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Abstract

Emergent multi-agent communication proto-
cols are very different from natural language
and not easily interpretable by humans. We
find that agents that were initially pretrained
to produce natural language can also experi-
ence detrimental language drift: when a non-
linguistic reward is used in a goal-based task,
e.g. some scalar success metric, the commu-
nication protocol may easily and radically di-
verge from natural language. We recast trans-
lation as a multi-agent communication game
and examine auxiliary training constraints for
their effectiveness in mitigating language drift.
We show that a combination of syntactic (lan-
guage model likelihood) and semantic (visual
grounding) constraints gives the best com-
munication performance, allowing pre-trained
agents to retain English syntax while learning
to accurately convey the intended meaning.

1 Introduction

A long-standing goal of artificial intelligence re-
search is to develop agents that can cooperate with
other agents, including humans, to solve tasks. As
Gauthier and Mordatch (2016) propose, one way
to get closer to this goal is to develop agents that
can flexibly use human language to coordinate with
themselves and with humans.

Recently, there has been a renewed interest in
multi-agent communication (Foerster et al., 2016;
Lazaridou et al., 2016). While agents can be very
effective in solving the tasks that they were trained
on, their multi-agent communication protocols bear
little resemblance to human languages. A major
open question revolves around training multi-agent
systems such that their communication protocols
can be interpreted by humans.

One option is to pre-train in a supervised fashion
with human language, but even then it is found that
the protocols diverge quickly when the agents are

Intended message: 2 elephants and 1 lion

No constraints floopy globber
Syntactic democracy is a politi-

cal system
Syntactic+Semantic a pair of elephants and

a large feline

Table 1: Examples of valid messages under different con-
straints. Without constraints, agents may invent an arbitrary
protocol to communicate the intended message. Syntactic
constraints enforce “Englishness” but not semantic correspon-
dence. Semantic constraints, e.g. with visual grounding, can
enforce the communication channel to retain the meaning of
the message.

fine-tuned on an external reward, as Lewis et al.
(2017) showed on a negotiation task. Indeed, lan-
guage drift is to be expected if we are optimizing
for an external non-linguistic reward, such as a
reward based on whether or not two agents success-
fully accomplish a negotiation.

Language drift might be avoided by imposing a
“naturalness” constraint, e.g. by factoring language
model likelihood into the reward function. How-
ever, such a constraint only acts on the syntax of
the generated language, ignoring its semantics. See
Table 1 for an illustration of different constraints.
As has been advocated by multi-modal semantics
(Baroni, 2016; Kiela, 2017), we investigate if ap-
propriate semantic constraints can be imposed on
the generated language through (in this case visu-
ally) grounding its meaning in a different modality.

In order to carefully study this problem, we re-
quire a task where drift can be accurately measured.
Inspired by Lee et al. (2018), we use a multi-modal
machine translation (MMT) dataset (Multi30k; El-
liott et al., 2016) to construct a new communica-
tion game: Two machine translation agents—i.e.,
encoder-decoder models with attention—are tasked
with successfully translating source language se-



quences to the target language using a third pivot
language as an intermediary. The first agent’s de-
coder output is fed into the second agent’s encoder
as input. We employ policy gradient methods to
train the first agent with the target language log-
likelihood as reward. Thus, we effectively fine-tune
two pre-trained machine translation agents via a
pivot language, facilitating the study of its drift.

Contrary to alternative two-agent communica-
tion tasks such as navigation, game-playing or
dialogue—which either don’t have clearly defined
metrics or easily available natural language data—
this pivot-based translation allows us to check ex-
actly whether the communicated sequence corre-
sponds to the intended meaning, as well as to the
gold standard sequence. In addition, every single
utterance has very clear and well-known metrics
such as BLEU and log-likelihood, allowing us to
measure performance at every single step.

