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Abstract

Semantic image synthesis aims to generate photo re-
alistic images given a semantic segmentation map. De-
spite much recent progress, training them still requires large
datasets of images annotated with per-pixel label maps that
are extremely tedious to obtain. To alleviate the high an-
notation cost, we propose a transfer method that leverages
a model trained on a large source dataset to improve the
learning ability on small target datasets via estimated pair-
wise relations between source and target classes. The class
affinity matrix is introduced as a first layer to the source
model to make it compatible with the target label maps, and
the source model is then further finetuned for the target do-
main. To estimate the class affinities we consider different
approaches to leverage prior knowledge: semantic segmen-
tation on the source domain, textual label embeddings, and
self-supervised vision features. We apply our approach to
GAN-based and diffusion-based architectures for semantic
synthesis. Our experiments show that the different ways to
estimate class affinity can be effectively combined, and that
our approach significantly improves over existing state-of-
the-art transfer approaches for generative image models.

1. Introduction

Image synthesis with deep generative models has made
remarkable progress in the last decade with the introduc-
tion of GANs [11], VAEs [17], and diffusion models [14].
Generated images can be conditioned on diverse types of in-
puts, such as class labels [3, 18], text [10, 25, 27], bounding
boxes [35], or seed images [5]. In semantic image synthesis,
the generation is conditioned on a semantic map that indi-
cates the desired class label for every pixel. This task has
been thoroughly explored with models such as SPADE [23]
and OASIS [33], capable of generating high-quality and di-
verse images on complex datasets such as ADE20K [43]
and COCO-Stuff [4]. However, these approaches heavily
rely on the availability of large datasets with tens to hun-
dreds of thousands of images annotated with pixel-precise
label maps that are extremely costly to acquire. For the
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Figure 1. Can we train a semantic image synthesis model from
only 100 images? Our diffusion-based transfer results using train-
ing set of 100 ADE20K images (2nd col.) compared to the same
model trained from scratch on full dataset (20k images, 3rd col.).

Cityscapes dataset [7], e.g., on average more than 1.5h per
image was required for annotation and quality control.

High annotation costs can be a barrier to deployment
of machine learning models in practice, and motivates the
development of transfer learning strategies to alleviate the
annotation requirements. These techniques allow training
models on small target datasets via the use of models pre-
trained on a source dataset with many available annotations.
Transfer learning has been widely studied for classification
tasks such as object recognition [2, 16, 26], but received
much less attention in the case of generation tasks. This task
has been considered for unconditional and class-conditional
generative models [19, 21, 22, 38, 39, 41], but to the best of
our knowledge few-shot transfer learning has not yet been
explored in the setting of semantic image synthesis.

We introduce CAT, a finetuning procedure that models
Class Affinity to Transfer knowledge from pre-trained se-
mantic image synthesis models. Our method takes advan-
tage of prior knowledge to establish pairwise relations be-
tween source and target classes, and encodes them in a class
affinity matrix. This solution considerably eases learning



when few instances of the target classes are available at
training time. The affinity matrix is prepended to the source
model to make it compatible with the label space of the tar-
get domain. The model can then be further finetuned us-
ing the available data for the target domain. To illustrate
the generality of the proposed approach, we integrate our
transfer learning strategy in state-of-the-art adversarial and
diffusion models. We explore different ways to extract sim-
ilarities between source and target classes, using semantic
segmentation models for the source data, self-supervised vi-
sion features, and text-based class embeddings.

We conduct extensive experiments on the ADE20K,
COCO-Stuff, and Cityscapes datasets, using target datasets
with sizes ranging from as little as 25 up to 400 images.
Our experiments show that our approach significantly im-
proves over state-of-the-art transfer methods. As illustrated
in Figure 1, our approach allows realistic synthesis from no
more than 100 target images, and achieves image quality
close to standard training on the full target datasets. More-
over, unlike previous transfer methods, our approach also
enables non-trivial training-free transfer results, where we
only prepend the class affinity matrix to the source model,
without further finetuning it.

