
Published as a conference paper at ICLR 2020

FEATURE INTERACTION INTERPRETABILITY:
A CASE FOR EXPLAINING AD-RECOMMENDATION
SYSTEMS VIA NEURAL INTERACTION DETECTION

Michael Tsang1, Dehua Cheng2, Hanpeng Liu1, Xue Feng2, Eric Zhou2, and Yan Liu1

1Department of Computer Science, University of Southern California
{tsangm,hanpengl,yanliu.cs}@usc.edu

2Facebook AI
{dehuacheng,xfeng,hanningz}@fb.com

ABSTRACT

Recommendation is a prevalent application of machine learning that affects many
users; therefore, it is important for recommender models to be accurate and in-
terpretable. In this work, we propose a method to both interpret and augment
the predictions of black-box recommender systems. In particular, we propose to
interpret feature interactions from a source recommender model and explicitly en-
code these interactions in a target recommender model, where both source and
target models are black-boxes. By not assuming the structure of the recommender
system, our approach can be used in general settings. In our experiments, we fo-
cus on a prominent use of machine learning recommendation: ad-click prediction.
We found that our interaction interpretations are both informative and predictive,
e.g., significantly outperforming existing recommender models. What’s more, the
same approach to interpret interactions can provide new insights into domains
even beyond recommendation, such as text and image classification.

1 INTRODUCTION

Despite their impact on users, state-of-the-art recommender systems are becoming increasingly in-
scrutable. For example, the models that predict if a user will click on an online advertisement are
often based on function approximators that contain complex components in order to achieve optimal
recommendation accuracy. The complex components come in the form of modules for better learn-
ing relationships among features, such as interactions between user and ad features (Cheng et al.,
2016; Guo et al., 2017; Wang et al., 2017; Lian et al., 2018; Song et al., 2018). Although efforts
have been made to understand the feature relationships, there is still no method that can interpret
the feature interactions learned by a generic recommender system, nor is there a strong commercial
incentive to do so.

In this work, we identify and leverage feature interactions that represent how a recommender system
generally behaves. We propose a novel approach, Global Interaction Detection and Encoding for
Recommendation (GLIDER), which detects feature interactions that span globally across multiple
data-instances from a source recommender model, then explicitly encodes the interactions in a target
recommender model, both of which can be black-boxes. GLIDER achieves this by first utilizing
our ongoing work on Neural Interaction Detection (NID) (Tsang et al., 2017) with a data-instance
perturbation method called LIME (Ribeiro et al., 2016) over a batch of data samples. GLIDER then
explicitly encodes the collected global interactions into a target model via sparse feature crossing.

In our experiments on ad-click recommendation, we found that the interpretations generated by
GLIDER are illuminating, and the detected global interactions can significantly improve the target
model’s prediction performance. Because our interaction interpretation method is very general, we
also show that the interpretations are informative in other domains: text, image, graph, and dna
modeling.

Code is available at: https://github.com/mtsang/interaction_interpretability

1

https://github.com/mtsang/interaction_interpretability

Published as a conference paper at ICLR 2020

⋮

2
are interacting

Interaction

1

Detector

linear model

Figure 1: A simplified overview of GLIDER. 1 GLIDER utilizes Neural Interaction Detection
and LIME together to interpret feature interactions learned by a source black-box model at a data
instance, denoted by the large green plus sign. 2 GLIDER identifies interactions that consistently
appear over multiple data samples, then explicitly encodes these interactions in a target black-box
recommender model frec.

Our contributions are as follows:

1. We propose feature interaction interpretations of general prediction models via interaction
detection.

2. Based on this approach, we propose GLIDER to detect and explicitly encode global feature
interactions in black-box recommender systems. This process is a form of automatic feature
engineering.

3. Through experiments, we demonstrate the overall interpretability of detected feature inter-
actions on a variety of domains and show that the interactions can be leveraged to improve
recommendation accuracy.

2 NOTATIONS AND BACKGROUND

Notations: Vectors are represented by boldface lowercase letters, such as x or z. The i-th entry of a
vector x is denoted by xi. For a set S, its cardinality is denoted by |S|.
Let d be the number of features in a dataset. An interaction, I, is a subset of feature indices:
I ⊆ {1, 2, . . . , d}, where |I| is always ≥ 2. A higher-order interaction always has |I| ≥ 3. For a
vector x ∈ Rd, let xI ∈ R|I| be restricted to the dimensions of x specified by I.

Let a black-box model be f(·) : Rp → R. A black-box recommender model uses tabular feature
types, as discussed later in this section. In classification tasks, we assume f is a class logit. p and d
may be different depending on feature transformations.

Feature Interactions: By definition, a model f learns a statistical (non-additive) feature interaction
I if and only if f cannot be decomposed into a sum of |I| arbitrary subfunctions fi, each excluding a
corresponding interaction variable (Friedman et al., 2008; Sorokina et al., 2008; Tsang et al., 2017),
i.e., f(x) 6=

∑
i∈I fi(x{1,2,...,d}\i).

For example, a multiplication between two features, x1 and x2, is a feature interaction because it
cannot be represented as an addition of univariate functions, i.e., x1x2 6= f1(x2) + f2(x1).

Recommendation Systems: A recommender system, frec(·), is a model of two feature types: dense
numerical features and sparse categorical features. Since the one-hot encoding of categorical feature
xc can be high-dimensional, it is commonly represented in a low-dimensional embedding ec =
one hot(xc)Vc via embedding matrix Vc.

3 FEATURE INTERACTIONS IN BLACK-BOX MODELS

We start by explaining how to obtain a data-instance level (local) interpretation of feature interac-
tions by utilizing interaction detection on feature perturbations.

2

Published as a conference paper at ICLR 2020

3.1 FEATURE PERTURBATION AND INFERENCE

Given a data instance x ∈ Rp, LIME proposed to perturb the data instance by sampling a separate
binary representation x̃ ∈ {0, 1}d of the same data instance. Let ξ : {0, 1}d → Rp be the map from
the binary representation to the perturbed data instance. Starting from a binary vector of all ones
that map to the original features values in the data instance, LIME uniformly samples the number of
random features to switch to 0 or the “off” state. In the data instance, “off” could correspond to a
0 embedding vector for categorical features or mean value over a batch for numerical features. It is
possible for d < p by grouping features in the data instance to correspond to single binary features
in x̃. An important step is getting black-box predictions of the perturbed data instances to create a
dataset with binary inputs and prediction targets: D = {(x̃i, yi) | yi = f(ξ(x̃i)), x̃i ∈ {0, 1}d}.
Though we use LIME’s approach, the next section is agnostic to the instance perturbation method.

3.2 FEATURE INTERACTION DETECTION

Feature interaction detection is concerned with identifying feature interactions in a dataset (Bien
et al., 2013; Purushotham et al., 2014; Lou et al., 2013; Friedman et al., 2008). Typically, proper
interaction detection requires a pre-processing step to remove correlated features that adversely af-
fect detection performance (Sorokina et al., 2008). As long as features in dataset D are generated
in an uncorrelated fashion, e.g., through random sampling, we can directly use D to detect feature
interactions from black-box model f at data instance x.

