pro-
posed method reduced WER by 10% on test-clean and 5%
on test-other for streamable transformers, resulting in a
new state-of-the-art among streaming models. Further analy-
sis shows that WAS learns to suppress attention of non-critical
and redundant continuous acoustic frames, and is more likely
to suppress past frames rather than future ones. It indicates the
importance of lookahead in attention-based ASR models.
Index Terms: automatic speech recognition, transformer,
weak-attention suppression

1. Introduction
In recent years, models based on transformers [1] and their
variants have achieved state-of-the-art results in many natu-
ral language processing (NLP) tasks, such as language mod-
eling, machine translation, and natural language understanding
[2, 3, 4]. The transformer relies on the multi-head self-attention
method, eschewing the recurrent connection in recurrent neu-
ral networks. The attention method connects arbitrary positions
in the whole sequence directly, allowing the model to capture
long-range dependencies regardless of distance. Each trans-
former layer performs computations for the whole sequence in
parallel, thus improving efficiency.

In automatic speech recognition (ASR), transformer-based
architectures have also showed superior performance across
various modeling paradigms, including sequence-to-sequence
[5, 6, 7, 8], neural transducer [9, 10], as well as traditional hy-
brid [11, 12] and CTC [13] systems.

While similar in some aspects, ASR tasks are very different
from many NLP tasks. ASR systems extract the input features
from continuous signals rather than discrete text units. Many
acoustic units (i.e., frames) are typically needed to convey a
single text unit’s semantic meaning. Many of these acoustic
units are not critical in long-range dependencies, for example,
silence. Based on these observations, we propose the Weak-
Attention Suppression (WAS) method to improve transformer-
based models for ASR. The method aims to induce sparsity in
the attention probability distribution by dynamically determin-
ing a threshold for each time frame. All attention probabilities
smaller than this threshold are set to zero, and the remaining

probabilities are re-normalized to sum to one.
To verify the performance of the proposed method, we

carry out experiments on the widely used LibriSpeech corpus
[14]. WAS consistently improves Word Error Rate (WER)
of transformer-based hybrid acoustic models across different
model sizes (12-layer 40M parameters vs. 24-layer 81M param-
eters) and variants (non-streamable full context [12] vs. stream-
able limited context [15]). The relative WER improvement
ranges from 6% to 10% on test-clean and 2% to 6% on
test-other, with larger impact on streamable transformers.
Our results with WAS and streamable transformers established
a new state-of-the-art on Librispeech among streaming models
to the best of our knowledge.

A more in-depth analysis of individual utterances and the
whole dev-clean split in LibriSpeech data shows that WAS sup-
presses attention from non-critical acoustic units, such as si-
lence. For adjacent acoustic units, attention from redundant
units is suppressed, especially for the lower layers. The anal-
ysis also demonstrates that past acoustic units are more likely
to be suppressed than future ones. In other words, lookahead is
especially crucial for transformer-based acoustic models.

2. Related Work
The proposed WAS method aims to improve transformer-based
acoustic models in hybrid speech recognition for both streaming
[11, 15], and non-streaming [12] applications.

For the non-streaming case, we use the same model archi-
tecture proposed in [12], where the whole model architecture
consists of three parts, convolution layers, transformer layers,
and auxiliary intermediate layer losses. The convolution layers
play a similar role as another positional encoding method [16].
A stack of transformers with both multi-head self-attention and
feed-forward network (FFN) is used on top of the convolution
layers. To effectively train the deep transformers, the final loss
function is interpolated with auxiliary intermediate layer losses
[17] that pass the gradients to the intermediate layers in the deep
structure.

To extend transformer-based acoustic models for streaming
applications, the work [15] applies block processing to segment
the whole utterance into multiple chunks with lookahead con-
text. To carry over information across chunks, they modify the
self-attention with the augmented memory bank. Each slot in
the augmented memory bank stores the embedding vectors for
previous chunks.

Sparse attention in the transformer has been explored in
[18] to reduce model inference complexity. Unlike this work,
our method aims to improve ASR accuracy by inducing spar-
sity in both training and inference.

Different from the works in [19, 20] that achieve sparse
attention by replacing the softmax function with α-entmax or
sparsemax, our method keeps the softmax function and sup-



presses the attention based on the probability distribution. Com-
paring these different methods for suppressing attention will be
an interesting topic for future research.