In summary, our contributions are the following:

• We introduce Class Affinity Transfer (CAT), the first
transfer method for semantic image synthesis for small
target datasets, and explore different methods to define
class affinity, based on semantic segmentation, self-
supervised features, and text-based similarity.

• We integrate our approach in state-of-the-art adversar-
ial and diffusion based semantic synthesis models.

• We obtain excellent experimental transfer results, im-
proving over existing state-of-the-art approaches.

2. Related work

Semantic image synthesis with GANs. There has been
significant interest in adversarial approaches for semantic
image synthesis, see e.g. [1, 15, 23, 33]. These approaches
employ a conditional generator and a discriminator that as-
sesses both image quality and consistency with the input
segmentation maps. One of the first models proposed was
Pix2Pix [15], which uses a U-Net [31] generator along with
a patch-based discriminator. SPADE [23] employs a differ-
ent generator with spatially adaptive normalization layers
modulating feature maps through labels. Lab2Pix-V2 [45]
introduces special modules in the generator for extracting
meaningful information from labels. OASIS [33] over-
comes the need of perceptual loss with the introduction of a
U-Net discriminator which produces per-pixel classification
scores. This approach obtains state-of-the-art results on the

task of semantic image synthesis, and we build upon it in
our GAN-based experiments.

Semantic synthesis with diffusion-based models. Re-
cently, diffusion models [14] have emerged as a promis-
ing solution capable of synthesizing images with a quality
that surpasses GANs [8, 30]. Generation is formulated as
an iterative denoising process and a likelihood-based loss is
used as training objective which makes training more sta-
ble and scalable to large datasets. A few works address
semantic image synthesis with diffusion models. In [37],
SPADE blocks are included in the U-Net used in the dif-
fusion model to improve the semantic consistency of the
generated images. PITI [36] builds upon GLIDE [20], a
text-conditioned diffusion model pre-trained on hundreds
of millions of image-text pairs. The text encoder is then
replaced by one that takes semantic segmentation maps as
input. Different from our work, PITI focuses on transfer-
ring a text-based model to a semantic synthesis model, and
still requires a large training set to train the semantic map
encoder network from scratch (20k to 110k training images
in their experiments on ADE20K and COCO-Stuff). In con-
trast, we address transfer from existing semantic synthesis
models, in scenarios where only few target images are avail-
able: from 25 to 400 in our experiments.

Transfer learning for generative models. Compared to
transfer learning for discriminative problems, transfer for
generative models received much less attention. In the sem-
inal work [39], a pre-trained unconditional GAN is fine-
tuned either for conditional or unconditional generation in
limited data regimes. Several works show that this ap-
proach can be improved by finetuning only part of the
network parameters [19, 21]. Another strategy consists in
adding and learning a limited number of additional param-
eters [29, 38, 41]. For instance, Zhao et al. [41] apply affine
modulations to the frozen parameters of the pre-trained
model. In MineGAN [38], a small “miner” network is intro-
duced to warp the distribution of the latent variable to better
fit the target distribution. In [12], they perform few-shot
image generation by using a local fusion module in the en-
coder space. Other approaches investigate the use of style
transfer for few-shot GAN training [22, 42].

A few works specifically consider transfer for condi-
tional GANs. Shahbazi et al. [34] propagate information
from old classes to new classes through the use of batch
normalization. Their work, however, considers class condi-
tional generation, which is different from our work where
we condition on semantic segmentation maps. Endo et
al. [9] use an unconditional StyleGAN2 model to generate
synthetic images with pseudo labels. They do this by learn-
ing a nearest-centroid classifier in the GAN latent space
from real images with corresponding label maps, where a
PSP encoder [28] is used to obtain the latents of real images.
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Figure 2. Overview of our class affinity transfer (CAT) approach for semantic image synthesis. The class affinity matrix is used to align
the source model with the target label space, and is then further finetuned using the target images and corresponding segmentations.

Although interesting, this approach hinges on the availabil-
ity of a strong unconditional generative model and the abil-
ity of faithful latent inference, which is possible for datasets
with limited diversity such as human faces, but which is ex-
tremely challenging for complex datasets such as ADE20K
and COCO-Stuff that we consider in our experiments.