3.2.1 NEURAL INTERACTION DETECTION

f can be an arbitrary function and can generate highly nonlinear targets in D, so we focus on de-
tecting interactions that could have generic forms. In light of this, we leverage our method, Neural
Interaction Detection (NID) (Tsang et al., 2017), which accurately and efficiently detects generic
non-additive and arbitrary-order statistical feature interactions. NID detects these interactions by
training a lasso-regularized multilayer perceptron (MLP) on a dataset, then identifying the features
that have high-magnitude weights to common hidden units. NID is efficient by greedily testing the
top-interaction candidates of every order at each of h first-layer hidden units, enabling arbitrary-
order interaction detection in O(hd) tests within one MLP.

3.2.2 GRADIENT-BASED NEURAL INTERACTION DETECTION

Besides the non-additive definition of statistical interaction, a gradient definition also exists based on
mixed partial derivatives (Friedman et al., 2008), i.e., a function F (·) exhibits statistical interaction
I among features zi indexed by i1, i2, . . . , i|I| ∈ I if

Ez

[
∂|I|F (z)

∂zi1∂zi2 . . . ∂zi|I|

]2
> 0.

The advantage of this definition is that it allows exact interaction detection from model gradients (Ai
& Norton, 2003); however, this definition contains a computationally expensive expectation, and
typical neural networks with ReLU activation functions do not permit mixed partial derivatives.
For the task of local interpretation, we only examine a single data instance x, which avoids the
expectation. We turn F into an MLP g(·) with smooth, infinitely-differentiable activation functions
such as softplus, which closely follows ReLU (Glorot et al., 2011). We then train the MLP with
the same purpose as §3.2.1 to faithfully capture interactions in perturbation dataset D. Given these
conditions, we define an alternate gradient-based neural interaction detector (GradientNID) as:

ω(I) =

(
∂|I|g(x̃)

∂x̃i1∂x̃i2 . . . ∂x̃i|I|

)2

,

where ω is the strength of the interaction I, x̃ is the representation of x, and the MLP g is trained
on D. While GradientNID exactly detects interactions from the explainer MLP, it needs to compute
interaction strengths ω for feature combinations that grow exponentially in number as |I| increases.
We recommend restricting GradientNID to low-order interactions.

3

Published as a conference paper at ICLR 2020

Algorithm 1 Global Interaction Detection in GLIDER

Input: dataset B, recommender model frec
Output: G = {(Ii, ci)}: global interactions Ii and their counts ci over the dataset

1: G ← initialize occurrence dictionary for global interactions
2: for each data sample x within dataset B do
3: S ← MADEX(frec,x)
4: G ← increment the occurrence count of Ij ∈ S, ∀j = 1, 2, . . . , |S|
5: sort G by most frequently occurring interactions
6: [optional] prune subset interactions in G within a target number of interactions K

3.3 SCOPE

Based on §3.1 and §3.2, we define a function, MADEX(f,x), that takes as inputs black-box f and data
instance x, and outputs S = {Ii}ki=1, a set of top-k detected feature interactions. MADEX stands for
“Model-Agnostic Dependency Explainer”.

In some cases, it is necessary to identify a k threshold. Because of the importance of speed for local
interpretations, we simply use a linear regression with additional multiplicative terms to approximate
the gains given by interactions in S, where k starts at 0 and is incremented until the linear model’s
predictions stop improving.

4 GLIDER: GLOBAL INTERACTION DETECTION AND ENCODING FOR
RECOMMENDATION

We now discuss the different components of GLIDER: detecting global interactions in §4.1, then
encoding these interactions in recommender systems in §4.2. Recommender systems are interesting
because they have pervasive application in real-world systems, and their features are often very
sparse. By sparse features, we mean features with many categories, e.g., millions of user IDs.
The sparsity makes interaction detection challenging especially when applied directly on raw data
because the one-hot encoding of sparse features creates an extremely large space of potential feature
combinations (Fan et al., 2015).

4.1 GLOBAL INTERACTION DETECTION

In this section, we explain the first step of GLIDER. As defined in §3.3, MADEX takes as input a black-
box model f and data instance x. In the context of this section, MADEX inputs a source recommender
system frec and data instance x = [x1, x2, . . . , xp]. xi is the i-th feature field and is either a dense or
sparse feature. p is both the total number of feature fields and the number of perturbation variables
(p = d). We define global interaction detection as repeatedly running MADEX over a batch of data
instances, then counting the occurrences of the same detected interactions, shown in Algorithm 1.
The occurrence counts are not only a useful way to rank global interaction detections, but also a
sanity check to rule out the chance that the detected feature combinations are random selections.

One potential concern with Alg. 1 is that it could be slow depending on the speed of MADEX. In our
experiments, the entire process took less than one hour when run in parallel over a batch of 1000
samples with ∼ 40 features on a 32-CPU server with 2 GPUs. This algorithm only needs to be run
once to obtain the summary of global interactions.

4.2 TRUNCATED FEATURE CROSSES

The global interaction Ii, outputted by Alg. 1, is used to create a synthetic feature xIi
for a target

recommender system. The synthetic feature xIi
is created by explicitly crossing sparse features

indexed in Ii. If interaction Ii involves dense features, we bucketize the dense features before
crossing them. The synthetic feature is sometimes called a cross feature (Wang et al., 2017; Luo
et al., 2019) or conjunction feature (Rosales et al., 2012; Chapelle et al., 2015).

4

Published as a conference paper at ICLR 2020

In this context, a cross feature is an n-ary Cartesian product among n sparse features. If we denote
X1,X2, . . . ,Xn as the set of IDs for each respective feature x1, x2, . . . , xn, then their cross feature
x{1,...,n} takes on all possible values in

X1 × · · · × Xn = {(x1, . . . , xn) | xi ∈ Xi,∀i = 1, . . . , n}
Accordingly, the cardinality of this cross feature is |X1|× · · ·× |Xn| and can be extremely large, yet
many combinations of values in the cross feature are likely unseen in the training data. Therefore,
we generate a truncated form of the cross feature with only seen combinations of values, x(j)

I , where
j is a sample index in the training data, and x

(j)
I is represented as a sparse ID in the cross feature xI .

We further reduce the cardinality by requiring the same cross feature ID to occur more than T times
in a batch of samples, or set to a default ID otherwise. These truncation steps significantly reduce
the embedding sizes of each cross feature while maintaining their representation power. Once cross
features {xIi

}i are included in a target recommender system, it can be trained as per usual.

4.3 MODEL DISTILLATION VS. ENHANCEMENT

There are dual perspectives of GLIDER: as a method for model distillation or model enhancement. If
a strong source model is used to detect global interactions which are then encoded in more resource-
constrained target models, then GLIDER adopts a teacher-student type distillation process. If inter-
action encoding augments the same model where the interactions were detected from, then GLIDER
tries to enhance the model’s ability to represent the interactions.