In what follows, we show that language drift hap-
pens, and quite dramatically so, when fine-tuning
using policy gradients. Next, we investigate im-
posing syntactic conformity (i.e., “Englishness”)
via language model constraints, and show that this
does somewhat mitigate drift, but does not lead to
semantic correspondence. We then show that addi-
tionally imposing semantic constraints via (visual)
grounding leads to the best retention of original
syntax and intended semantics, and minimizes drift
while improving performance. We conduct a token
frequency analysis, which corroborates our hypoth-
esis, and show that grounding causes the model
to better preserve the token frequency distribution
of the pivot language (English), while fine-tuning
with language model constraints alone leads to a
frequency distribution different from the original
natural language.

The ability to keep drift in check opens up ex-
citing possibilities for natural language processing
research: we could maximize reward while retain-
ing the “Englishness” of the decoder, with obvious
benefits for interpretability and interaction with hu-
mans. One general use case would be fine-tuning
a language model pre-trained on large amounts
of data for a given generation task with limited
data, which is especially interesting given the re-
cent interest in pre-trained language models (Rad-
ford et al., 2019). For instance when training chit-
chat dialogue agents, we often want to optimize for
some very high-level reward, such as engagingness
or consistency, with hardly enough data to learn

simple English grammar. The ability to fine-tune a
pre-trained independent “language module”, with-
out drift, is an exciting prospect. With this work,
we aim to take a step in that direction, and show
that semantic constraints in the form of grounding
play an important role.

2 Prior Work

Our work is inspired by recent work in protocols
or languages that emerge from multi-agent inter-
action (Lazaridou et al., 2017; Lee et al., 2018;
Andreas et al., 2017; Evtimova et al., 2018; Kottur
et al., 2017; Havrylov and Titov, 2017; Mordatch
and Abbeel, 2017). Work on the emergence of lan-
guage in multi-agent settings goes back a long way
(Steels, 1997; Nowak and Krakauer, 1999; Kirby,
2001; Briscoe, 2002; Skyrms, 2010). In our case,
we are specifically interested in tabula inscripta
agents that are already pre-trained to generate natu-
ral language, and we are primarily concerned with
keeping their generated language as natural as pos-
sible during further training.

Reinforcement Learning has been applied to fine-
tuning models for various natural language gen-
eration tasks, including summarization (Ranzato
et al., 2015; Paulus et al., 2017), information re-
trieval (Nogueira and Cho, 2017), MT (Gu et al.,
2017; Bahdanau et al., 2016) and dialogue (Li et al.,
2017). Our work can be viewed as fine-tuning MT
systems using an intermediary pivot language. In
MT, there is a long line of work of pivot-based ap-
proaches, most notably Muraki (1986) and more
recently with neural approaches (Wang et al., 2017;
Cheng et al., 2017; Chen et al., 2018). There
has also been work on using visual pivots directly
(Hitschler et al., 2016; Nakayama and Nishida,
2017; Lee et al., 2018). Grounded language learn-
ing in general has been shown to give significant
practical improvements in various natural language
understanding tasks (Gella et al., 2017; Elliott and
Kádár, 2017; Chrupała et al., 2015; Kiela et al.,
2017; Kádár et al., 2018).

3 Task and Models

3.1 Communication Task
We recast pivot-based translation as a communica-
tion game involving two MT agents: Fr→En and
En→De. See Figure 1. Our dataset consists of
N triples of aligned sentences {Frk,Enk,Dek}Nk=1.
Note that Enk is only used for evaluation and
is not required for training. We first feed the



Agent A

Fr → En

Agent B

En → De
Fr En De

Reward

Figure 1: Diagram of our communication game.

French sentence Frk to Agent A, which generates
an English message Enk as output. Agent B is
then trained to maximize the log-likelihood of the
ground truth German sentence given the English
message, i.e. log p(Dek|Enk). Agent A is trained
using REINFORCE (Williams, 1992) with reward
R = log pB(Dek|Enk).1 This encourages Agent
A to develop helpful communication policies for
Agent B, and allows Agent B to adapt to Agent
A’s new policies. In other words: communication
via the pivot language (English) is a success if we
are able to translate the intended source sequence
(French) into the desired target sequence (German).

