
DEEP SHALLOW FUSION FOR RNN-T PERSONALIZATION

Duc Le, Gil Keren, Julian Chan, Jay Mahadeokar, Christian Fuegen, Michael L. Seltzer

Facebook AI
{duchoangle,gilkeren,julianchan,jaym,fuegen,mikeseltzer}@fb.com

ABSTRACT

End-to-end models in general, and Recurrent Neural Network
Transducer (RNN-T) in particular, have gained significant
traction in the automatic speech recognition community in
the last few years due to their simplicity, compactness, and
excellent performance on generic transcription tasks. How-
ever, these models are more challenging to personalize com-
pared to traditional hybrid systems due to the lack of external
language models and difficulties in recognizing rare long-tail
words, specifically entity names. In this work, we present
novel techniques to improve RNN-T’s ability to model rare
WordPieces, infuse extra information into the encoder, enable
the use of alternative graphemic pronunciations, and perform
deep fusion with personalized language models for more
robust biasing. We show that these combined techniques re-
sult in 15.4%–34.5% relative Word Error Rate improvement
compared to a strong RNN-T baseline which uses shallow fu-
sion and text-to-speech augmentation. Our work helps push
the boundary of RNN-T personalization and close the gap
with hybrid systems on use cases where biasing and entity
recognition are crucial.

Index Terms— RNN-T personalization, shallow fusion,
contextual biasing, name recognition.

1. INTRODUCTION

End-to-end techniques for automatic speech recognition
(ASR), most notably sequence-to-sequence models with
attention [1–4] and Recurrent Neural Network Transducer
(RNN-T) [5–8], are becoming increasingly popular. Com-
pared to the traditional hybrid system based on Hidden
Markov Model and Deep Neural Network (HMM-DNN)
with individually-trained components, all parts of an end-to-
end model are optimized jointly, which often leads to better
performance on recognition tasks with sufficient training data
and low training-testing mismatch. End-to-end systems are
simpler to train; they typically do not require pronuncia-
tion lexicons, decision trees, initial bootstrapping, nor forced
alignment. End-to-end models are also more suitable for on-
device use cases due to the lack of external language models
(LMs) or decoding graphs, whose sizes can be prohibitively
large in hybrid setups because of large vocabulary support,

complex LMs, and context-dependent decision trees.
End-to-end systems do have limitations, however. Their

end-to-end nature leads to a lack of composability, such as
that between acoustic, language, and pronunciation models
in hybrid setups. This lack of composability in turn leads
to challenges in personalization, which traditionally involves
on-the-fly modification of external LMs (or decoding graphs)
to add, boost, and penalize certain words or phrases. Previous
work in end-to-end ASR addressed this issue by incorporat-
ing external LMs during beam search (i.e., shallow fusion),
with special modifications to handle the model’s spiky out-
put [8–10]. A fundamental limitation of shallow fusion is
that it relies on late combination, hence the model needs to
have the potential to produce the correct output in the first
place without access to biasing information. Another class of
method (i.e., deep context) adds an attention-based [11–13]
or simple [13] biasing module over contextual phrases to pro-
vide additional signal to the decoder component of end-to-end
models. While promising, these methods were shown to have
problems scaling to large and highly confusable biasing lists.

A closely related challenge of ASR personalization is en-
tity recognition, since in many cases biasing items are entity
names. Rare name recognition presents significant chal-
lenges to end-to-end models because of two main reasons.
First, the output units of end-to-end models are typically
graphemes or WordPieces [14], both of which do not work
well when the spelling of a word does not correspond to how
it is pronounced (e.g., non-English names relative to English
spelling conventions). Second, rare names often decompose
into target sequences that are not seen enough in training,
making them difficult to recognize correctly. By contrast,
both problems are alleviated in hybrid systems due to the
use of phonetic lexicons and/or clustered context-dependent
acoustic targets. Popular solutions to this problem include
upsampling entity-heavy data or generating synthetic training
data with names using text-to-speech (TTS) [8, 10, 15, 16].
While this method alleviates the data sparsity issue, it does
not address the underlying problems of under-trained targets
and unconventional spelling of rare names.