5 RELATED WORKS

Interaction Interpretations: A variety of methods exist to detect feature interactions learned in
specific models but not black-box models. For example, RuleFit (Friedman et al., 2008), Additive
Groves (Sorokina et al., 2008), and Tree-Shap (Lundberg et al., 2018) detect interactions specifi-
cally in trees; likewise PaD2 (Gevrey et al., 2006) and NID (Tsang et al., 2017) detect interactions
in multilayer perceptrons. Some methods have attempted to interpret feature groups in black-box
models, such as Anchors (Ribeiro et al., 2018), Agglomerative Contextual Decomposition (Singh
et al., 2019), and Context-Aware methods (Singla et al., 2019); however, these methods were not
intended to identify feature interactions.

Explicit Interaction Representation: There are increasingly methods for explicitly representing
interactions in models. Cheng et al. (2016), Guo et al. (2017), Wang et al. (2017), and Lian et al.
(2018) directly incorporate multiplicative cross terms in neural network architectures and Song et al.
(2018) use attention as an interaction module, all of which are intended to improve the neural net-
work’s function approximation. This line of work found that predictive performance can improve
with dedicated interaction modeling. Luo et al. (2019) followed up by proposing feature sets from
data then explicitly encoding them via feature crossing, but this method’s proposals are limited by
beam search. Our work approaches this problem from a model interpretation standpoint.

Black-Box Local vs. Global Interpretations: Data-instance level local interpretation methods
are more flexible at explaining general black-box models; however, global interpretations, which
cover multiple data instances, have become increasingly desirable to summarize model behavior.
Locally Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) and Integrated
Gradients (Sundararajan et al., 2017) are some of the most used methods to locally interpret any
classifier and neural predictor respectively. There are some methods for global black-box interpreta-
tions, such as shuffle-based feature importance (Fisher et al., 2018), submodular pick (Ribeiro et al.,
2016), and visual concept extraction (Kim et al., 2018). Our work offers a new tooling option.

6 EXPERIMENTS

6.1 SETUP

In our experiments, we study interaction interpretation and encoding on real-world data. The hyper-
parameters in MADEX are as follows. For all experiments, our perturbation datasets D contain 5000
training samples and 500 samples for each validation and testing. Our usage of NID or Gradient-
NID as the interaction detector (§3.2) depends on the experimental setting. For all experiments that
only examine single data instances, we use GradientNID for its exactness and pairwise interaction

5

Published as a conference paper at ICLR 2020

detection; otherwise, we use NID for its higher-order interaction detection. The MLPs for NID and
GradientNID have architectures of 256-128-64 first-to-last hidden layer sizes, and they are trained
with learning rate of 1e−2, batchsize of 100, and the ADAM optimizer. NID uses ReLU activa-
tions and an `1 regularization of λ1 = 1e−4, whereas GradientNID uses softplus activations and a
structural regularizer as MLP+linear regression, which we found offers strong test performance. In
general, models are trained with early stopping on validation sets.

For LIME perturbations, we need to establish what a binary 0 maps to via ξ in the raw data instance
(§3.1). In domains involving embeddings, i.e., sparse features and word embeddings, the 0 (“off”)
state is the zeroed embedding vector. For dense features, it is the mean feature value over a batch;
for images, the mean superpixel RGB of the image. For our DNA experiment, we use a random nu-
cleotide other than the original one. These settings correspond to what is used in literature (Ribeiro
et al., 2016; 2018). In our graph experiment, the nodes within the neighborhood of a test node are
perturbed, where each node is zeroed during perturbation.

6.2 EXPERIMENTS ON CTR RECOMMENDATION

Table 1: CTR dataset statistics

Dataset # Samples # Features Total # Sparse IDs

Criteo 45, 840, 617 39 998, 960
Avazu 40, 428, 967 23 1, 544, 428

In this section, we provide experiments
with GLIDER on models trained for click-
through-rate (CTR) prediction. The rec-
ommender models we study include com-
monly reported baselines, which all use
neural networks: Wide&Deep (Cheng
et al., 2016), DeepFM (Guo et al.,
2017), Deep&Cross (Wang et al., 2017),
xDeepFM (Lian et al., 2018), and AutoInt (Song et al., 2018).

AutoInt is the reported state-of-the-art in academic literature, so we use the model settings and data
splits provided by AutoInt’s official public repository1. For all other recommender models, we use
public implementations2 with the same original architectures reported in literature, set all embedding
sizes to 16, and tune the learning rate and optimizer to reach or surpass the test logloss reported by
the AutoInt paper (on AutoInt’s data splits). From tuning, we use the Adagrad optimizer (Duchi
et al., 2011) with learning rate of 0.01. All models use early stopping on validation sets.

0 10 20 30 40 50
rank

0

200

400

600

co
un

t *

******* *** ** ** * * * ***

** ***
* * ******* ******

Criteo
Avazu

Figure 2: Occurrence counts (Total: 1000)
vs. rank of detected interactions from Au-
toInt on Criteo and Avazu datasets. * indi-
cates a higher-order interaction (details in
Appendix G).

The datasets we use are benchmark CTR datasets with
the largest number of features: Criteo3 and Avazu4,
whose data statistics are shown in Table 1. Criteo and
Avazu both contain 40+ millions of user records on
clicking ads, with Criteo being the primary benchmark
in CTR research (Cheng et al., 2016; Guo et al., 2017;
Wang et al., 2017; Lian et al., 2018; Song et al., 2018;
Luo et al., 2019).

6.2.1 GLOBAL INTERACTION DETECTION

For each dataset, we train a source AutoInt model,
frec, then run global interaction detection via Algo-
rithm 1 on a batch of 1000 samples from the valida-
tion set. A full global detection experiment finishes in
less than one hour when run in parallel on either Criteo
or Avazu datasets in a 32-CPU Intel Xeon E5-2640 v2
@ 2.00GHz server with 2 Nvidia 1080 Ti GPUs. The
detection results across datasets are shown in Figure 2
as plots of detection counts versus rank. Because the
Avazu dataset contains non-anonymized features, we
directly show its top-10 detected global interactions in Table 2a.

1https://github.com/shichence/AutoInt
2https://github.com/shenweichen/DeepCTR
3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://www.kaggle.com/c/avazu-ctr-prediction

6

https://github.com/shichence/AutoInt
https://github.com/shenweichen/DeepCTR
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction

Published as a conference paper at ICLR 2020

Table 2: Understanding feature interactions: top global feature interactions for (a) an ad targeting
system via Algorithm 1 and (b) a text sentiment analyzer via §6.3.2 (later). The tables are juxtaposed
to assist in understanding feature interactions, i.e., nuanced changes among interacting variables lead
to significant changes in prediction probabilities. The prediction outcomes are ad-clicks by users for
(a) and text sentiment for (b).