There are very few works on model transfer for diffusion
models. In addition to PITI, which considers semantic im-
age synthesis as discussed above, Ruiz et al. [32] consider
the problem of instance-driven generation. They finetune a
pretrained text-based diffusion model on a handful of im-
ages of a particular object in different contexts. The fine-
tuned model is then used to generate images with the same
object in other environments described by a textual prompt.

3. Class affinity transfer

We aim at adapting a semantic image synthesis model
pre-trained on a large source dataset to a small target
dataset. We assume a source dataset composed of N RGB
images Xn ∈ RH×W×3, n ∈ {1, . . . , N} and their corre-
sponding segmentation maps Sn ∈ {0, 1}H×W×CS , rep-
resented with one-hot encoding across CS source classes.
Similarly, we consider a target dataset composed of M im-
ages XT

m ∈ RH×W×3,m ∈ {1, . . . ,M} and their corre-
sponding segmentation maps ST

m ∈ {0, 1}H×W×CT with
CT target classes. Note that, the number of classes is dif-
ferent between the source and target datasets, and that no
correspondence between them is given.

Our class affinity transfer (CAT) approach is based on an
affinity matrix A ∈ RCS×CT that maps between the classes
of the source and target datasets. We use the affinity ma-
trix to parameterize a linear layer which we prepend to the
source model, making the source model compatible with
one-hot input label maps of the target domain.

Rather than initializing the affinity matrix at random, we
leverage different forms of prior knowledge to estimate the
affinity matrix, which enables the source model to adapt sig-
nificantly better to the target domain. The model can then
be further finetuned using training images and segmentation
maps from the target domain. In addition, our approach also
allows for “training-free” transfer mode where we fully rely
on the class affinity transfer matrix, further finetuning on the
target dataset.

Below, we describe different approaches to estimate the
class affinity matrix in §3.1. Then, we show how our ap-
proach can be incorporated into a state-of-the-art GAN and
diffusion based architectures in §3.2 and §3.3, respectively.

3.1. Estimating the class affinity matrix

We consider three different ways to estimate the class
affinity matrix A between the source and target classes,
leveraging different forms of prior knowledge.

Supervised semantic segmentation networks. Here we
employ a pre-trained segmentation network trained on the
source dataset to extract mappings between source and tar-
get classes. First, we segment the target images across the
source classes using the segmentation network. Next, we
use segmentation maps of the target images and count how
many pixels of each target class are classified as each source
class to establish the class affinity matrix.

More formally, we denote by S̄m ∈ {0, 1}H×W×CS the
output of the segmentation network for a target image XT

m,
and use subscripts i, j to denote pixel locations, and super-
scripts k and l to index across target and source classes.
The affinity matrix A is computed as the confusion matrix
between source and target classes:

Ak,l ∝
M∑

m=1

∑
i,j

[ST
m]ki,j · [S̄m]li,j . (1)



The matrix is normalized so that for each target class
the affinities w.r.t. all source classes sum to one, i.e.∑CS

l=1 Ak,l = 1. In this manner, prepending the affinity
matrix as a linear layer to the network leaves the scale of
the input comparable with inputs from the source dataset.
In our experiments, we use UperNet [40] or DeeplabV2 [6]
as pretrained segmentation networks.

Self-supervised image features. To alleviate the require-
ment of training a dedicated segmentation network on the
source dataset, we explore self-supervised learning (SSL) to
extract features from image patches using iBOT [44]. Using
the corresponding segmentation maps, we represent each
class in the source and target dataset using a “prototype”
which is obtained as the weighted average of the features
of patches that belong to that class. The features of each
patch are weighted proportionally to the number of pixels
with a given label in the patch. We denote these prototypes
as fS

l ∈ RD and fT
k ∈ RD where D is the embedding di-

mension, for source and target classes respectively. We then
compute the class affinities using cosine similarity between
the prototypes:

Ak,l ∝ cos(fT
k ,f

S
l ), (2)

and similarly normalize the affinities so that for each target
class they sum to one across the source classes.