In this work, we propose several novel techniques to ad-
dress both challenges and further improve RNN-T person-
alization. To alleviate the problem of under-trained targets
and recognition of unconventional names, we adopt on-the-

fly sub-word regularization [17] to increase WordPiece cover-
age during training, perform pre-training [18] and multi-task
learning (MTL) [19] to strengthen the encoder, and lever-
age grapheme-to-grapheme (G2G) [20] to generate alterna-
tive graphemic pronunciations for names. To address the lim-
itation of shallow fusion relying on late combination, we in-
troduce deep personalized LM (PLM) fusion to influence the
model’s predictions earlier. We show that the combination of
these techniques results in 15.4%–34.5% relative Word Error
Rate (WER) improvement on top of a strong RNN-T baseline
which leverages shallow fusion and TTS augmentation. Our
final model is also competitive with a hybrid system that has
significantly larger disk and memory footprint.

2. BACKGROUND AND RELATED WORK

2.1. Recurrent Neural Network Transducer (RNN-T)

The RNN-T model architecture, first proposed in [5], can be
broken down into three different components. Firstly, the en-
coder, which can be thought of as RNN-T’s built-in acoustic
model (AM), is responsible for transforming a sequence of
acoustic feature vectors x = (x1,x2, . . . ,xT), where xt ∈
Rd and T is the number of frames, into a sequence of high-
level representation henc = (henc

1 ,henc
2 , . . . ,henc

T ′):

henc = f enc(x) (1)

where T ′ may be different from T due to subsampling.
Secondly, the predictor, which can be thought of as RNN-

T’s built-in LM, is responsible for transforming a sequence of
previous output units y1, y2, . . . , yu−1, where yu is typically
a grapheme or WordPiece, into an embedding vector hpred

u :

hpred
u = f pred(y1, y2, . . . , yu−1) (2)

Thirdly, the joiner, which can be thought of as RNN-
T’s built-in decoder, is responsible for combining the encoder
output henc

t at acoustic time step t and predictor output hpred
u

at prediction time step u to estimate the logits zt,u:

zt,u = f join(henc
t + hpred

u) (3)

Finally, the posterior distribution over the next output
symbols at acoustic time step t and prediction time step u can
be computed by passing zt,u through a softmax function:

P (·|x1 . . .xt, y1 . . . yu−1) = Softmax(zt,u) (4)

Details about RNN-T’s training objective and decoding
algorithm can be found in [5]. Compared to other end-to-
end architectures, such as sequence-to-sequence models with
attention, RNN-T is easier to stream while maintaining highly
competitive recognition performance [7, 21, 22].

2.2. External LM Fusion and Deep Context

One major limitation of RNN-T and end-to-end models in
general is that they are reliant on audio training data and can-
not easily leverage unpaired text. The most popular method
for using text data with RNN-T is via shallow fusion, where
RNN-T scores are combined with external LM scores during
beam search [9, 10]. Alternatively, external neural network
LMs (NNLMs) can be fused during training and augment the
end-to-end model’s decoder/predictor component with addi-
tional linguistic information via cold fusion [23, 24]. The
main challenge in applying cold fusion to RNN-T personal-
ization is that we would need to rapidly adapt the NNLM on a
very small amount of personalized information, which is dif-
ficult to do efficiently and effectively. Deep context [11, 12]
can be considered an extension of cold fusion which replaces
the NNLM with an attention module over bias words. As
shown in [11], while this method worked well on smaller bi-
asing lists, it failed to yield improvement on larger lists even
after combining with shallow fusion. A recent work replaced
the attention module with a non-trainable position-aware bi-
asing module which gave similar results [13]; however, they
did not analyze this method’s performance on large biasing
lists nor compare with shallow fusion baselines.

Our deep PLM fusion technique (Section 4.5) can be
viewed as an extension to cold fusion that utilizes a trie-based
biasing module which can be constructed efficiently on-the-
fly given personalization data. Moreover, our method is able
to yield significant improvement with large biasing lists over
pure shallow fusion, which previous work did not achieve.