(a) Explanation of an ad targeting system

Count
(Total:1000) Interaction

525 {device ip, hour}
235 {device id, device ip, hour}
217 {device id, app id}
203 {device ip, device model, hour}
194 {site id, site domain}
190 {site id, hour}
187 {device ip, site id, hour}
183 {site id, site domain, hour}
179 {device id, hour}
179 {device id, device ip, device model, hour}

(b) Explanation of a sentiment analyzer

Count
(Total:40) Interaction (ordered)

36 never, fails
30 suspend, disbelief
30 too, bad
29 very, funny
29 neither, nor
28 not, miss
27 recent, memory
27 not, good
26 no, denying
25 not, bad

From Figure 2, we see that the same interactions are detected very frequently across data instances,
and many of the interactions are higher-order interactions. The interaction counts are very signifi-
cant. For example, any top-1 occurrence count > 25 is significant for the Criteo dataset (p < 0.05),
and likewise > 71 for the Avazu dataset, assuming a conservative search space of only up to 3-way
interactions (|I| ≤ 3). Our top-1 occurrence counts are 691 (� 25) for Criteo and 525 (� 71) for
Avazu.

In Table 2a, the top-interactions are explainable. For example, the interaction between “device ip”
and “hour” (in UTC time) makes sense because users - here identified by IP addresses - have ad-click
behaviors dependent on their time zones. This is a general theme with many of the top-interactions5.
As another example, the interaction between “device id” and “app id” makes sense because ads are
targeted to users based on the app they’re in.

6.2.2 INTERACTION ENCODING

Based on our results from the previous section (§6.2.1), we turn our attention to explicitly encoding
the detected global interactions in target baseline models via truncated feature crosses (detailed
in §4.2). In order to generate valid cross feature IDs, we bucketize dense features into a maximum
of 100 bins before crossing them and require that final cross feature IDs occur more than T = 100
times over a training batch of one million samples.

We take AutoInt’s top-K global interactions on each dataset from §6.2.1 with subset interactions
excluded (Algorithm 1, line 6) and encode the interactions in each baseline model including AutoInt
itself. K is tuned on valiation sets, and model hyperparameters are the same between a baseline and
one with encoded interactions. We set K = 40 for Criteo and K = 10 for Avazu.

In Table 3, we found that GLIDER often obtains significant gains in performance based on stan-
dard deviation, and GLIDER often reaches or exceeds a desired 0.001 improvement for the Criteo
dataset (Cheng et al., 2016; Guo et al., 2017; Wang et al., 2017; Song et al., 2018). The improve-
ments are especially visible with DeepFM on Criteo. We show how this model’s test performance
varies with different K in Figure 3. All performance gains are obtained at limited cost of extra
model parameters (Table 4) thanks to the truncations applied to our cross features. To avoid extra
parameters entirely, we recommend feature selection on the new and existing features.

One one hand, the evidence that AutoInt’s detected interactions can improve other baselines’ perfor-
mance suggests the viability of interaction distillation. On the other hand, evidence that AutoInt’s
performance on Criteo can improve using its own detected interactions suggests that AutoInt may
benefit from learning interactions more explicitly. In either model distillation or enhancement set-

5“device ip” and “device id” identify different sets of users (https://www.csie.ntu.edu.tw/
˜r01922136/slides/kaggle-avazu.pdf)

7

https://www.csie.ntu.edu.tw/~r01922136/slides/kaggle-avazu.pdf
https://www.csie.ntu.edu.tw/~r01922136/slides/kaggle-avazu.pdf

Published as a conference paper at ICLR 2020

Table 3: Test prediction performance by encoding top-K global interactions in baseline recom-
mender systems on the Criteo and Avazu datasets (5 trials). K are 40 and 10 for Criteo and Avazu
respectively. “+ GLIDER” means the inclusion of detected global interactions to corresponding
baselines. The “Setting” column is labeled relative to the source of detected interactions: AutoInt.
* scores by Song et al. (2018).

Setting Model Criteo Avazu

AUC logloss AUC logloss

Distillation Wide&Deep 0.8069± 5e−4 0.4446± 4e−4 0.7794± 3e−4 0.3804± 2e−4
+ GLIDER 0.8080± 3e−4 0.4436± 3e−4 0.7795± 1e−4 0.3802± 9e−5
DeepFM 0.8079± 3e−4 0.4436± 2e−4 0.7792± 3e−4 0.3804± 9e−5
+ GLIDER 0.8097± 2e−4 0.4420± 2e−4 0.7795± 2e−4 0.3802± 2e−4
Deep&Cross 0.8076± 2e−4 0.4438± 2e−4 0.7791± 2e−4 0.3805± 1e−4
+ GLIDER 0.8086± 3e−4 0.4428± 2e−4 0.7792± 2e−4 0.3803± 9e−5
xDeepFM 0.8084± 2e−4 0.4433± 2e−4 0.7785± 3e−4 0.3808± 2e−4
+ GLIDER 0.8097± 3e−4 0.4421± 3e−4 0.7787± 4e−4 0.3806± 1e−4

Enhancement AutoInt * 0.8083 0.4434 0.7774 0.3811
+ GLIDER 0.8090± 2e−4 0.4426± 2e−4 0.7773± 1e−4 0.3811± 5e−5

Table 4: # parameters of the models in Table 3. M
denotes million.

Model Criteo Avazu

Wide&Deep 18.1M 27.3M
+ GLIDER 19.3M (+6.8%) 27.6M (+1.0%)

DeepFM 17.5M 26.7M
+ GLIDER 18.3M (+4.8%) 26.9M (+0.6%)

Deep&Cross 17.5M 26.1M
+ GLIDER 18.7M (+6.9%) 26.4M (+1.0%)

xDeepFM 18.5M 27.6M
+ GLIDER 21.7M (+17.2%) 28.3M (+2.5%)

AutoInt 16.4M 25.1M
+ GLIDER 17.3M (+5.1%) 25.2M (+0.6%)

0 20 40 60
K

0.4420

0.4425

0.4430

0.4435

tes
t l

og
lo

ss

Figure 3: Test logloss vs. K of DeepFM
on the Criteo dataset (5 trials).

tings, we found that GLIDER performs especially well on industry production models trained on
large private datasets with thousands of features.

6.3 INTERPRETATIONS ON OTHER DOMAINS

Since the proposed interaction interpretations are not entirely limited to recommender systems, we
demonstrate interpretations on more general black-box models. Specifically, we experiment with the
function MADEX(·) defined in §3.3, which inputs a black-box f , data-instance x, and outputs a set of
top-k interactions. The models we use are trained on very different tasks, i.e., ResNet152: an image
classifier pretrained on ImageNet ‘14 (Russakovsky et al., 2015; He et al., 2016), Sentiment-LSTM:
a 2-layer bi-directional long short-term memory network (LSTM) trained on the Stanford Sentiment
Treebank (SST) (Socher et al., 2013; Tai et al., 2015), DNA-CNN: a 2-layer 1D convolutional neural
network (CNN) trained on MYC-DNA binding data6 (Mordelet et al., 2013; Yang et al., 2013;
Alipanahi et al., 2015; Zeng et al., 2016; Wang et al., 2018; Barrett et al., 2012), and GCN: a 3-layer
Graph Convolutional Network trained on the Cora dataset (Kipf & Welling, 2016; Sen et al., 2008).
In order to make informative comparisons to the linear LIME baseline, we use LIME’s sample
weighting strategy and kernel size (0.25) in this section. We first provide quantitative validation for
the detected interactions of all four models in §6.3.1, followed by qualitative results for ResNet152,
Sentiment-LSTM, and DNA-CNN in §6.3.2.