Text-based class affinities. The previous approaches es-
timate class affinities using source and target images with
corresponding segmentation maps. Here we consider an al-
ternative that does not require any labeled images, and in-
stead relies on the class names to establish affinities. To this
end, we use a pre-trained CLIP [24] text encoder to embed
the names of the source and target classes as fS

l ∈ RD and
fT
k ∈ RD. Similar to Eq. (2), we obtain the affinities as

normalized cosine similarities over the text embeddings.

Combination via majority voting. To take advantage
of the three different methods to estimate the class affini-
ties, we introduce an aggregation scheme that combines the
affinity matrices obtained with all the previous methods.
While the different estimations of A could be combined via
simple averaging, we obtain better performance with a bi-
nary majority voting scheme. If, for a given target class, at
least two of the three affinity matrices agree on source class
with highest affinity, then the target class is associated with
the corresponding source class. If the three affinity matrices
disagree, we take the source class provided by the method
with the lowest initial, i.e. “training free”, FID on the train-
ing target set.

3.2. Few-shot transfer with GAN

We integrate our class affinity transfer approach with
the state-of-the-art OASIS semantic image synthesis

model [33]. It consists of a convolutional generator with
SPADE blocks [23] to condition on segmentation maps,
and a U-Net [31] discriminator to label pixels of real im-
ages with the corresponding class, and generated pixels as
“fake”. Based on initial experiments, we introduce several
modifications to both generator and discriminator to im-
prove transfer to small target datasets.

Architecture. First, we prepend the class affinity matrix to
the SPADE blocks that take the segmentation map as input
to align them with the target label space. Second, rather than
sharing the first convolutional layer, we use separate paths
for the scale and shift parameters, but still share the param-
eters of the first convolutional layer. Third, we add two par-
allel branches from the input which bypass the class affinity
matrix and the first convolutional layer. These branches take
the target segmentation map as input and project the latter
to the feature space of the first pretrained convolution out-
put in each of the SPADE block. We then sum these resid-
ual outputs to the main branch. The weights of the parallel
branch are initialized with zeros to prevent negative impact
early in training. The motivation behind this design choice
is to enable the generator to better learn how to synthesize
new target classes which could not be explained by a linear
combination of source classes.

In the discriminator, we replace the last convolutional
layer (which outputs per-pixel classification scores) by a
randomly initialized layer with an output channel size corre-
sponding to the number of classes in the target dataset. Al-
ternatively, we experimented with a linear layer initialized
with our affinity matrix added on top of the discriminator to
map the source and target classes, but this approach did not
improve performance.

Finetuning. Similar to [19], we found that freezing the
first layers of the discriminator is beneficial when finetun-
ing the source model for the target datasets. Regarding the
generator, we proceed in two stages. In the first stage, we
fix most generator parameters and only finetune the class
affinity matrix, the following first convolution layer, and the
residual branch in each SPADE block. In the second stage,
we finetune all the layers in the generator. The losses used
during finetuning are the same as during pretraining, i.e. we
use an adversarial loss as well as the LabelMix [33] regu-
larization loss.

3.3. Few-shot transfer with diffusion model

Architecture. For our diffusion-based experiments, we
adopt the PITI [36]. It is a modified version of GLIDE [20],
a text-conditioned diffusion model that generates the image
via iterative denoising using a U-Net. GLIDE consists of
two text-conditional networks: the first generates a 64×64



image; the second upsamples the image to 256×256 resolu-
tion. In PITI, the text encoder of both networks is replaced
by a semantic map encoder with a transformer architecture.

To be compatible with our class affinity transfer ap-
proach, we modify PITI to be conditioned on one-hot label
maps rather than RGB label maps. We do this by factoring
the class-to-RGB mapping into the weights of the first layer
of the encoder network. Similarly to the GAN-based model,
we use the class affinity matrix A to parameterize a linear
layer which we prepend to the semantic image encoder. To
allow further adaptation to the target task, we take inspi-
ration from [16], and introduce trainable extra parameters
in the transformer encoder, referred to as “prompts”, which
can be seen as additional patch embeddings in input of each
attention layer. The prompts are randomly initialized. For
more details see the supplementary material.

finetuning. To finetune PITI, we freeze the decoder layers,
i.e. the U-Net model, and only train part of the segmentation
encoder. We fix all the weights in the encoder transformer,
and only train the last ResNet block and the prompts of the
encoder. We employ the training loss used in GLIDE, and
finetune both the low resolution model as well as the condi-
tional upsampling model, as in [36].