Both agents are pre-trained on their respective
tasks before communication, which means that the
intermediate language starts off as English in the
early stages of the communication game, where
the goal is to translate French to German. This
work examines what happens to the intermediate
language as we fine-tune the system jointly for the
given goal: will the agents keep communicating in
English, or diverge? And if so, what can we do to
prevent that from happening?

This particular task and setup directly addresses
the problem of language drift, as the availability
of ground truth references and well-understood
metrics (e.g. BLEU) allows us to exactly mea-
sure the degree of language drift over time. The
Fr→En→De BLEU score informs communication
success, while (the relative change in) the Fr→En
BLEU score captures the degree of language drift.

3.2 Constraints via Auxiliary Tasks

The action space of Agent A is |V |L, where |V | is
the size of the vocabulary (approximately 20k) and
L is the sequence length. We explore the two afore-
mentioned constraints: a syntactic constraint via
language modeling (LM) and a semantic constraint
via grounding (G).

Language Model (LM) Given a language model
pre-trained on a standard English corpus, the

1We use subscript B to denote that the probability is com-
puted with Agent B.

(sentence-level) log-likelihood of the English mes-
sage informs its general “Englishness”. We incor-
porate this into the reward for Agent A, so that it
learns to send messages that are plausible English.2

Reward for Agent A is:

RLM
k = log pB(Dek|Enk) + βLM log pLM (Enk).

Grounding Model (G) Let us assume we have
access to a set of images {Imgk} associated
with each triple {Frk,Enk,Dek}. Given a pre-
trained image-caption retrieval model, such as
VSE++ (Faghri et al., 2018), the log-likelihood
of the image given the English message (and vice
versa) captures how much the English message is
grounded in the original semantic content (Kiela
et al., 2017). We incorporate the ranking loss into
Agent A’s reward.

RG
k = log pB(Dek|Enk) + βG log pG(Imgk|Enk).

βLM and βG are hyperparameters.

3.3 Training Objective

Let us denote the t-th token in the k-th English
training example with Entk, the actual reward and
the state-dependent baseline in the k-th training
example as Rk and Rt

k.

Policy Gradient Training At decoding timestep
t, Agent A takes an action (outputs token Entk)
given an environment (previous hidden states
and previous token Ent−1k ). It receives reward
Rk at the end of the sequence, from which
we subtract a state-dependent baseline Rt

k to re-
duce variance. Therefore, we maximize (Rk −
Rt

k) log p(Entk|En<t
k ,Frk). In addition, we employ

entropy regularization on Agent A’s decoder to en-
courage exploration. Hence, Agent A’s overall ob-
jective function is given as:

LA =
N∑
k=1

{ Tk∑
t=1

{
αentr H

(
p(Entk|En<t

k ,Frk)
)

− αb MSE(Rk, R
t
k)

+ αpg (Rk −Rt
k) log p(Entk|En<t

k ,Frk)
}}

,

2We also experimented with a dense LM reward on the
word-level, but found this to lead to worse performance. We
hypothesize that the model might be focusing too much on the
dense LM reward, ignoring the sparse reward for the commu-
nication task and leading to poor performance. We did not use
BLEU as it is a corpus-level metric.



where H and MSE denote entropy and mean
squared error losses. Tk is the maximum decoding
timestep in the k-th training example.

Cross Entropy Training Agent B is trained us-
ing standard cross entropy loss, i.e.

LB =
N∑
k=1

{ Tk∑
t=1

log p(Detk|De<t
k ,Enk)

}
.

We jointly train both agents by maximizing L =
LA + LB .

4 Experimental Settings

In this section we provide the details of our ex-
perimental setup: a Fr→X→De translation task
where the intermediate language X is initialized as
English, and subsequently fine-tuned with policy
gradient methods. The model is trained either with
no constraints (PG), syntactic constraints via lan-
guage modeling (PG+LM) or both syntactic and
semantic constraints via language modeling and
grounding (PG+LM+G).