2.3. Grapheme-to-Grapheme (G2G)

G2G is a technique originally proposed for hybrid graphemic
ASR to improve rare name recognition [20]. The idea is
akin to grapheme-to-phoneme (G2P), but the output of the
model is a sequence of graphemes instead of phonemes. G2G
models are trained by generating artificial data with TTS, re-
decoding the data using a specialized graphemic ASR sys-
tem, and finally training a statistical model to map the origi-
nal written form to the re-decoded ASR output. Trained G2G
models can transform a word into alternative spellings with
similar pronunciations, such as “Kaity” → “Katie.” The au-
thors found that using G2G to generate additional pronun-
ciations for decoding led to significant improvement on rare
name recognition. In this paper, we extend their work to apply
G2G to the end-to-end paradigm. We also investigate using
G2G during model training instead of just decoding.

3. DATA

Our training set is made up of two manually-transcribed
anonymized in-house corpora with no personally identifiable
information (PII). The first corpus comprises 15.7M utter-
ances (12.5K hours) in the voice assistant domain recorded

by 20K crowd-sourced workers on mobile devices. The
second corpus contains 1.2M voice commands (1K hours)
sampled from the production traffic of Facebook Portal after
the “hey Portal” wakeword is activated. Utterances from this
corpus are further morphed when researchers access them, in
an effort to de-identify the user. We follow the same data aug-
mentation procedure described in [20], which involves a mix
of simulated Room Impulse Response (RIR), additive back-
ground noise extracted from public Facebook videos, and
speed perturbation [25]. The final distorted dataset contains
38.6M utterances (31K hours).

Our evaluation set comprises 20.8K manually-transcribed
anonymized utterances collected from volunteer participants
in Portal’s in-house dogfooding program. The participants
consist of households that have consented to having their Por-
tal voice activity reviewed and analyzed. Every utterance in
the evaluation set is associated with a personalized contact
list, which we use for on-the-fly personalization to support
calling queries. The contact list contains 876 names on av-
erage, with a standard deviation of 491; this is several times
larger than most of the bias lists used in [11, 13]. The evalua-
tion set is further split into three subsets:

• name-prod: 4.7K utterances containing names from
the personalized contact list.

• name-rare: 800 utterances containing names from
the personalized contact list. The names in this subset
are significantly more challenging than those typically
seen in traffic and are used to benchmark our system on
rare name recognition.

• non-name: 15.3K utterances without any name from
the personalized contact list. Note that this subset still
contains entities outside of the personalization data,
such as artist names, city names, and song names.

We further augment our training data with TTS-generated
utterances, motivated by previous successes of this technique
in improving entity recognition [8, 10, 15, 16]. We generate
1M transcripts for TTS through weighted sampling of 5.6K
calling patterns mined from training data, combined with un-
weighted sampling of 710K name-pronunciation pairs from
our internal pronunciation corpus. The transcripts are passed
to our in-house phonetic TTS engine with neural vocoder,
which verbalizes the input using four different voices ({male,
female} × {American English, British English}), producing
4M utterances in total. Finally, we distort each utterance once
using RIR and additive background noise prior to training.

4. METHODS

4.1. Shallow Fusion with Class-Based WFST LM

We adopt a baseline WFST-based biasing approach for RNN-
T in this work similar to [10], where biasing is done at the

0 4
1

_Ka:ε ity:Kaity

_John:John

Φ:ε

_Katie:Kaity

2

_Jo:
ε

n:John

3

ε:<oov> ε:<
/oov
>

Fig. 1. Example @name WFST with two names (John and
Kaity), OOV failure arc, and one G2G pronunciation variant
for each name (Jo n and Katie). The ilabel Φ indicates
that any input symbol can be accepted by the OOV arc.

WordPiece level and before the pruning stage of decoding.
We employ a 4-gram WFST LM trained on a list of calling
patterns mined from training data. The LM contains a special
class tag, @name, which stands for the user’s personalized
contact list. Each word-level arc in the WFST is broken into
WordPiece-level arcs according to SentencePiece [26], each
of which has the same weight as the word-level arc. In decod-
ing, the @name WFST is constructed dynamically from the
personalized contact list, followed by determinization, mini-
mization, and epsilon removal. To avoid over-biasing, we add
an out-of-vocabulary (OOV) failure arc to the @name WFST
to allow more flexible traversal through the class tag. This is
similar to the failure arcs described in [10]; from early exper-
iments we found that this OOV arc method produced better
results. Figure 1 shows an example @name WFST with two
names, John and Kaity, along with the OOV failure arc.