4. Experiments

4.1. Experimental setup

Datasets. In order to make our research results compara-
ble to earlier work on semantic image synthesis, we employ
ADE20K [43] (20k images and 151 classes) and COCO-
Stuff [4] (110k images and 183 classes) as source datasets.
As target datasets, we use subsets of ADE20K and COCO-
Stuff, as well as the Cityscapes [7] dataset consisting of 3k
images and 35 classes. To avoid training our models on
personal data, we use the version of the Cityscapes dataset
with blurred faces and license plates, while for COCO-Stuff
and ADE20K we applied a face blurring pipeline ourselves.
Following [23,33], we train models at 256×256 resolutions
for ADE20K and COCO-Stuff, and 256×512 for Cityscapes.
For PITI [36], we also use a resolution of 256× 256 for
Cityscapes since the positional embeddings in PITI are pre-
trained at 256×256 .

We sample subsets as target datasets to evaluate the dif-
ferent methods in few-shot regimes. To ensure that all the
target classes are well represented in the subsets, we use a
specific sampling procedure. We take an initial random im-
age and then iteratively select subsequent images such that
the KL-divergence between the uniform distribution and the
empirical class distribution is minimized. The empirical
class distribution is obtained by counting how many pix-
els of each class are present in each segmentation map, and

normalizing the histogram to sum to one. Unless otherwise
indicated, we use target subsets of 100 images in all our
experiments. The impact of the target set size is discussed
in Section 4.3 where we perform experiments with subsets
ranging in size from 25 to 400 images.

Evaluation metrics. We report both FID [13] and mIoU
metrics as in [15, 23, 33]. FID captures both image quality
and diversity, while mIoU assesses the semantic correspon-
dence with the input segmentation maps by using a segmen-
tation network to label generated images. We use the same
segmentation networks as in [33].

Baselines. For OASIS [33], the most basic comparison
is to training the model from scratch, without any transfer.
To the best of our knowledge, we are the first to propose a
transfer method specifically developed for semantic image
synthesis. Therefore, to evaluate our model, we compare
to existing transfer learning works developed for uncondi-
tional and class-conditioned GANs by adapting them for se-
mantic image synthesis. We compare to TransferGAN [39]
by finetuning all the layers of the source generator and dis-
criminator to adapt to the target dataset. We also compare to
Freeze-D [19], which finetunes both generator and discrim-
inator, while freezing the layers of the discriminator closest
to the input image. Based on the ablations in [19], we con-
sider freezing the first up to the ninth layers of the discrim-
inator. BSA [21] finetunes only the batch normalization
(BN) parameters. In OASIS, the BN parameters are com-
puted from the label maps through SPADE blocks. There-
fore, for BSA we only finetune the first layer of the SPADE
blocks and freeze all the other weights. MineGAN [38]
freezes the source generator and adds a small MLP mapping
network that transforms the latent vector, while finetuning
the source discriminator to the target dataset. To adapt it to
semantic image synthesis, we also learn the class embed-
ding layer of the generator for the target dataset. We follow
the two-stage training approach of MineGAN, where in the
second training stage we finetune the entire generator and
discriminator networks. We also test cGANTransfer [34],
by finetuning scale and shift parameters in SPADE blocks,
projecting each target class as a trainable linear combina-
tions of source classes. Unlike CAT, these linear combina-
tions are initialized randomly. We also add trainable resid-
ual layers after the first convolution projecting label maps
and train with the ℓ1 and ℓ2 regularization losses of [34].