Datasets Agents A and B are initially pre-trained
on IWSLT Fr→En and En→De, respectively (Cet-
tolo et al., 2012). Fine-tuning is performed on
Multi30k Task 1 (Elliott et al., 2016). That is, im-
portantly, there is no overlap in the pre-training
data and the fine-tuning data. Multi30k Task 1 con-
sists of 30k images and one caption per image in
English, French, German and Czech (of which we
only use the first three). To ensure our findings are
robust, we compare four different language models,
trained on WikiText103, MS COCO, Flickr30k and
all of the above.

The grounding model is trained on Flickr30k
(Young et al., 2014). Following Faghri et al. (2018),
we randomly crop training images for data augmen-
tation. We use 2048-dimensional features from a
pretrained and fixed ResNet-152 (He et al., 2016).

Preprocessing The same tokenization and vocab-
ulary are used across different tasks and datasets.
We lowercase and tokenize our corpora with
Moses (Koehn et al., 2007) and use subword tok-
enization with Byte Pair Encoding (BPE) (Sennrich
et al., 2016) with 10k merge operations. This al-
lows us to use the same vocabulary across different
models seamlessly (translation, language model,
image-caption ranker model).

Controling the English message length When
fine-tuning the agents, we observe that the length
of English messages becomes excessively long. As
Agent A has no explicit incentive to output the
end-of-sentence (EOS) symbol, it tends to keep
transmitting the same token repeatedly. While re-
dundancy might be beneficial for communication,
excessively long messages obscure evaluation of
the communication protocol. For instance, BLEU
score quickly deteriorates as the message length
becomes longer, as it is a precision metric. When
the message length is fixed, a drop in BLEU score
will by necessity mean that the intermediate lan-
guage has drifted away more. For this reason, we
constrain the length of English messages to be no
longer than the length of their French source sen-
tence, or shorter if the model outputs the EOS sym-
bol early. Recall that Agent B is supervised to
predict the EOS symbol at the right position, so
does not suffer from this issue.

Model Architecture and Pretraining Our MT
agents are standard sequence-to-sequence models
with attention (Bahdanau et al., 2015) with a uni-
directional, 1-layer GRU (Cho et al., 2014) with
256 hidden units and 256-dimensional embeddings.
During initial pre-training on IWSLT, we early-stop
on the validation BLEU score (tst2013). The best
checkpoints give 34.05 BLEU and 21.94 BLEU on
IWSLT Fr→En and En→De development sets with
greedy decoding. For our policy gradient value
function, we use a 2-layer MLP with ReLU activa-
tions.

The language model is a 1-layer recurrent lan-
guage model with 512 LSTM hidden units. The
image-caption retrieval model is a recently pro-
posed VSE++ model (Faghri et al., 2018), with
a unidirectional 1-layer GRU with 512 hidden
units and a single fully connected layer from 2048-
dimensional ResNet features to 512-dimensional
GRU hidden states.

Training Details When fine-tuning our agents,
we perform learning rate annealing and early stop-
ping based on Fr→En→De BLEU (communica-
tion performance) on the Multi30k development
set. We use Adam (Kingma and Ba, 2014) with
an initial learning rate of 0.001 and dropout (Sri-
vastava et al., 2014) rate of 0.1. We grid search
over the learning rate schedule and the reward coef-
ficients (αpg, αentr, αb) for agent A and (βLM , βG)
for agent B, respectively (see previous section). For



our joint systems with policy gradient fine-tuning,
we run every model three times with different ran-
dom seeds and report averaged results.

Baseline and Upper Bound Our main quantita-
tive experiment has three baselines:

• Pretrained models : models pretrained on
IWSLT are used without finetuning.

• Ensembling : Given Fr, we let Agent A gener-
ate K En hypotheses with beam search. Then,
we let Agent B generate the translation De us-
ing an ensemble of K source sentences (Firat
et al., 2016; Zoph and Knight, 2016).