6.3.1 QUANTITATIVE

To quantitatively validate our interaction interpretations of general black-box models, we measure
the local explanation fidelity of the interactions via prediction performance. As suggested in §3.3 and

6https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47026

8

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47026

Published as a conference paper at ICLR 2020

Table 5: Prediction performance (mean-squared error; lower is better) with (k > 0) and without
(k = 0) interactions for random data instances in the test sets of respective black-box models.
k = L corresponds to the interaction at a rank threshold. 2 ≤ k < L are excluded because not all
instances have 2 or more interactions. Only results with detected interactions are shown. At least
94% (≥ 188) of the data instances had interactions across 5 trials for each model and score statistic.

k DNA-CNN Sentiment-LSTM ResNet152 GCN

linear LIME 0 10e−3± 1e−3 8.0e−2± 6e−3 1.9± 0.1 7.1e3± 7e2
MADEX (ours) 1 8e−3± 2e−3 3.8e−2± 6e−3 1.7± 0.1 5.7e3± 7e2
MADEX (ours) L 5.0e−3± 8e−4 0.4e−2± 3e−3 0.9± 0.2 2e3± 1e3

§4.2, encoding feature interactions is a way to increase a model’s function representation, but this
also means that prediction performance gains over simpler first-order models (e.g., linear regression)
is a way to test the significance of the detected interactions. In this section, we use neural network
function approximators for each top-interaction from the ranking {Ii} given by MADEX’s interaction
detector (in this case NID). Similar to the k-thresholding description in §3.3, we start at k = 0,
which is a linear regression, then increment k with added MLPs for each Ii among {Ii}ki=1 until
validation performance stops improving, denoted at k = L. The MLPs all have architectures of
64-32-16 first-to-last hidden layer sizes and use the binary perturbation dataset D (from §3.1).

top prediction: hammerhead, hammerhead shark

top prediction: viaduct

top prediction: Brittany spaniel

top prediction: trolleybus, trolley coach, trackless trolley

Interactions (ours)Original
image Main effects

I1 I2

(a) ResNet152 interpretations

Original
sentence

Predi-
ction

Main
effects

Interactions (ours)

I1 I2
It never fails
to engage us. pos. never,

us never, fails

The movie
makes absolutely

no sense.
neg. no,

sense
absolutely,

no no, sense

The central story
lacks punch. neg. lacks story, lacks lacks,

punch

(b) Sentiment-LSTM interpretations

Figure 4: Qualitative examples (more in Appendix D & E)

Test prediction performances are
shown in Table 5 for k ∈ {0, 1, L}.
The average number of features of D
among the black-box models ranges
from 18 to 112. Our quantitative val-
idation shows that adding feature in-
teractions for DNA-CNN, Sentiment-
LSTM, and ResNet152, and adding
node interactions for GCN result in
significant performance gains when
averaged over 40 randomly selected
data instances in the test set.

6.3.2 QUALITATIVE

For our qualitative analysis, we pro-
vide interaction interpretations via
MADEX(·) of ResNet152, Sentiment-
LSTM, and DNA-CNN on test sam-
ples. The interpretations are given by
S = {Ii}ki=1, a set of k detected in-
teractions, which are shown in Fig-
ure 4 for ResNet152 and Sentiment-
LSTM. For reference, we also show
the top “main effects” by LIME’s
original linear regression, which se-
lect the top-5 features that attribute
towards the predicted class7.

In Figure 4a, the “interaction”
columns show selected features from
MADEX’s interactions between Quick-
shift superpixels (Vedaldi & Soatto,
2008; Ribeiro et al., 2016). To
reduce the number of interactions per
image, we merged interactions that
have overlap coefficient ≥ 0.5 (Vi-
jaymeena & Kavitha, 2016). From

7Based on official code: https://github.com/marcotcr/lime

9

https://github.com/marcotcr/lime

Published as a conference paper at ICLR 2020

the figure, we see that the interactions form a single region or multiple regions of the image. They
also tend to be complementary to LIME’s main effects and are sometimes more informative. For
example, the interpretations of the “shark” classification show that interaction detection finds the
shark fin whereas main effects do not. Interpretations of Sentiment-LSTM are shown in Figure 4b,
excluding common stop words (Appendix C). We again see the value of MADEX’s interactions, which
show salient combinations of words, such as “never, fails”, “absolutely, no”, and “lacks, punch”.

In our experiments on DNA-CNN, we consistently detected the interaction between “CACGTG”
nucleotides, which form a canonical DNA sequence (Staiger et al., 1989). The interaction was
detected 97.3% out of 187 CACGTG appearances in the test set.

In order to run consistency experiments now on Sentiment-LSTM, word interactions need to be
detected consistently across different sentences, which naı̈vely would require an exorbitant amount
of sentences. Instead, we initially collect interaction candidates by running MADEX over all sentences
in the SST test set, then select the word interactions that appear multiple times. We assume that word
interactions are ordered but not necessarily adjacent or positionally bound, e.g., (not, good) 6= (good,
not), but their exact positions don’t matter. We use the larger IMDB dataset (Maas et al., 2011) to
collect different sets of sentences that contain the same ordered words as each interaction candidate
(but the sentences are otherwise random). The ranked detection counts of the target interactions on
their individual sets of sentences are shown in Table 2b. The average sentence length is 33 words,
and interaction occurrences are separated by 2 words on average.

7 CONCLUSION

We proposed a way to interpret feature interactions in general prediction models, and we proposed
GLIDER to detect and encode these interactions in black-box recommender systems. In our ex-
periments on recommendation, we found that our detected global interactions are explainable and
that explicitly encoding them can improve predictions. We further validated our interaction inter-
pretations on image, text, graph, and dna models. We hope the interpretations encourage investiga-
tion into the complex behaviors of prediction models, especially models with large societal impact.
Some opportunities for future work are generating correct attributions for interaction interpretations,
preventing false-positive interactions from out-of-distribution feature perturbations, and performing
interaction distillation from multiple models rather than just one.

ACKNOWLEDGMENTS

We would like to sincerely thank everyone who has provided their generous feedback for this work.
Thank you Youbang Sun, Dongxu Ren, and Beibei Xin for offering early-stage brainstorming and
prolonged discussions. Thank you Yuping Luo for providing advice on theoretical analysis of model
interpretation. Thank you Rich Caruana for your support and insight. Thank you Artem Volkhin,
Levent Ertoz, Ellie Wen, Long Jin, Dario Garcia, and the rest of the Facebook personalization team
for your feedback on the paper content. Last but not least, thank you anonymous reviewers for your
thorough comments and suggestions. This work was supported by National Science Foundation
Awards IIS-1254206 and IIS-1539608, granted to co-author Yan Liu in her academic role at the
University of Southern California.