3. Transformer Based Acoustic Model With
Weak-Attention Suppression

Before explaining the details of the WAS, the following subsec-
tion gives a short description of multi-head self-attention.

3.1. Multi-Head Self Attention

Given the input embedding sequence X ∈ RL×di with se-
quence length L, the projection matrices Wq, Wk and Wv

transform the X into query, key and value space, respectively.

Q = XWq,K = XWk,V = XWv. (1)

The attention probabilities are computed in dot-product way as
follows:

A = softmax(
KQT

√
di

), (2)

where A is a L × L matrix. Each element αi,j represents the
attention probability of the query at i position with the key at j
position.

Given A, the output embedding sequence of self-attention
is obtained via:

Z = Dropout(A)V . (3)

Rather than performing a single self-attention function with
queries, keys and values, it was found beneficial to run self-
attention h times in parallel with different projection matrices
Wq, Wk and Wv. The outputs from each self-attention are
concatenated and linearly projected, resulting to final output,
i.e.,

O = WoConcate(Z
1, ...,Zh) (4)

where Wo ∈ Rdi×hdv , and Zi is the output from the i-th self-
attention.

3.2. Weak-Attention Suppression

In speech recognition tasks, many acoustic units, e.g., silence,
may not play a critical role in long-distance dependencies. For
continuous acoustic units that share similarities, some of them
may be redundant for long-distance dependencies. Comparing
with many NLP tasks, the number of acoustic units in audio ut-
terances are much more significant than the number of text units
in sentences. Due to these factors, the sparse attention is more
desirable for speech recognition. However, in self-attention, the
softmax function is used to get the attention probabilities. One
limitation of softmax function is that it always generates dense
attention, i.e., softmax(X)i 6= 0; all the elements of the soft-
max function is over zero.

The WAS sets the attention probabilities smaller than a
threshold to zero and normalizes the rest attention probabilities.
The threshold is determined based on the following scheme:

θi = mi − γδi (5)

where mi and δi are the mean and standard deviation of the
attention probability for i-th position in query, respectively; γ

is a user-specified hyper-parameter. So the threshold θi can be
represented as

θi =
1

L
− γ

√∑L
j=1(αi,j − 1

L
)2

L− 1
, (6)

where L is the length of key in self-attention. The attention
probability αi,j less than θi, is set to zero. The rest non-zero
attention probabilities are re-normalized.

In practical implementation, we realize the re-
normalization in two steps. Firstly, using softmax function on
attention weights, we get the attention probabilities. Based on
formula (6), we replace the attention weight to negative infinity
when its attention probability is lower than the threshold.
Applying the softmax function on the processed attention
weight generates the re-normalized attention probabilities.

4. Experiments
4.1. Data

To verify the performance of the proposed method, we conduct
experiments on the LibriSpeech corpus [14]. LibriSpeech is an
open-source speech corpus that contains 1000 hours of speech
derived from audiobooks in the LibriVox project. The audio
data 1, language model data, and pre-trained language models 2

are available for downloading. The development data and eval-
uation data in LibriSpeech are split into simple “clean” subsets
and more difficult “other” subsets. We use the official 4-gram
language model for decoding in all experiments.

4.2. Setup

In all experiments, we use context and positional dependent
graphemes (i.e., chenones) as output units [21]. We bootstrap
the HMM-GMM system following the standard Kaldi [22] Lib-
riSpeech recipe. For feature extraction, we use 80-dimensional
logMel filter bank features at a 10ms frame rate. To increase the
training robustness, both speed perturbation [23] and SpecAug-
ment [24] without time warping are used.

We apply the same model architecture as [12, 15], which
has two VGG blocks [25] followed by a stack of transformer
layers. Each VGG block has two consecutive 3-by-3 convolu-
tion layers followed by a Relu activation function and a max-
pooling layer. While the first VGG block uses 32 channels, the
second VGG block uses 64 channels. Both VGG blocks use a
2-by-2 Max-pooling. The first VGG block uses stride 2; the sec-
ond one uses stride 1. Overall, two VGG blocks have stride 2.
From an input sequence of 80-dim feature vector at a 10ms rate,
the VGG blocks generate a 2560-dim feature vector sequence at
a 20ms rate.