• Agent A fixed : We fix Agent A (Fr→En) and
only fine-tune Agent B using LB . This shows
the communication performance achievable
when Agent A cannot drift.

Meanwhile, we also train an NMT model of the
same architecture and size directly on the Fr→De
task in Multi30k Task 1 (without English intermedi-
ary). This serves as an upper bound on the Fr→De
performance achievable with available data.

5 Quantitative Results

In Table 2, the top three rows are the baselines
described above. The pretrained-only baseline per-
forms relatively poorly on Fr→De, conceivably
because it was pretrained on a different corpus in a
different domain (IWLST dataset is compiled from
TED talks, while Multi30k dataset is a collection
of image captions). Ensembling multiple English
hypotheses for Agent B gives a negligible increase
in Fr→De performance. When only Agent B is
fine-tuned and Agent A is kept fixed, we observe
an increase from 16.30 to 22.37 in Fr→De. Un-
surprisingly, the upper bound NMT model directly
trained end-to-end on Multi30k Fr→De (without
any pivot, at the bottom of the table) performs best.

When the joint system is fine-tuned on Ger-
man log-likelihood with policy gradients (PG),
we observe a large, 8 BLEU increase in Fr→De
(16.30→24.51) at the cost of a substantial, 15
BLEU drop in Fr→En (27.18→12.38). This clearly
shows that optimizing for external reward may im-
prove performance on that metric, but at the ex-
pense of a drastic language drift in the communica-
tion channel on which the reward is imposed.

When the system is fine-tuned only on staying
grounded but without any language model con-

straint (PG+G), we obtain small performance im-
provements. This makes sense, since BLEU first
and foremost focuses on the surface form. When
the agent is trained with the language model con-
straint (PG+LM), we notice a significant improve-
ment in Fr→En BLEU. When the LM is trained
on WikiText103, a widely used language modeling
dataset, we observe an improvement of 9 BLEU
score over PG (12.38→21.63). When the training
corpus is closer to the target domain, such as MS
COCO or Flickr30k, we observe even bigger in-
creases. Fr→De translation also improves by 2–3
BLEU (24.51→26.88-27.67).

We see the biggest improvements in performance
when agents are trained using both visual ground-
ing feedback and the language model constraint
(PG+LM+G). This is particularly pronounced with
the LM trained on WikiText103: introducing visual
grounding leads to more than 2 BLEU score im-
provement in Fr→En (21.63→23.65), and 1 BLEU
score improvement in Fr→De (26.88→27.87).
We hypothesize that the “Englishness” constraint
forces agents to communicate with correct syntax
and fluency, while the grounding model restricts the
search space of languages to ones that are grounded
in visual semantics. To investigate the contribution
of grounding, we train a much stronger LM on all
three datasets combined, and find that there is still
more drift even with access to much more language
modeling data (23.60→24.75).

It is important to check that the improvement
from grounding is actually significant, so we
perform a bootstrapped Wilcoxon signed-rank
test (Wilcoxon, 1945) on paired English hypotheses
for each reference sentence between PG+LM and
PG+LM+G, using the model instance that gives the
median communication performance (Fr→En→De
BLEU) out of three runs. We assess significance
on a bootstrapped test set (repeatedly sampled with
replacement) and average the statistic over boot-
strap samples. With the threshold of p < 0.02,
PG+LM+G is found to differ significantly for all
the LM models, including the All model that had
access to much more data. See Table 3.