10

Published as a conference paper at ICLR 2020

REFERENCES

Chunrong Ai and Edward C Norton. Interaction terms in logit and probit models. Economics letters,
80(1):123–129, 2003.

Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the se-
quence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33
(8):831, 2015.

Tanya Barrett, Stephen E Wilhite, Pierre Ledoux, Carlos Evangelista, Irene F Kim, Maxim Toma-
shevsky, Kimberly A Marshall, Katherine H Phillippy, Patti M Sherman, Michelle Holko, et al.
Ncbi geo: archive for functional genomics data sets—update. Nucleic acids research, 41(D1):
D991–D995, 2012.

Jacob Bien, Jonathan Taylor, and Robert Tibshirani. A lasso for hierarchical interactions. Annals of
statistics, 41(3):1111, 2013.

Olivier Chapelle, Eren Manavoglu, and Romer Rosales. Simple and scalable response prediction
for display advertising. ACM Transactions on Intelligent Systems and Technology (TIST), 5(4):
61, 2015.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794.
ACM, 2016.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st workshop on deep learning for recommender systems,
pp. 7–10. ACM, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Yingying Fan, Yinfei Kong, Daoji Li, Zemin Zheng, et al. Innovated interaction screening for high-
dimensional nonlinear classification. The Annals of Statistics, 43(3):1243–1272, 2015.

Aaron Fisher, Cynthia Rudin, and Francesca Dominici. Model class reliance: Variable importance
measures for any machine learning model class, from the “rashomon” perspective. arXiv preprint
arXiv:1801.01489, 2018.

Jerome H Friedman, Bogdan E Popescu, et al. Predictive learning via rule ensembles. The Annals
of Applied Statistics, 2(3):916–954, 2008.

Muriel Gevrey, Ioannis Dimopoulos, and Sovan Lek. Two-way interaction of input variables in the
sensitivity analysis of neural network models. Ecological modelling, 195(1-2):43–50, 2006.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323, 2011.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1725–1731. AAAI Press, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Giles Hooker. Discovering additive structure in black box functions. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 575–580.
ACM, 2004.

11

Published as a conference paper at ICLR 2020

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International Conference on Machine Learning, pp. 2673–2682, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1754–1763. ACM, 2018.

Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 623–631. ACM, 2013.

Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized feature attribution for
tree ensembles. arXiv preprint arXiv:1802.03888, 2018.

Yuanfei Luo, Mengshuo Wang, Hao Zhou, Quanming Yao, Wei-Wei Tu, Yuqiang Chen, Wenyuan
Dai, and Qiang Yang. Autocross: Automatic feature crossing for tabular data in real-world ap-
plications. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Informa-
tion Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

Fantine Mordelet, John Horton, Alexander J Hartemink, Barbara E Engelhardt, and Raluca Gordân.
Stability selection for regression-based models of transcription factor–dna binding specificity.
Bioinformatics, 29(13):i117–i125, 2013.

W James Murdoch, Peter J Liu, and Bin Yu. Beyond word importance: Contextual decomposition
to extract interactions from lstms. International Conference on Learning Representations, 2018.

Sanjay Purushotham, Martin Renqiang Min, C-C Jay Kuo, and Rachel Ostroff. Factorized sparse
learning models with interpretable high order feature interactions. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 552–561.
ACM, 2014.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144. ACM, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic
explanations. In AAAI Conference on Artificial Intelligence, 2018.

Rómer Rosales, Haibin Cheng, and Eren Manavoglu. Post-click conversion modeling and analysis
for non-guaranteed delivery display advertising. In Proceedings of the fifth ACM international
conference on Web search and data mining, pp. 293–302. ACM, 2012.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

12

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Published as a conference paper at ICLR 2020

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Chandan Singh, W James Murdoch, and Bin Yu. Hierarchical interpretations for neural network
predictions. International Conference on Learning Representations, 2019.

Sahil Singla, Eric Wallace, Shi Feng, and Soheil Feizi. Understanding impacts of high-order loss
approximations and features in deep learning interpretation. arXiv preprint arXiv:1902.00407,
2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. arXiv preprint
arXiv:1810.11921, 2018.

Daria Sorokina, Rich Caruana, Mirek Riedewald, and Daniel Fink. Detecting statistical interactions
with additive groves of trees. In Proceedings of the 25th international conference on Machine
learning, pp. 1000–1007. ACM, 2008.

Dorothee Staiger, Hildegard Kaulen, and Jeff Schell. A cacgtg motif of the antirrhinum majus chal-
cone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proceedings
of the National Academy of Sciences, 86(18):6930–6934, 1989.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3319–
3328. JMLR. org, 2017.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Michael Tsang, Dehua Cheng, and Yan Liu. Detecting statistical interactions from neural network
weights. arXiv preprint arXiv:1705.04977, 2017.

Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In European
Conference on Computer Vision, pp. 705–718. Springer, 2008.

MK Vijaymeena and K Kavitha. A survey on similarity measures in text mining. Machine Learning
and Applications: An International Journal, 3(2):19–28, 2016.

Meng Wang, Cheng Tai, Weinan E, and Liping Wei. Define: deep convolutional neural networks
accurately quantify intensities of transcription factor-dna binding and facilitate evaluation of func-
tional non-coding variants. Nucleic acids research, 46(11):e69–e69, 2018.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pp. 12. ACM, 2017.

Lin Yang, Tianyin Zhou, Iris Dror, Anthony Mathelier, Wyeth W Wasserman, Raluca Gordân, and
Remo Rohs. Tfbsshape: a motif database for dna shape features of transcription factor binding
sites. Nucleic acids research, 42(D1):D148–D155, 2013.

Haoyang Zeng, Matthew D Edwards, Ge Liu, and David K Gifford. Convolutional neural network
architectures for predicting dna–protein binding. Bioinformatics, 32(12):i121–i127, 2016.

13

Published as a conference paper at ICLR 2020

A EFFECT OF EXTRA PARAMETERS BY INTERACTION ENCODINGS VS.
ENLARGED EMBEDDINGS

In this section, we study whether increasing embedding size can obtain similar prediction perfor-
mance gains as explicitly encoding interactions via GLIDER. We increase the embedding dimension
sizes of every sparse feature in baseline recommender models to match the total number of model
parameters of baseline + GLIDER as close as possible. The embedding sizes we used to obtain sim-
ilar parameter counts are shown in Table 6. For the Avazu dataset, all of the embedding sizes remain
unchanged because they were already the target size. The corresponding prediction performances of
all models are shown in Table 7. We observed that directly increasing embedding size / parameter
counts generally did not give the same level of performance gains that GLIDER provided.

Table 6: Comparison of # model parameters between baseline models with enlarged embeddings
and original baselines + GLIDER (from Tables 3 and 4). The models with enlarged embeddings
are denoted by the asterick (*). The embedding dimension of sparse features is denoted by “emb.
size”. Percent differences are relative to baseline* models. M denotes million, and the ditto mark
(”) means no change in the above line.