4.2. Sub-Word Regularization

The output units of RNN-T are typically WordPieces trained
with Byte Pair Encoding (BPE) [27] or unigram LM [17].
With large number of WordPieces, model training converges
to word-level modeling as high-frequency words (e.g., “hello”
and “interesting”) are modeled whole. As a result, smaller
WordPieces that make up these high-frequency words can
be under-trained, leading to difficulties in recognizing rare
names which are typically broken down into smaller Word-
Pieces. Sub-word regularization was proposed in machine
translation to alleviate this problem, where the reference
WordPiece sequence is sampled from the n-best instead of
taken from the best parse [17]. We hypothesize that a similar
technique can be applied to RNN-T training and will be espe-
cially beneficial for name recognition. In addition to inducing

better coverage of tail WordPieces, sub-word regularization
can also help reduce model overconfidence and avoid early
pruning. This technique has been used in ASR before [28],
but its impact on rare word recognition has not been studied.

4.3. Encoder Pre-Training and Multi-Task Learning

The encoder, which can be viewed as RNN-T’s built-in AM,
is a key component of the model. Previous work has shown
that pre-training the RNN-T encoder with Cross Entropy (CE)
loss on frame-level force-aligned targets helps improve WER
[18]. In this paper, we extend this technique by introducing
an auxiliary CE loss on the encoder to predict frame-level tar-
gets, which is optimized jointly with the RNN-T loss. We use
context- and position-dependent graphemes (i.e., chenones)
[29] as the target labels to avoid the use of phonetic lexicon.
In this setting, multi-task learning (MTL) introduces comple-
mentary information and ensures consistent gradient flow into
the encoder during training. We explore auxiliary training
tasks for RNN-T in more detail in [19].

4.4. Leveraging G2G

RNN-T’s output units are graphemic in nature, making it dif-
ficult to recognize rare names with poor grapheme-phoneme
correspondence. In this work, we propose to leverage G2G
[20] to generate additional pronunciation variants for contact
names during decoding. We decompose the output of G2G
into WordPieces using the same SentencePiece model used
by RNN-T while maintaining the word-level olabel. Figure
1 shows an example @name WFST with G2G pronunciation
variants added. With this method, the underlying WordPiece
sequence produced by RNN-T does not have to match the
word-level output, thus increasing the model’s flexibility.

We also propose to leverage G2G during training by re-
placing each word in the reference text with a random G2G
variant with some probability p. We do not replace words
whose 1st-best G2G output is identical to their original writ-
ten form, since these typically correspond to regular words
that have consistent spelling and will likely not benefit from
G2G replacement. Similar to sub-word regularization, G2G
replacement helps increase WordPiece coverage during train-
ing and prevent model overconfidence.

4.5. Deep PLM Fusion

One fundamental limitation of shallow fusion is that the com-
bination with external LM scores happens after the RNN-T
forward pass, during which the model does not have access
to any information from the personalized contact list. Com-
bined with RNN-T’s spiky output, this lack of contextual in-
formation during the forward pass may limit RNN-T’s abil-
ity to output the correct WordPiece sequence, especially for
rare names. To address this issue, we introduce a component
called PLM predictor, which is responsible for transforming

Prefix tree for bias phrases [Joe, Joey, Kaity, Karl]:

Previously emitted tokens: [_call _Ka]

PLM output:

[_Jo, _Ka], [ity, rl], []

_Jo e

<eos>

y <eos>

_Ka

ity <eos>

Start

rl <eos>

Results for
empty prefix

Results for
prefix: _Ka

Results for
Prefix: _call _Ka

Fig. 2. Example prefix tree and the results of query operations
given a sequence of previously emitted symbols.

a sequence of previous output units y1, y2, . . . , yu−1 into an
embedding vector hplm

u given a list of contextual bias names
c1, c2, . . . , cN from the personalized contact list:

hplm
u = f plm(y1, y2, . . . , yu−1|c1, c2, . . . , cN) (5)

The joiner (Equation 3) is then modified to estimate the logits
zt,u by taking into account the encoder, predictor, and PLM
predictor embedding vectors:

zt,u = f join(henc
t + hpred

u + hplm
u) (6)