Figure 2 shows the learning curves, as measured
by Fr→De BLEU (left), Fr→En BLEU (middle)
and English LM negative log-likelihood (NLL;
right). All models improve in fine-tuned task per-
formance (left plot). We observe that vanilla PG
fine-tuning quickly leads to highly “un-English”
communication, as can be seen from a distinct in-



LM Ranker A: Fr→En A&B: Fr→En→De

Pretrained 27.18 16.30
Ensembling 16.95
Agent A fixed 27.18 22.37

PG No LM 12.38 (0.67) 24.51 (1.48)

PG+G No LM " 14.20 (1.58) 26.23 (1.08)

PG+LM

WikiText103 21.63 (1.25) 26.88 (0.12)
MS COCO 25.05 (1.40) 27.66 (0.34)
Flickr30k 24.85 (1.14) 27.60 (0.27)
All 23.60 (1.05) 27.67 (0.39)

PG+LM+G

WikiText103 " 23.65 (1.91) 27.87 (0.15)
MS COCO " 26.24 (0.28) 27.86 (0.24)
Flickr30k " 25.99 (1.62) 27.82 (0.41)
All " 24.75 (0.40) 28.08 (0.73)

Fr→De 30.73

Table 2: Results in BLEU score on Multi30k Task 1. For our models using policy gradient fine-tuning, we report results
averaged over three runs and provide standard deviations in brackets. PG (no constraint): trained with vanilla policy gradient
fine-tuning. PG+G (semantic): trained with grounding only. PG+LM (syntactic): trained with “Englishness” constraint. For MS
COCO and Flickr30k, the LM was trained directly on image captions. PG+LM+G (syntactic+semantic): trained with grounding
loss as well as the LM loss. Fr→En: degree of intermediate language drift in agent A; lower indicates more drift. Fr→En→De:
overall A&B communication performance; higher is better. For LM=All the LM was trained on all three LM datasets combined.

PG+LM
No LM WikiText103 MS COCO Flickr30k All

+G " " " " "

Table 3: Using the bootstrapped Wilcoxon signed-rank test (Wilcoxon, 1945), Fr→En results of PG+LM+G are found to be
significantly different from its baselines in all cases considered (on all LM datasets) within the threshold of p = 0.02.

Figure 2: Test set performance over time. En LM NLL curves show the NLL of English messages, computed by a language
model trained on WikiText103. Lower En BLEU and higher En LM NLL indicate more language drift.

crease in LM negative log-likelihood (right plot).
While PG+LM achieves slightly lower LM NLL
than PG+LM+G, its communication protocol drifts
much more from English (middle plot). That is,
for PG+LM, syntactic conformity is obtained at the
expense of semantic preservation. Imposing both
syntactic and semantic constraints makes models
the least susceptible to drift, almost recovering to
the original BLEU score (blue line, middle plot).

6 Analysis

A close investigation into the token statistics of
each communication strategy reveals that PG fine-
tuning causes the word frequency distribution to be

flatter (see Figure 3). The PG model has negative
frequency difference values for the most frequent
tokens, indicating that PG downweighs frequent
words severely, possibly because they are less dis-
criminative. On the other hand, PG+LM gives
highly positive frequency differences, meaning that
language modeling alone disproportionately em-
phasizes frequent tokens. Using both the LM and
grounding constraints keep the token frequencies
closest to the pretrained regimes. Investigating the
top 20 most frequent words shows that PG+LM dis-
proportionately favors quotation marks, which are
very common in many language modeling datasets
but rare in Multi30k (see Table 5).



Ref
Fr un vieil homme vêtu d’une veste noire regarde sur la table
De ein alter mann in einer schwarzen jacke blickt auf den tisch
En an old man wearing a black jacket is looking on the table

En
PG a old teaching black watching on the table table table table table table
+LM a old man in a jacket looking on the table . ” ”
+G an old man in a black jacket looking on the table .

De
PG ein älterer mann in einem schwarzen hemd schaut auf den tisch .
+LM ein alter mann in einer jacke beobachtet einen tisch .
+G ein älterer mann in einer schwarzen jacke schaut auf den tisch .

Ref
Fr un joueur de football américain en blanc et rouge parle à un entraı̂neur .
De ein rot-weiß gekleideter footballspieler spricht mit einem trainer .
En a football player in red and white is talking to a coach .

En
PG a player football american football american and red talking talking a coach
+LM a player of white and red talking to a coach . ” ” ”
+G a football player in white and red talking to a coach .