Model Criteo Avazu

emb. size # params emb. size # params

Wide&Deep* 17 19.1M 16 27.3M
Wide&Deep 16 18.1M 16 ”
+ GLIDER 16 19.3M (+1.1%) 16 27.6M (+1.0%)

DeepFM* 17 18.5M 16 26.7M
DeepFM 16 17.5M 16 ”
+ GLIDER 16 18.3M (−0.9%) 16 26.9M (+0.6%)

Deep&Cross* 17 18.5M 16 26.1M
Deep&Cross 16 17.5M 16 ”
+ GLIDER 16 18.7M (+1.0%) 16 26.4M (+1.0%)

xDeepFM* 19 21.5M 16 27.6M
xDeepFM 16 18.5M 16 ”
+ GLIDER 16 21.7M (+0.7%) 16 28.3M (+2.5%)

AutoInt* 17 17.4M 16 25.1M
AutoInt 16 16.4M 16 ”
+ GLIDER 16 17.3M (−1.0%) 16 25.2M (+0.6%)

Table 7: Test prediction performance corresponding to the models shown in Table 6

Model Criteo Avazu

AUC logloss AUC logloss

Wide&Deep* 0.8072± 3e−4 0.4443± 2e−4 0.7794± 3e−4 0.3804± 2e−4
Wide&Deep 0.8069± 5e−4 0.4446± 4e−4 ” ”
+ GLIDER 0.8080± 3e−4 0.4436± 3e−4 0.7795± 1e−4 0.3802± 9e−5
DeepFM* 0.8080± 4e−4 0.4435± 4e−4 0.7792± 3e−4 0.3804± 9e−5
DeepFM 0.8079± 3e−4 0.4436± 2e−4 ” ”
+ GLIDER 0.8097± 2e−4 0.4420± 2e−4 0.7795± 2e−4 0.3802± 2e−4
Deep&Cross* 0.8081± 2e−4 0.4434± 2e−4 0.7791± 2e−4 0.3805± 1e−4
Deep&Cross 0.8076± 2e−4 0.4438± 2e−4 ” ”
+ GLIDER 0.8086± 3e−4 0.4428± 2e−4 0.7792± 2e−4 0.3803± 9e−5
xDeepFM* 0.8088± 1e−4 0.4429± 1e−4 0.7785± 3e−4 0.3808± 2e−4
xDeepFM 0.8084± 2e−4 0.4433± 2e−4 ” ”
+ GLIDER 0.8097± 3e−4 0.4421± 3e−4 0.7787± 4e−4 0.3806± 1e−4
AutoInt* 0.8087± 2e−4 0.4431± 1e−4 0.7774± 1e−4 0.3811± 8e−5
AutoInt 0.8083 0.4434 ” ”
+ GLIDER 0.8090± 2e−4 0.4426± 2e−4 0.7773± 1e−4 0.3811± 5e−5

14

Published as a conference paper at ICLR 2020

B EFFECT OF DENSE FEATURE BUCKETIZATION

We examine the effect of dense feature bucketization on cross feature parameter efficiency for the
Criteo dataset, which contains 13 dense features. Figure 5 shows the effects of varying the number of
dense buckets on the embedding sizes of the cross features involving dense features. Both the effects
on the average and individual embedding size are shown. 14 out of 40 of the cross features involved
a dense feature. Different cross features show different parameter patterns as the number of buckets
increases (Figure 5b). One one hand, the parameter count sometimes increases then asymptotes.
Our requirement that a valid cross feature ID occurs more than T times (§4.2) restricts the growth
in parameters. On the other hand, the parameter count sometimes decreases, which happens when
the dense bucket size becomes too small to satisfy the T occurrence restriction. In all cases, the
parameter counts are kept limited, which is important for overall parameter efficiency.

101 102 103 104 105

buckets

800

900

1000

1100

1200

1300

av
g

pa

ra
m

ete
rs

(a) effect on avg. cross feature embedding size

101 102 103 104 105

buckets

0

500

1000

1500

2000

2500

pa

ra
m

ete
rs

(b) effect on each cross feature embedding size

Figure 5: The effects of varying the number of buckets on (a) on the average embedding size of cross
features involving dense features and (b) the individual embedding sizes of the same cross features.

15

Published as a conference paper at ICLR 2020

C STOP WORDS

For all qualitative interpretations on text (in §6.3.2 and Appendix D), we preprocessed sentences to
remove stop words. We use the same stop words suggested by Manning et al. (2008), i.e., {a, an,
and, are, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that, the, to, was, were, will, with}.

D QUALITATIVE RESULTS ON SENTIMENT-LSTM VS. BERT

In this section, we compare the word interactions discovered by MADEX on Sentiment-LSTM versus
BERT. These models perform with accuracies of 87% and 92% respectively on the SST test set.
We use a public pre-trained BERT, i.e., DistilBERT (Sanh et al., 2019), which is available online8.
The interaction detector we use is GradientNID (§3.2.2), and sample weighting is disabled for this
comparison. The top-2 interactions for each model are shown in Table 8 on random sentences from
the SST test set.

Table 8: Top-ranked word interactions Ii from Sentiment-LSTM and BERT on randomly selected
sentences in the SST test set.

Original sentence Sentiment-LSTM BERT

I1 I2 I1 I2
An intelligent, earnest, intimate film that

drops the ball only when it pauses for
blunt exposition to make sure you’re

getting its metaphysical point.

intelligent,
metaphysical

metaphysical,
point

intelligent,
earnest drops, ball

It’s not so much enjoyable to watch as it
is enlightening to listen to new sides of a
previous reality, and to visit with some
of the people who were able to make an

impact in the theater world.

not,
enjoyable not, so not, much not,

enlightening

Uneasy mishmash of styles and genres. uneasy,
mishmash

mishmash,
genres

uneasy,
mishmash

uneasy,
styles

You’re better off staying home and
watching the X-Files. x, files off, x better, off you, off

If this is the Danish idea of a good time,
prospective tourists might want to consider
a different destination – some jolly country
embroiled in a bloody civil war, perhaps.

if, this if, good if, jolly jolly, country

We can see the wheels turning, and we
might resent it sometimes, but this is still
a nice little picture, made by bright and
friendly souls with a lot of good cheer.

resent, nice we, resent nice, good nice, made

One of the greatest family-oriented,
fantasy-adventure movies ever.

family,
oriented

greatest,
family

greatest,
family

adventure,
movies

It’s so full of wrong choices that all you
can do is shake your head in disbelief –

and worry about what classic Oliver Parker
intends to mangle next time.

so, wrong full, wrong so, wrong so, full

Its mysteries are transparently obvious, and
it’s too slowly paced to be a thriller.

mysteries,
transparently

paced,
thriller too, thriller too, paced

This miserable excuse of a movie runs on
empty, believing flatbush machismo will

get it through.

miserable,
runs excuse, get runs, empty miserable,

runs

8https://github.com/huggingface/transformers

16

Published as a conference paper at ICLR 2020

E ADDITIONAL QUALITATIVE RESULTS FOR RESNET152

top prediction: bolo tie, bolo, bola tie, bola

Original image Main effects I1 I2 I3

top prediction: wooden spoon

top prediction: rhinoceros beetle

top prediction: jellyfish

top prediction: potpie

top prediction: tick

top prediction: jackfruit, jak, jack

top prediction: cauliflower

top prediction: menu

top prediction: yurt

top prediction: pill bottle

top prediction: dome

top prediction: fur coat

top prediction: soccer ball

top prediction: bluetick

Figure 6: Additional qualitative results, following Figure 4a, on random test images in ImageNet.
Interactions are denoted by Ii and are unordered. Overlapping interactions with overlap coefficient
≥ 0.5 are merged to reduce |{Ii}| per test image.