There are many possible choices for the PLM predictor.
We could design it as a NNLM that estimates the probabil-
ity of the next WordPiece given previously emitted symbols.
However, this requires adapting the NNLM on-the-fly given a
contact list, which is difficult to do efficiently and effectively
given relatively little data. We could re-use the WFST LM
used in shallow fusion, where the set of valid ilabel transitions
given the current FST states constitutes the embedding vector
hplm
u . A challenge there is to make this operation efficient

enough due to the presence of epsilon transitions and dupli-
cate paths (the overall WFST is not determinized). To address
this problem, we propose a simplified WFST LM called sim-
ple PLM that can be queried more efficiently. This simple
PLM builds a trie/prefix tree on a list of personalized con-
tacts, each represented as a sequence of WordPieces. Given a
length-k prefix sequence of emitted symbols yu−k, . . . , yu−1,
the trie returns a list of valid next symbols represented as a bi-
nary vector vu of length V , where V is the number of Word-
Pieces in the output vocabulary Y:

Trie(yu−k, . . . , yu−1) = vu (7)

where vu
i = 1 if yu−k, . . . , yu−1,Yi comprise a prefix of a

contact name, and 0 otherwise. Figure 2 shows an example
prefix tree and results of some query operations.

The PLM predictor output can then be defined as:

hplm
u = Wplm[Trie(); Trie(yu−1); Trie≥2(y1, . . . , yu−1)] (8)

where Wplm is a projection matrix to transform the concate-
nated binary vectors into the same dimension as the RNN-
T encoder and predictor embeddings, and Trie≥2 is the con-
densed binary vector for all prefixes of length 2 or more:

Trie≥2(y1, . . . , yu−1) = Trie(yu−2, yu−1) OR

Trie(yu−3, yu−2, yu−1) OR

. . .

Trie(y1, y2, . . . , yu−1)

(9)

where OR stands for the element-wise logical OR operation.
Intuitively, the first binary vector Trie() represents symbols
that can start a new contact name, the second binary vector
Trie(yu−1) represents symbols that can continue some con-
tact name given the last emitted symbol as prefix, and the
third binary vector Trie≥2(y1, . . . , yu−1) represents symbols
that can continue some contact name given the last two or
more emitted symbols as prefix.

We also experimented with attention-based PLM predic-
tor similar to [11–13], but found that this method did not scale
well to large biasing lists and gave worse results while being
significantly more expensive in training and inference. We
therefore focus only on trie-based PLM predictor in this work.

5. EXPERIMENTS AND RESULTS

5.1. Baseline System Results

The baseline RNN-T used in this work has 37M parameters in
total. The encoder takes 11 stacked logMel feature frames as
input, has eight layers of Long-Short Term Memory (LSTM)
with 640 units, and subsamples the input by a factor of four.
The predictor consists of two LSTM layers with 256 units.
We apply 0.3 dropout and layer normalization between every
layer in both the encoder and predictor, and their outputs are
projected into 1024 dimensions using a fully-connected (FC)
layer. Finally, the joiner contains one FC layer with input
dimension 1024. The output targets are 4096 unigram Word-
Piece units [17] trained with SentencePiece [26]. The model
is trained for 50 epochs with Adam optimizer [30]; the learn-
ing rate is fixed at 0.0002 for the first 35 epochs, then decays
by 0.85 after every epoch until the end of training. The epoch
with the best validation loss is chosen for evaluation.

Table 1 (Section 1) shows that, as expected, shallow fu-
sion improves name recognition significantly while incurring
some degradation on non-name. Compared to a hybrid
system consisting of a LSTM AM trained on chenones and
a large 5-gram word-level LM (several GBs), RNN-T with

ID Description name-
prod

name-
rare

non-
name

1. Baseline Systems
H1 Hybrid 10.6 9.3 7.8
B1 RNN-T 33.5 42.0 7.0
B2 B1 + Shallow Fusion 11.7 13.9 7.9

2. With Sub-Word Regularization
(l: sampling size, α: smoothing parameter [17])
S1 B2 + (l=5, α=0.25) 10.6 12.9 8.6
S2 B2 + (l=10, α=0.25) 10.5 14.5 7.9
S3 B2 + (l=15, α=0.25) 11.3 13.9 8.3

3. With Pre-Training (PT) and Multi-Task Learning (MTL)
M1 S1 + PT 10.2 11.5 9.5
M2 S1 + MTL 10.7 13.3 9.0
M3 S1 + PT and MTL 10.2 12.3 8.6