For PITI [36], we compare our method to finetuning
from a pretrained GLIDE [20] model. In this baseline, we
train the encoder from scratch to map segmentation maps to
the latent space of GLIDE, as in [36]. We also consider a
baseline where we finetune all layers in a pretrained PITI,
by re-initializing the first encoder layer that takes as input
the segmentation map.
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Figure 3. Samples from models trained with 100 target images. Transfer from ADE to COCO (top left), COCO to ADE (top right), and
from COCO to Cityscapes (bottom). Class affinity matrix initialized randomly (w/o CAT) or with combination method (w/ CAT).

Affinity matrix COCO→ADE ADE→COCO
initialization ↓FID ↑mIoU ↓FID ↑mIoU

O
A

SI
S

Random 54.0 30.0 82.9 15.9
Text-based 41.1 30.4 55.2 17.3
Segmentation 42.0 30.8 58.2 12.9
Self-supervised 41.3 29.8 57.9 15.4
Combination 40.9 31.4 53.7 17.4

PI
T

I

Random 57.1 11.6 83.7 0.8
Text-based 40.9 20.2 47.4 7.1
Segmentation 41.1 22.0 52.5 5.3
Self-supervised 41.9 21.2 50.9 5.6
Combination 40.7 22.3 46.8 7.5

Table 1. Comparison of different class affinity estimation methods
and their combination to randomly initializing the affinity matrix.
Results after finetuning.

4.2. Main affinity estimation results

Quantitative evaluation. In our first experiment we
evaluate the performance of the class affinity estimation
from class label embeddings, semantic segmentation, self-
supervised features, and their combination, when transfer-
ring from COCO-Stuff to ADE20K and vice-versa. We also
compare to randomly initializing the affinity matrix. In all
cases, we initialize the other weights from the source model,
and finetune all weights on the target data.

The results in Table 1 show consistent gains over the ran-
dom initialization baseline across the board. The text and
segmentation based affinities perform better than the self-
supervised features, and the combination of all three yields
the best results on both transfer problems and metrics. In
particular, when comparing random initialization and the
combined class affinities for OASIS, we improve FID from
54.0 to 40.9 and mIoU from 30.0 to 31.4 when transferring
from COCO to ADE, and improve FID from 82.9 to 53.7
and mIoU from 15.9 to 17.4 in the reverse tranfer direction.



Method COCO→ADE ADE→COCO ADE→Cityscapes COCO→Cityscapes
↓FID ↑mIoU ↓FID ↑mIoU ↓FID ↑mIoU ↓FID ↑mIoU

O
A

SI
S

From scratch 145.9 13.6 153.4 7.1 136.5 37.1 137.0 37.2
TransferGAN [39] 85.1 20.4 120.5 10.2 56.2 61.5 51.5 63.6
FreezeD [19] 66.3 25.9 102.4 13.8 57.1 62.7 49.8 66.5
MineGAN [38] 82.2 21.0 110.2 11.5 57.8 62.2 52.6 65.4
BSA [21] 70.1 25.9 94.2 12.8 76.3 51.6 65.7 59.1
cGAN-Transfer [34] 64.9 26.2 89.8 15.0 63.6 61.7 57.3 58.9
CAT (ours) 40.9 31.4 53.7 17.4 51.4 66.1 47.0 68.1

PI
T

I From GLIDE [37] 59.8 2.0 104.9 0.3 74.5 9.5 74.5 9.5
Finetune all 56.8 14.2 83.7 0.1 86.1 17.2 70.8 36.7
CAT (ours) 40.7 22.3 46.8 7.5 62.7 27.3 54.7 39.9

Table 2. Comparison with state-of-the-art transfer methods, using target datasets of 100 images.

For PITI, we improve FID from 57.1 to 40.7 and mIoU from
11.6 to 22.3 when transferring from COCO to ADE, and im-
prove FID from 83.7 to 46.8 and mIoU from 0.8 to 7.5 in
the opposite direction.

While the FID values for the diffusion-based PITI model
are comparable or better than those obtained using OASIS,
we noticed that mIoU values for the diffusion-based model
are worse. This trend was already observed on the source
dataset: PITI trained on the full COCO dataset has an mIoU
of 34.4, while the mIoU on OASIS is 44.1. This gap widens
when training on the full ADE dataset, where PITI has an
mIoU of 26 compared to 48.8 for OASIS.