Each transformer layer applies 8 heads of self-attention.
The dimensionality of input and output for each transformer
layer is 512, and the inner-layer of FFN has dimensionality
2048. We experiment with different model sizes (12 trans-
former layers, and 24 transformer layers architectures) to ver-
ify the improvement from the WAS. To overcome the training
divergence issue for deep transformer models, e.g., 24 trans-
former layers, we apply an auxiliary incremental loss [17]. A
linear transformation, together with a Relu function, projects
the outputs from the 6/12/18-th transformer layers to the final
output space. The auxiliary incremental loss takes the projected

1http://www.openslr.org/12/
2http://www.openslr.org/11/



outputs to compute the auxiliary CE losses interpolated with the
original CE loss with a 0.3 weight.

In all experiments, we use the adam optimizer [26] with a
tri-stages learning-rate strategy, i.e., warming-up stage, holding
stage, and decaying stage. 8K updates in the warming-up stage
increase the learning rate from 1e-5 to 1e-3 for non-streaming
transformer-based models and 3e-4 for streaming transformer-
based models, respectively. The holding stage uses 100K up-
dates. The decaying stage exponentially decreases the learning
rate to 1e-5.

To efficiently use GPU resources, the batch size is dynami-
cally determined. Each batch contains around 10,000 to 20,000
frames, including padding frames. We train all the models using
32 Nvidia V100 GPUs. To train the transformer-based model
effectively, we segment the training utterances into less than 10
seconds using forced alignment results from an existing latency-
controlled BLSTM acoustic model. We select the best model
based on WER on the dev set and report its result on test data.

4.3. Results

Model Arch #Params (M) test-clean test-other
BLSTM[12] 79 3.11 7.44

vggBLSTM[12] 95 2.99 6.95
vggTrf-12 40 3.11 7.14

vggTrf-12-WAS 40 2.93 6.73
vggTrf-24[12] 81 2.66 5.64

vggTrf-24-WAS 81 2.50 5.55
AmTrf-24[15] 81 3.09 7.08

AmTrf-24-WAS 81 2.78 6.71
Table 1: WER comparison on the LibriSpeech benchmark. For
models with citations, we directly use the results from the re-
ferred paper. ‘-WAS’ means the weak-attention suppression
with γ = 0.5 is applied. Note results in this table are obtained
without the NNLM rescoring.

Table 1 gives the WER comparison of different hybrid mod-
els on LibriSpeech data. Overall, the transformer-based models
show improvement over recurrent neural network counterparts.
For small transformer based model ‘vggTrf-12‘, applying WAS
brings a relative WER reduction of 5.8% on test-clean and 5.7%
on test-other. On a large model with 24 transformer layers,
WAS generates a relative WER reduction of 6.0% on test-clean
and 5.7% on test-other. ‘AmTrf-24’ is a streaming transformer-
based model using augmented memory that limited the atten-
tion within an audio segment with 320ms lookahead. The WAS
achieves relative WER reduction 10.0% on test-clean and 5.2%
on test-other over the streaming baseline.

Model γ test-clean test-other
vggTrf-12 - 3.11 7.14

vggTrf-12-WAS 0.0 2.97 7.13
vggTrf-12-WAS 0.5 2.93 6.73
vggTrf-12-WAS 1.0 3.04 6.92

Table 2: Word error rate comparison of different γ selection in
weak-attention suppression on LibriSpeech data.

Table 2 gives the WER results from different γ selection on
LibriSpeech data using the small size of the transformer model.
γ = 0.5 gives us the best results. We constrain the γ selection

from 0 to 1. If the attention probability is close to a normal
distribution, we suppress roughly 16% to 50% the attention.
According to our analysis, when γ = 0.5, 36% of attention got
suppressed in the first transformer layer.

4.4. Attention Suppression Analysis

In this section, we analyze the effect of WAS in one individual
utterance and the whole dev-clean split in LibriSpeech using the
model ‘vggTrf-12-WAS‘ in Table 1.

In individual utterance analysis, we average the portion of
the suppressed attention over the multiple heads and the whole
input sequence for each transformer layer. The following for-
mula represents the processing.

ski,j =

{
1 αk

i,j < θki
0 αk

i,j ≥ θki
(7)

where αk
i,j represents the attention probability of the i-th posi-

tion in query with j-th position in key from the k-th head. θki is
the suppression threshold for i-th position in query in the k-th
head. The threshold is determined according to formula (6).

f(j) =

∑i=L
i=1

∑k=H
k=1 ski,i

LH
(8)

where L is the length of key and H the number heads in multi-
head self-attention. The function value f(j) indicates the weak-
ness of the attention at the j-th position in the key.