4. With G2G in Training and/or Decoding
G1 M3 + G2G Train 9.8 11.7 8.5
G2 M3 + G2G Decode 10.9 10.8 8.9
G3 M3 + G2G All 10.1 10.2 8.4

5. With Deep PLM Fusion
(frozen encoder and predictor)
P1 G3 + Deep PLM 10.3 9.3 8.4
P2 P1 + Sub-Word Reg. 10.1 9.3 8.4
P3 P2 + G2G Train 9.9 9.1 8.3

Table 1. Word Error Rate summary of proposed techniques.

shallow fusion performs similarly on non-name, but under-
performs by 10.4% relative on name-prod and 49.5% on
name-rare. These results indicate RNN-T’s problems with
entity recognition, especially on rare names.

5.2. Effect of Sub-Word Regularization

Table 1 (Section 2) shows RNN-T results after adding sub-
word regularization with fixed smoothing parameterα = 0.25
and different sampling sizes l. Excessively large l leads to
unstable training, and the best result was achieved with l =
5. In this setup, we obtain relative improvement of 9.4%
on name-prod and 7.2% on name-rare, while degrading
non-name by 8.9%. The degradation on non-name could
possibly be avoided by performing sub-word regularization
only on entity names, which we will explore in future work.

5.3. Effect of Pre-Training and Multi-Task Learning

We pre-train the RNN-T encoder for 20 epochs with CE loss
on chenone targets. During RNN-T training, the auxiliary CE
loss is attached to the last encoder layer and optimized jointly

Shallow
Fusion

G2G
(Decoding)

name-
prod

name-
rare

non-
name

NO NO 25.7 30.6 8.2
YES NO 10.0 9.9 8.3
YES YES 9.9 9.1 8.3

Table 2. Impact of shallow fusion and G2G on deep PLM.

with the RNN-T loss (the CE loss weight is set at 0.1). Table
1 (Section 3) shows the impact of these techniques. Combin-
ing pre-training and MTL gave the best overall performance,
resulting in an improvement of 3.8% on name-prod, 4.7%
on name-rare, and no change on non-name compared to
the S1 baseline. We could likely achieve more gain by tuning
the location of the auxiliary loss as well as the CE loss weight.
This will be investigated in a follow-up work.

5.4. Effect of G2G

The G2G model used in this work follows the same training
procedure as in [20], but uses RNN-T instead of hybrid ASR
to re-decode the TTS output. We generate two additional G2G
variants for each word in addition to the identity mapping,
and fix the replacement probability p during training to 0.2.
As seen in Table 1 (Section 4), applying G2G only to train-
ing leads to small but consistent improvement across all test
sets. Applying G2G only to decoding leads to significant im-
provement on name-rare, but degrades the other two test
sets due to increased confusion in the WFST. The problem
is mitigated by applying G2G to both training and decoding,
where we see similar performance on name-prod, signif-
icant 17.1% improvement on name-rare, and slight 2.3%
improvement on non-name compared to the M3 baseline.

5.5. Effect of Deep PLM Fusion

Unlike test data, our training utterances are not associated
with any personalized contact list and the target entity (if any)
is unknown; both are required for deep PLM training. We
identify potential target entities in each training utterance us-
ing an in-house entity tagger. We then simulate a contact list
for each training utterance on-the-fly by sampling between
200 and 400 names from the list of tagged entities. We fur-
ther expand this contact list by adding two G2G variants for
each name, which makes the simulated contact list more real-
istic. To speed up training, we initialize and freeze the RNN-
T encoder and predictor weights from the G3 baseline, thus
only the joiner and PLM predictor are trained from scratch.
Freezing the encoder and predictor also avoids spurious WER
improvement due to training the model longer. We train the
model for 20 epochs with Adam; the learning rate is fixed at
0.0001 for the first 10 epochs, then decays by 0.5 every epoch.