17

Published as a conference paper at ICLR 2020

F DETECTION PERFORMANCE OF MADEX VS. BASELINES

We compare the detection performances between MADEX and baselines on identifying feature inter-
actions learned by complex models, i.e., XGBoost (Chen & Guestrin, 2016), Multilayer Perceptron
(MLP), and Long Short-Term Memory Network (LSTM) (Hochreiter & Schmidhuber, 1997). The
baselines are Tree-Shap: a method to identify interactions in tree-based models like XGBoost (Lund-
berg et al., 2018), MLP-ACD+: a modified version of ACD (Singh et al., 2019; Murdoch et al., 2018)
to search all pairs of features in MLP to find the best interaction candidate, and LSTM-ACD+: the
same as MLP-ACD+ but for LSTMs. All baselines are local interpretation methods. For MADEX,
we sample continuous features from a truncated normal distribution N (x, σ2I) centered at a spec-
ified data instance x and truncated at σ. Our MADEX experiments consist of two methods, NID and
GradNID (shorthand for GradientNID).

Table 9: Data generating functions
with interactions

F1(x) = 10x1x2 +
∑10

i=3 xi

F2(x) = x1x2 +
∑10

i=3 xi

F3(x) = exp(|x1 + x2|) +
∑10

i=3 xi

F4(x) = 10x1x2x3 +
∑10

i=4 xi

We evaluate interaction detection performance by us-
ing synthetic data where ground truth interactions are
known (Hooker, 2004; Sorokina et al., 2008). We generate
10e3 samples of synthetic data using functions F1 − F4 (Ta-
ble 9) with continuous features uniformly distributed between
−1 to 1. Next, we train complex models (XGBoost, MLP, and
LSTM) on this data. Lastly, we run MADEX and the baselines
on 10 trials of 20 data instances at randomly sampled loca-
tions on the synthetic function domain. Between trials, the
complex models are trained with different random initializa-
tion to test the stability of each interpretation method. Inter-
action detection performance is computed by the average R-precision (Manning et al., 2008)9 of
interaction rankings across the sampled data instances.

Results are shown in Table 10. MADEX (NID and GradNID) performs well compared to the baselines.
On the tree-based model, MADEX can compete with the tree-specific baseline Tree-Shap, which only
detects pairwise interactions. On MLP and LSTM, MADEX performs significantly better than ACD+.
The performance gain is especially large in the LSTM setting. Comparing NID and GradNID, NID
tends to perform better in this experiment because it takes its entire sampling region into account
whereas GradNID examines a single data instance.

Table 10: Detection Performance in R-Precision (higher the better). σ = 0.6 (max: 3.2). “Tree” is
XGBoost. *Does not detect higher-order interactions. †Requires an exhaustive search of all feature
combinations.

Tree MLP LSTM

Tree-Shap NID GradNID MLP-ACD+ NID GradNID LSTM-ACD+ NID GradNID

F1(x) 1± 0 1± 0 0.96± 0.04 0.63± 0.08 1± 0 1± 0 0.3± 0.2 1± 0 1± 0
F2(x) 1± 0 0.3± 0.4 0.6± 0.4 0.41± 0.06 1± 0 0.95± 0.04 0.01± 0.02 0.99± 0.02 0.95± 0.04
F3(x) 1± 0 1± 0 1± 0 0.3± 0.2 1± 0 1± 0 0.05± 0.08 1± 0 1± 0
F4(x) * 1± 0 † † 1± 0 † † 1± 0 †

9R-precision is the percentage of the top-R items in a ranking that are correct out of R, the number of
correct items. R = 1 in these experiments.

18

Published as a conference paper at ICLR 2020

G HIGHER-ORDER INTERACTIONS

This section shows how often different orders of higher-order interactions are identified by GLIDER
/ MADEX. Figure 7 plots the occurrence counts of global interactions detected in AutoInt for the
Criteo and Avazu dataset, which correspond to the results in Figure 2. Here we show the occurrence
counts of higher-order interactions, where the exact interaction cardinality is annotated besides each
data point. 3-way interactions are the most common type, followed by 4-, then 5-way interactions.

Figure 8 plots histograms of interaction cardinalities for all interactions detected from ResNet152
and Sentiment-LSTM across 1000 random samples in their test sets. The average number of fea-
tures are 66 and 18 for ResNet152 and Sentiment-LSTM respectively. Higher-order interactions are
common in both models.

0 10 20 30 40 50
rank

0

200

400

600

co
un

t 3

3 3 43 3 3 3 433 33 43 3 4 3 333

(a) Criteo

0 10 20 30 40 50
rank

0

200

400

600

co
un

t

3
3 33 4

4 3 3344334 535433

(b) Avazu

Figure 7: Occurrence counts (total: 1000) vs. rank of interactions detected from AutoInt on (a)
Criteo and (b) Avazu datasets. Each higher-order interaction is annotated with its interaction cardi-
nality.

2 6 10 14 18 22 26 30 34 38
interaction cardinality

0

2000

4000

6000

8000

co
un

t

(a) ResNet152

2 4 6 8 10 12 14 16 18 20 22 24
interaction cardinality

0

2000

4000

6000

8000

co
un

t

(b) Sentiment-LSTM

Figure 8: Histograms of interaction sizes for interactions detected in (a) ResNet152 and (b)
Sentiment-LSTM across 1000 random samples in respective test sets.

19

	Introduction
	Notations and Background
	Feature Interactions in Black-Box Models
	Feature Perturbation and Inference
	Feature Interaction Detection
	Neural Interaction Detection
	Gradient-based Neural Interaction Detection

	Scope

	GLIDER: Global Interaction Detection and Encoding for Recommendation
	Global Interaction Detection
	Truncated Feature Crosses
	Model Distillation vs. Enhancement

	Related Works
	Experiments
	Setup
	Experiments on CTR Recommendation
	Global Interaction Detection
	Interaction Encoding

	Interpretations on Other Domains
	Quantitative
	Qualitative

	Conclusion
	Effect of extra parameters by interaction encodings vs. enlarged embeddings
	Effect of dense feature bucketization
	Stop words
	Qualitative results on Sentiment-LSTM vs. BERT
	Additional qualitative results for ResNet152
	Detection performance of MADEX vs. baselines
	Higher-order interactions