De
PG ein footballspieler spricht mit einem spieler in einem roten trikot .
+LM ein weiß gekleideter fußballspieler spricht zu einem trainer .
+G ein fußballspieler in einem rot-weißen trikot spricht mit einem trainer .

Table 4: Two communication examples on the data from the Multi30k development set with different models (PG, PG+LM,
PG+LM+G). The top three rows list the ground truth sentences, the middle three rows are the English messages sent by the
Fr→En agent, and the bottom three rows show the German output from the En→De agent. We also show the corresponding
images, which are only used to train the grounding model.

Reference , . the and to of a that i in is it you we
&apos;s this &quot;

Pretrained , the . to of and a i that in it we you &apos;s
is this &quot; was

PG a the and , . in i &quot; this of to is we you
? that not for

PG+LM the &quot; , of . and in a to this is i es you
for we that with

PG+LM+G the , . of a and to in is i this es we for that
you at what

Table 5: Top 20 most frequent tokens (sorted) in English
reference (Reference) or the output from Fr→En models.

Function words Content words

TO . DT N V Adj Adv

PG .22 .36 .57 .38 .17 .32 .26
PG+LM .55 .84 .72 .39 .18 .21 .25
PG+LM+G .62 .88 .74 .43 .26 .33 .29

Table 6: Exact-match word recall by POS-tag on IWSLT
development set: when the English reference contains a word
of a certain POS tag, how often does the agent produce it.

Table 6 compares the degree of drift by part-of-
speech, and shows that the PG model has very low
recall on function words, such as periods and in-
finitives. Models trained with LM and grounding
losses retain function words with much higher accu-
racy. PG fares relatively better with content words
(nouns and verbs), but adding LM and grounding
losses still outperform PG. Grounding leads to over-
all improvements in recall, particularly with con-
tent words. Conceivably, when optimizing Agent

IWSLT Multi30k

unique /sent /all unique /sent /all

Reference 5,303 19.7 0.86 3,046 11.9 0.91
Pretrained 4,657 17.9 0.85 2,867 12.0 0.87

PG 4,933 13.6 0.56 3,197 9.2 0.65
PG+LM 3,819 14.6 0.61 2,438 10.9 0.78
PG+LM+G 4,327 15.7 0.74 2,550 10.7 0.84

Table 7: Additional token frequency analysis. unique: the
number of unique English tokens used in the whole develop-
ment set. /sent: the number of unique English tokens used
per sentence. /all: (the number of unique English tokens / the
number of all English tokens.)

A’s policy on the communication task alone, it is
most crucial to relay content information to Agent
B, and this might cause agents to ignore syntactic
conformity in the original intermediate language.
Imposing both syntactic and semantic constraints
reduces the space of the intermediate communica-
tion protocol to a more stable language space, as
reflected in overall task performance.

Table 7 corroborates the finding that vanilla PG
fine-tuning leads to flatter token frequency distri-
butions, as the number of unique tokens used by
PG is greater than that of the pretrained model. De-
spite using a more diverse set of tokens, PG uses
the smallest number of unique symbols per sen-
tence (/sent) and overall (/all). This implies that PG
communication is redundant. PG+LM uses fewer
tokens overall, and learns a sharper distribution us-
ing a smaller set of high-frequency tokens. Using



Fr src un enfant assis sur un rocher.
En ref a child sitting on a rock formation.
En hyp a punk sitting sitting on on a broken
De ref ein kind sitzt auf einem felsen .
De hyp ein kind sitzt auf einem felsen .

Fr src un petit enfant est assis à une table, en train de manger un goûter.
En ref a toddler is sitting at a table eating a snack .
En hyp a punk sits sitting sitting next next a airline
De ref ein kleines kind sitzt an einem tisch und isst einen snack .
De hyp ein kind sitzt an einem tisch und liest ein buch .

Table 8: Evidence of token flipping. The agents use the word “punk” to denote “child” or “baby”, which is clearly not desirable.