In initial experiments, we found that RNN-T with deep
PLM is prone to overfit due to an over-reliance on the PLM

predictor. The model’s n-best list tends to contain very di-
verse contact names rather than acoustically similar words.
This poor confusion pattern especially hurts the model when
combined with shallow fusion. We henceforth propose three
regularization techniques to combat this issue. First, we re-
move the target entity from the simulated contact list with 0.5
probability. Second, we apply 0.3 dropout to the PLM predic-
tor output hplm

u . Third, inspired by scheduled sampling [31],
we replace the target entity with another name with 0.3 proba-
bility before feeding the reference text through the predictors.
All three techniques force the model to rely more on the en-
coder and less on the predictors during training. Although
these regularization methods slightly degraded WER of the
stand-alone deep PLM model, we found they were crucial for
getting additional improvement on top of shallow fusion.

Our proposed techniques, together with sub-word regu-
larization and G2G replacement, allow deep PLM fusion to
improve upon the G3 baseline, as seen in Table 1 (Section 5).
Deep PLM is especially helpful for name-rare, yielding
10.8% relative improvement. The benefit will likely be higher
with a weaker but more generic WFST LM that does not rely
as much on known calling patterns. Compared to the RNN-T
baseline B2, our final system improves over name-prod by
15.4% and name-rare by 34.5%, while degrading non-
name by 5.1%. Interestingly, the gap on name recognition
with the hybrid baseline H1 has been closed completely.

Lastly, the ablation study in Table 2 shows that deep PLM
fusion in its current form cannot completely replace shallow
fusion, despite clear improvement over the baseline B1. We
will investigate the root cause of this performance gap in fu-
ture work. In addition, the last two rows of the table indicate
that G2G and deep PLM fusion provide complementary gains.

6. CONCLUSION AND FUTURE WORK

In this paper, we showed that RNN-T personalization can be
improved significantly by inducing better coverage of rare
WordPieces during training, introducing extra information
into the encoder, leveraging G2G to produce additional pro-
nunciation variants in both training and decoding, and biasing
earlier with deep PLM fusion. Together, these techniques help
push the boundary of RNN-T personalization and close the
gap with traditional hybrid systems on use cases that require
contextual biasing and accurate name recognition. For future
work, we plan to incorporate proper WFST and NNLM into
deep PLM fusion, apply these techniques to other end-to-
end models, and tackle open-domain personalization where
strong context prefixes are not always available.

7. ACKNOWLEDGMENT

We’d like to thank Mahaveer Jain, Jiedan Zhu, and Xuedong
Zhang for their helpful advice and suggestions.

8. REFERENCES

[1] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based Models for Speech Recognition,” in
Proc. NIPS, 2015.

[2] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and
spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. ICASSP, 2016.

[3] C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina, N. Jaitly,
B. Li, J. Chorowski, and M. Bacchiani, “State-of-the-Art
Speech Recognition with Sequence-to-Sequence Models,” in
Proc. ICASSP, 2018.

[4] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, “Improved train-
ing of end-to-end attention models for speech recognition,” in
Proc. INTERSPEECH, 2018.

[5] A. Graves, “Sequence transduction with recurrent neural net-
works,” in ICML Representation Learning Workshop, 2012.

[6] R. Prabhavalkar, K. Rao, T. Sainath, B. Li, L. Johnson, and
N. Jaitly, “A Comparison of Sequence-to-Sequence Models
for Speech Recognition,” in Proc. INTERSPEECH, 2017, pp.
939–943.

[7] E. Battenberg, J. Chen, R. Child, A. Coates, Y. G. Y. Li, H. Liu,
S. Satheesh, A. Sriram, and Z. Zhu, “Exploring neural trans-
ducers for end-to-end speech recognition,” in Proc. ASRU,
2017.

[8] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Al-
varez, D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang,
Q. Liang, D. Bhatia, Y. Shangguan, B. Li, G. Pundak, K. C.
Sim, T. Bagby, S. Chang, K. Rao, and A. Gruenstein, “Stream-
ing End-to-end Speech Recognition for Mobile Devices,” in
Proc. ICASSP, 2019.

[9] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and
R. Prabhavalkar, “An Analysis of Incorporating an External
Language Model Into a Sequence-to-Sequence Model,” in
Proc. ICASSP, 2018.

[10] D. Zhao, T. N. Sainath, D. Rybach, P. Rondon, D. Bhatia, B. Li,
and R. Pang, “Shallow-Fusion End-to-End Contextual Bias-
ing,” in Proc. INTERSPEECH, 2019.