Qualitative results. In Figure 3, we show samples syn-
thesized from PITI and OASIS models with three differ-
ent types of transfer, from ADE to COCO on top left, from
COCO to ADE on top right and from COCO to Cityscapes
on the bottom, finetuning with 100 target images with and
without class affinity transfer (CAT). Both for PITI and OA-
SIS, training with CAT leads to synthesized images with
sharper details and better recognizable objects. For in-
stance, the sink and bathtub in images of the first row in the
top right of the figure are of better quality and more realistic
when trained with CAT. Furthermore, when transferring to
the challenging COCO dataset containing 183 classes, we
notice that without CAT, PITI fails to synthesize realistic
images adhering to the label maps, whereas CAT can syn-
thesize images of better quality coherent with label maps.

Comparison with the state of the art. We compare to
the state-of-the-art transfer methods for generative models.
We consider four pairs of target-source datasets, by taking
source models trained either on COCO-Stuff or ADE20K
datasets, and finetuning them on target datasets of 100 im-
ages taken from Cityscapes, ADE20K and COCO-Stuff.

From the results in Table 2 using the OASIS architecture,
we observe a significant improvements with CAT. We im-
prove FID from 64.9 to 40.9 and mIoU from 26.2 to 31.4
COCO→ADE, and improve FID from 89.8 to 53.7 and

Figure 4. FID, mIoU and # training iterations for COCO→ ADE
transfer using OASIS w/ and w/o CAT for different dataset sizes.

mIoU from 15.0 to 17.4 for ADE→COCO w.r.t. the best
baseline cGAN-Transfer. When transferring to Cityscapes,
CAT improves FID from 56.2 (TransferGAN) to 51.4 and
mIoU from 62.7 (FreezeD) to 66.1 when the source dataset
is ADE, and improving FID from 49.8 to 47.0 and mIoU
from 66.5 to 68.1 w.r.t. FreezeD with COCO as source.

In the case of PITI, directly finetuning a pretrained
GLIDE model on the target dataset (“From GLIDE”) pro-
duces images with much better quality compared to OA-
SIS trained from scratch in terms of FID. However, the
model fails to generate images with strong adherence to la-
bel maps, as reflected by the poor mIoU scores. Generally,
finetuning PITI trained on the source dataset on the target
dataset (“finetune all”) gives better results than finetuning
from GLIDE. CAT significantly improves over these two
baselines in all settings: with more than 15 points in FID,
and more than 3 points in mIoU.

4.3. Ablation study and analysis

Impact of the target dataset sizes. We generate subsets of
size ranging from 25 to 400 images on ADE and analyze the
peformance of CAT using OASIS as base model. We report
the evolution of FID and mIoU in Figure 4 (left and center
panel, respectively). While CAT (in dark orange) demon-
strates gains in both FID and mIoU in all the dataset sizes,
its advantage is striking in the very low-shot setting. CAT
surpasses by large margins of 30.1 and 19.1 FID points, re-
spectively on datasets of size 25 and 50. Even if the boost



Affinity matrix COCO→ADE ADE→COCO
initialization ↓FID ↑mIoU ↓FID ↑mIoU

O
A

SI
S

Random 216.0 0.5 270.8 0.1
Text-based 44.6 23.9 57.8 15.2
Segmentation 47.0 22.8 64.5 12.1
Self-supervised 45.5 22.7 68.1 10.2
Combination 43.1 25.1 56.3 13.8
Combo + finetuning 40.9 31.4 53.7 17.4

PI
T

I

Random 96.3 5.7 98.3 0.1
Text-based 51.6 19.2 50.8 7.1
Segmentation 48.7 20.2 59.2 5.2
Self-supervised 49.5 19.6 53.9 5.0
Combination 48.5 20.9 49.3 7.4
Combo + finetuning 40.7 22.3 46.8 7.5

Table 3. Training-free transfer results. Results obtained with ad-
ditional finetuning are marked in italic.

narrows when increasing the dataset size, we still observe
a performance gain of 5.6 points of FID with 400 training
images. For reference, training OASIS on the full dataset
ADE (with face blurring) achieves 29.8 of FID and 48.6 of
mIoU. In the right panel of Figure 4 we report the number
of training iterations before convergence. We note a faster
convergence with CAT for all the dataset sizes.