Figure 3: Token frequency analysis on three different mod-
els (PG, PG+LM, PG+LM+G) together with the pre-trained
model before fine-tuning (Pretrained). We show word fre-
quency curves for each model, after subtracting the reference
English frequency statistics (both sorted in decreasing order).
Positive y values indicate higher frequency values than the En-
glish reference, and negative y values indicate lower frequency
values than English. The y-axis is the frequency difference
in the thousands, and the x-axis shows the vocabulary index
(sorted by frequency) in log scale.

both constraints yields a frequency distribution that
most closely resembles the original one.

7 Qualitative Results

In the first example of Table 4 (previous page), it
is clear that PG’s communication messages have
significantly diverged from English: the model is
highly repetitive (“table table table table table”)
and misses some key content words such as “man”.
Agent B, however, correctly generates the German
word “mann”. This exemplifies a communication
protocol that is successful in solving the task it
was trained on, but not fully interpretable to hu-
mans. While the output from PG+LM is better,
the grounded model’s message (PG+LM+G) is dis-
tinctly the most fluent and semantically correct.

In the second example, observe that the PG
Agent B misinterprets “talking talking a coach a
coach” as “spricht mit einem spieler” (talking to a
player). The PG+LM+G model again generates a
flawless English sentence. Furthermore, its agents
succeed in communicating both colors (red and

white) to German while retaining the original En-
glish words, when the other models fail to do so.

Interestingly, we observe some instances of to-
ken flipping with the PG model and to a lesser ex-
tent with the PG+LM model. For example, one par-
ticular model uses “punk” to describe “child” (see
Table 8). As no occurrence of “punk” in any train-
ing data is associated with “child”, the agents must
have acquired this new meaning assignment during
fine-tuning. Among 35 examples in the Multi30k
development set where the English reference con-
tains “child”, the model uses “punk” 15 times, indi-
cating this is no random phenomenon. We did not
observe such examples with the PG+LM+G model.

8 Conclusion

In this paper, we show that language drift hap-
pens when fine-tuning natural language agents with
some external reward using policy gradients with-
out constraints. We investigate what constraints
to put on the communication channel in order to
mitigate this. We find that imposing syntactic con-
straints (via adding language model log-likelihood
to the reward) does somewhat mitigate drift, but
does not preserve semantic correspondence. We
then observe that additionally imposing semantic
constraints, e.g. with a perceptual grounding loss,
yields communication protocols that best retain the
original syntax and intended semantics, while giv-
ing the overall best communication performance.

Further analysis into the learned communication
protocols reveals that pure PG fine-tuning tends to
learn flatter and repetitive token distributions, while
encouraging naturalness under a language model
disproportionately emphasizes frequent syntactic
tokens, yielding a much sharper token distribution
than a natural language. The grounded model best
retains the original token frequencies.

We examined language drift within a translation
game as this allows for direct measurements at each



step (input, intermediate, output), in a way where
the semantics stays identical (i.e., the meaning is
exactly the same for all languages and modalities)
while the communication channel gets only an ex-
trinsic reward (i.e., communication success). The
findings in this work, however, are generally appli-
cable to policy gradient fine-tuning of generative
language models. We believe that our work shows
an intuitive method for addressing language drift
and hope that it opens up interesting directions for
future work.
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Grzegorz Chrupała, and Afra Alishahi. 2018.
Lessons learned in multilingual grounded language
learning. arXiv preprint arXiv:1809.07615.

Douwe Kiela. 2017. Deep Embodiment: Grounding
Semantics in Perceptual Modalities. Ph.D. thesis,
University of Cambridge, Computer Laboratory.

Douwe Kiela, Alexis Conneau, Allan Jabri, and
Maximilian Nickel. 2017. Learning visually
grounded sentence representations. arXiv preprint
arXiv:1707.06320.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. CoRR.

Simon Kirby. 2001. Spontaneous evolution of linguis-
tic structure-an iterated learning model of the emer-
gence of regularity and irregularity. IEEE Transac-
tions on Evolutionary Computation, 5(2):102–110.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation for Computational Linguistics.
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