[11] G. Pundak, T. N. Sainath, R. Prabhavalkar, A. Kannan, and
D. Zhao, “Deep Context: End-to-End Contextual Speech
Recognition,” in Proc. ICASSP, 2018.

[12] Z. Chen, M. Jain, Y. Wang, M. L. Seltzer, and C. Fuegen, “Joint
Grapheme and Phoneme Embeddings for Contextual End-to-
End ASR,” in Proc. INTERSPEECH, 2019.

[13] M. Jain, G. Keren, J. Mahadeokar, G. Zweig, F. Metze, and
Y. Saraf, “Contextual RNN-T For Open Domain ASR,” in
Proc. INTERSPEECH, 2020.

[14] K. Irie, R. Prabhavalkar, A. Kannan, A. Bruguier, D. Ry-
bach, and P. Nguyen, “Model Unit Exploration for Sequence-
to-Sequence Speech Recognition,” in Proc. INTERSPEECH,
2019.

[15] C. Peyser, H. Zhang, T. N. Sainath, and Z. Wu, “Improving
Performance of End-to-End ASR on Numeric Sequences,” in
Proc. INTERSPEECH, 2019.

[16] A. Rosenberg, Y. Zhang, B. Ramabhadran, Y. Jia, P. Moreno,
Y. Wu, and Z. Wu, “Speech Recognition with Augmented Syn-
thesized Speech,” in Proc. ASRU, 2019.

[17] T. Kudo, “Subword Regularization: Improving Neural Net-
work Translation Models with Multiple Subword Candidates,”
in Proc. ACL, 2018.

[18] H. Hu, R. Zhao, J. Li, L. Lu, and Y. Gong, “Exploring Pre-
training with Alignments for RNN Transducer based End-to-
End Speech Recognition,” in Proc. ICASSP, 2020.

[19] C. Liu, F. Zhang, D. Le, S. Kim, Y. Saraf, and G. Zweig, “Im-
proving RNN Transducer Based ASR with Auxiliary Tasks,”
in Proc. SLT, 2021.

[20] D. Le, T. Koehler, C. Fuegen, and M. L. Seltzer, “G2G: TTS-
Driven Pronunciation Learning for Graphemic Hybrid ASR,”
in Proc. ICASSP, 2020.

[21] C. C. Chiu, W. Han, Y. Zhang, R. Pang, S. Kishchenko,
P. Nguyen, A. Narayanan, H. Liao, S. Zhang, A. Kannan, et al.,
“A Comparison of End-to-End Models for Long-Form Speech
Recognition,” in Proc. ASRU, 2019.

[22] J. Li, Y. Wu, Y. Gaur, C. Wang, R. Zhao, and S. Liu, “On
the Comparison of Popular End-to-End Models for Large Scale
Speech Recognition,” in Proc. INTERSPEECH, 2020.

[23] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H. C. Lin,
F. Bougares, H. Schwenk, and Y. Bengio, “On using mono-
lingual corpora in neural machine translation,” arXiv preprint
arXiv:1503.03535, 2015.

[24] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold Fusion:
Training Seq2Seq Models Together with Language Models,”
in Proc. INTERSPEECH, 2018.

[25] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio aug-
mentation for speech recognition,” in Proc. INTERSPEECH,
2015.

[26] T. Kudo and J. Richardson, “SentencePiece: A simple and
language independent subword tokenizer and detokenizer for
Neural Text Processing,” in Proc. EMNLP: System Demon-
strations, 2018.

[27] R. Sennrich, B. Haddow, and A. Birch, “Neural Machine
Translation of Rare Words with Subword Units,” in Proc. ACL,
2016.

[28] A. Hannun, A. Lee, Q. Xu, and R. Collobert, “Sequence-
to-Sequence Speech Recognition with Time-Depth Separable
Convolutions,” in Proc. INTERSPEECH, 2019.

[29] D. Le, X. Zhang, W. Zheng, C. Fuegen, G. Zweig, and M. L.
Seltzer, “From Senones to Chenones: Tied Context-Dependent
Graphemes for Hybrid Speech Recognition,” in Proc. ASRU,
2019.

[30] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” in Proc. ICLR, 2014.

[31] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled
Sampling for Sequence Prediction with Recurrent Neural Net-
works,” in Proc. NIPS, 2015.