Training-free transfer. If we only add the class affinity
matrix to the source model, without further finetuning the
model on the target data, it can already be used to generate
samples for the target domain. Since the class-affinity ma-
trix is obtained with a single feed-forward pass through the
target training data, or even just using the textual class em-
beddings, this approach can be considered “training-free”
and is extremely computationally efficient.

From the results in Table 3, we notice that the affin-
ity matrix that combines the different methods consistently
obtains the best (or very close) performance in terms of
FID and mIoU. No matter the choice of affinity estima-
tion method, our training-free variant of CAT achieves
performance far better than using a randomly initialized
class affinity matrix. Both in terms of FID and mIoU, the
training-free result is already relatively close to the results
obtained with finetuning (“Combo + finetuning”). This un-
derlines the key role of a good initialization for transfer for
semantic image synthesis. Qualitative results of training-
free transfer can be found in the supplementary material.

Ablations for OASIS. In Table 4, we ablate how each
component contributes to the performance. We observe
that freezing part of the discriminator parameters, as done
in [19], improves performance. We also found it benefi-
cial to perform finetuning in two stages: in the first stage,
we fix most of our generator parameters, and only finetune
the first convolution in each SPADE block that takes as in-
put the segmentation map; in the second stage, we train all

FreezeD 2 stages Resid. CAT COCO→ADE ADE→COCO
↓FID ↑mIoU ↓FID ↑mIoU

✗ ✗ ✗ ✗ 87.2 20.7 117.3 11.0
✓ ✗ ✗ ✗ 65.7 25.8 98.6 14.8
✓ ✓ ✗ ✗ 55.9 28.6 83.4 15.2
✓ ✓ ✓ ✗ 55.2 29.4 79.9 15.7
✓ ✓ ✓ ✓ 40.9 31.4 53.7 17.4

Table 4. Ablations with adversarial OASIS architecture.

FixDec Prompts CAT COCO→ADE ADE→COCO
↓FID ↑mIoU ↓FID ↑mIoU

✗ ✗ ✗ 56.5 13.5 85.0 0.1
✓ ✗ ✗ 52.4 13.6 79.0 1.4
✓ ✓ ✗ 51.1 14.1 78.9 1.3
✓ ✓ ✓ 40.7 22.3 46.8 7.5

Table 5. Ablations with diffusion-based PITI architecture.

the generator parameters. We also demonstrate that adding
residual convolutional layers is beneficial (e.g. from 83.4 to
79.9 in FID in ADE→COCO). Finally, we obtain substan-
tial gains using our class affinity matrix for initialization.

Ablations for PITI. The ablation study in the case of the
diffusion-based model is reported in Table 5. We observe
better performance when fixing the decoder part, and intro-
ducing trainable prompts in the segmentation map encoder
further improves FID and mIoU. Lastly, when adding our
class affinity matrix, we consistently improve performance
by a larger margin in all settings according to both metrics.

5. Conclusion

In this paper, we consider the problem of few-shot se-
mantic image synthesis, where training sets consist of a few
tens to a few hundreds images. To address this problem, we
proposed Class Affinity Transfer (CAT), a transfer learn-
ing approach based on estimating a class affinity matrix,
using the similarities among classes in the source and tar-
get datasets. We consider four methods to establish these
similarities: based on a semantic segmentation model of the
source domain, using self-supervised vision features, or us-
ing text-based class label embeddings, and a combination
via majority voting. The class affinity matrix is prepended
as a first layer to the source model to align it with the one-
hot-labels of the target domain. We integrated our approach
in both an adversarial (OASIS) and a diffusion-based ar-
chitecture (PITI). We conducted extensive experiments on
the COCO-Stuff, ADE20K, and Cityscapes datasets, and
observed excellent transfer performance. Consistently out-
performing state-of-the-art transfer methods for generative
models, and allowing realistic semantic image synthesis us-
ing training sets as small as 100 images.
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