Figure 1(b),1(c) and 1(d) draws the function y = s(j) for
1st, 6-th and 12-th transformer layer. The horizontal axis stands
for the position in the key. The vertical axis stands for the av-
eraged portion of suppressed attention. Note ‘vggTrf-12-WAS‘
uses VGG blocks with stride 2. For one-second audio using
frameshift 10ms, the length of the input sequence to each trans-
former layer is 500.

By comparing the audio wave 1(a) with 1(b), it is obvious to
see there are three peaks (at the beginning, in the middle and at
the end) in 1(b) that are the exact position of a long silence in the
audio wave. The rest of the small peaks in 1(b) seem to be in the
rough location of short silence in the audio wave in 1(a). This
phenomenon indicates that using weak-attention suppression in
the first transformer layer can suppress the attention to silence.

Zooming into Figure 1(b) and Figure 1(c), there are dra-
matic ups-and-downs even for the non-silence consecutive po-
sitions in the input sequence that are supposed to share acous-
tic similarities. This phenomenon suggests that for consecutive
frames that share acoustic similarities, the weak attention sup-
press method suppresses the redundant information for atten-
tion.

Comparing the Figures 1(b), 1(c) and 1(d) vertically, there
are less fluctuations with higher layer. This observation may
suggest that the lower transformer’s self-attention can capture
the small difference for consecutive frames while the higher
layer captures the salient invariant features for consecutive
frames.

Figure 2 gives the weak-attention suppression analysis at
different positions from different transformer layers. For a spe-
cific position i, we average the portion of the suppressed at-
tention over multiple heads and different utterances in the dev-
clean dataset. We represent the process as follows:

fi(j) =

∑n=N
n=1

∑k=H
k=1 sk,ni,i+j

NH
(9)



(a) wav

(b) layer 1

(c) layer 6

(d) layer 12

Figure 1: Attention suppression analysis for one utterance in
dev-clean using ‘vggTrf-12-WAS‘ in Table 1. (a) gives the au-
dio wave of the utterance. (b), (c), (d) represent the average
attention suppression portion for different positions in the input
sequence at the 1-st, 6-th, 12-th transformer layer, respectively.

where sk,ni,j means whether to suppress the attention between i-
th position in query with (i + j)-th position in key from k-th
head in utterance n. N is the number of utterances in dev-clean
data and H the number heads in multi-head self-attention. The
function value fi(j) indicates the weakness of the attention at
the i + j-th position in the key for i-th position in query. For

(a) position 200 layer 1 (b) position 200 layer 12

(c) position 400 layer 1 (d) position 400 layer 12

(e) position 600 layer 1 (f) position 600 layer 12

Figure 2: Attention suppression analysis over the dev-clean us-
ing ‘vggTrf-12-WAS‘ in Table 1. Each sub-figure gives the av-
erage portion of attention suppressed at a specific position in a
specific layer within the window size 200. We take the average
over different heads in multi-head self-attention and different
utterances over the dev-clean dataset.

easy illustrating, we only draw the curve within window size
200 with 100 left and 100 right contexts, i.e., j ∈ [−100, 100].

Figure 2 reveals the following three phenomenons. Firstly,
the left column in the figure shows that more attention gets sup-
pressed in the lower layer when the attention distance gets fur-
ther. The deep valley of attention suppression happens in the
context window of -5 to 5, i.e., 100 ms left context and 100 ms
right context. The right column shows that in the 12-th layer,
more attention gets suppressed from the left context than from
the right context. One common phenomenon in both columns is
that there are roughly 10 times more attention gets suppressed
in the 1-st layer than the 12th layer.

5. Conclusions
In this paper, we proposed a weak-attention suppression (WAS)
method to address the sparse attention for speech recognition.
The attention probability smaller than a dynamic estimated
threshold was zeroed out by WAS. The analysis showed several
exciting phenomena of the proposed method. In the lower trans-
former layer, the attention suppression happens for the silence
and redundant acoustic units. Even using the same attention
suppression schema, less attention got suppressed in the upper
layer than the lower layer. The further the dependency distance
was, the more attention got suppressed. In the top transformer
layer, the WAS suppressed more attention from the left context
than the right context. Experiments on LibriSpeech showed that
the WAS improves the transformer-based model with different
model sizes in both streaming and non-streaming scenarios. Es-
pecially for a streamable transformer-based acoustic model, the
proposed WAS got relative word error rate reduction by 10.0%
on test-clean and 5.2% on test-other.
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