
Control Strategies for Physically Simulated Characters Performing
Two-player Competitive Sports

JUNGDAMWON, Facebook AI Research
DEEPAK GOPINATH, Facebook AI Research
JESSICA HODGINS, Facebook AI Research

Fig. 1. Characters performing two-player competitive sports such as boxing (left) and fencing (right) using learned control strategies.

In two-player competitive sports, such as boxing and fencing, athletes often
demonstrate efficient and tactical movements during a competition. In this
paper, we develop a learning framework that generates control policies
for physically simulated athletes who have many degrees-of-freedom. Our
framework uses a two step-approach, learning basic skills and learning bout-
level strategies, with deep reinforcement learning, which is inspired by the
way that people how to learn competitive sports. We develop a policy model
based on an encoder-decoder structure that incorporates an autoregressive
latent variable, and a mixture-of-experts decoder. To show the effectiveness
of our framework, we implemented two competitive sports, boxing and
fencing, and demonstrate control policies learned by our framework that
can generate both tactical and natural-looking behaviors. We also evaluate
the control policies with comparisons to other learning configurations and
with ablation studies.

CCS Concepts: •Computingmethodologies→Animation; Physical sim-
ulation; Reinforcement learning; Neural networks.

Additional Key Words and Phrases: Character Animation, Physics-based
Simulation and Control, Reinforcement Learning, Deep Learning, Neural
Network, Multi-agent

ACM Reference Format:
Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2021. Control Strate-
gies for Physically Simulated Characters Performing Two-player Compet-
itive Sports. ACM Trans. Graph. 40, 4, Article 1 (August 2021), 11 pages.
https://doi.org/10.1145/3450626.3459761

Authors’ addresses: Jungdam Won, Facebook AI Research; Deepak Gopinath, Facebook
AI Research; Jessica Hodgins, Facebook AI Research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
0730-0301/2021/8-ART1
https://doi.org/10.1145/3450626.3459761

1 INTRODUCTION
Many competitive sports involve long periods of routine play inter-
spersed with occasional dramatic demonstrations of agility. Those
strategic moments are often what determine the outcome of the
competition and spectators wait and cheer for those highlights. But
both the routine play and the scoringmoments are hard to reproduce
automatically in animated characters because of the complexities
involved in the interactions between the competing athletes. If we
had the ability to create virtual athletes who could automatically
perform all the movements of their sports and assemble them to
develop a winning strategy, that functionality would open up many
new applications in computer games, commercial films, and sports
broadcasting.
Creating animated scenes with multiple people is challenging

because it requires not only that each individual behave in a natural
way but that their interactions with each other are synchronized in
both the temporal and spatial domains to appear natural. The denser
the interactions are, the more challenging the problem is as there is
no time to “reset” between interactions. Using physically simulated
characters simplifies one part of the problem because low-level
physical interactions such as collision are automatically generated
through simulation. However, coordinating the different skills such
as jabs and punches or thrusts and parries or the bout-level strategies
of countering and pressure-fighting has not been studied in depth
because of the computational complexity of learning the series of
skills that comprise a full competition. A key challenge in using
the simulated characters for competitive sports is that we need to
learn both the basic skills and bout-level strategies so that they work
properly in concert.
In recent years, deep reinforcement learning techniques have

shown promising results in creating controllers or control policies
for physically simulated humanoids for common behaviors such as

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459761
https://doi.org/10.1145/3450626.3459761

1:2 • Won et al.

locomotion and manipulation as well as more esoteric behaviors
such as bicycle riding and gymnastics. Most of these behaviors in-
volve only a single character and behaviors that require interactions
among the characters have not been studied in depth.

In this paper, we explore techniques for training control systems
for two-player competitive sports that involve physical interaction.
We develop a framework that generates control policies for this
scenario, where the humanoids have many degrees-of-freedom and
are actuated by joint torques. Our framework is inspired by the
way that people learn how to play competitive sports. For most
sports, people first learn the basic skills without an opponent and
then learn how to combine and refine those skills by competing
against an opponent. We mimic these two processes, learning basic
skills and learning bout-level strategies, with deep reinforcement
learning. We develop a policy model based on an encoder-decoder
structure that incorporates an autoregressive latent variable, and a
mixture-of-experts decoder. To show the effectiveness of our frame-
work, we implemented two competitive sports, boxing and fencing,
and demonstrate control policies learned by our framework that
can generate both responsive and natural-looking behaviors for
the players. To evaluate our framework, we compare with other
plausible design choices and use ablation studies to understand the
contribution of individual components.
The contributions of this paper are as follows:

• Novel Results.We demonstrate successful control policies
that generate both responsive and natural-looking behaviors
in competitive settings for high degree-of-freedom physically
simulated humanoids. This problem has not previously been
studied in depth.

• Policy Model and Learning Procedure. Our policy model
is designed for efficient transfer learning which enables us
to use a few motion clips captured with a single actor only.
For example, it generates plausible competitive policies for
boxing by using just minutes of a boxer practicing alone.

• Baseline for Future Research We develop new competi-
tive environments, boxing and fencing, where two physically
simulated players can fight either with their fists or with
swords to win the game. The environments were selected be-
cause of the need for physical interactions. To support future
researchers, we plan to share our environments and learned
policies.

2 RELATED WORK
There is a long history in computer animation of developing control
systems for physically simulated characters. We review the papers
that are most closely related to our work because they handle mul-
tiple characters or physically simulated characters. We also review
several studies of reinforcement learning techniques that are similar
to the ones we employ and focus on their applications to character
animation and multi-agent problems.

2.1 Multi-character Animation
Many researchers have proposed techniques for creating realis-
tic multi-character animation. Most of the existing techniques are

kinematics-based and physics is not considered in generating the
animation.
A popular approach is patch-based generation. The key idea is

to build short sequences of motion containing interactions which
can then be glued together to create longer sequences with inter-
mittent interactions. Because the patches are usually pre-built with
motion capture data involving real interactions, we can ensure that
the generated scenes will always have plausible interactions. This
approach was first introduced in [Lee et al. 2006], and the idea was
then extended to two character interaction [Shum et al. 2008], and
crowd scenes [Yersin et al. 2009]. Several methods have been devel-
oped to edit the details of the scene [Ho et al. 2010; Kim et al. 2009]
and to make bigger and more complex scenes [Henry et al. 2014;
Hyun et al. 2013; Kim et al. 2014; Kwon et al. 2008; Won et al. 2014]
using the patches as building blocks.
There have also been approaches that directly synthesize multi-

character animation without using pre-defined motion patches, in-
stead imposing soft or hard constraints on the interactions. For exam-
ple, given amotion graph constructed from boxingmotions captured
from a single person, a kinematic controller that approaches and
hits the opponent can be pre-computed by dynamic programming
where the controller is represented by a transition table [Lee and Lee
2004]. Liu et al. [2006] created multi-character motions by solving a
space-time optimization problem with physical and user-specified
constraints. Shum and his colleagues proposed an online method
based on game tree expansion and min-max tree search, where com-
petitive and collaborative objectives exist simultaneously [Shum
et al. [n.d.], 2007; Shum et al. 2012]. Kwon et al. [2008] tackled a
similar problem by learning a motion transition model based on
a dynamic Bayesian network on top of coupled motion transition
graphs. Wampler et al. [2010] demonstrated a system that can gen-
erate feints or misdirection moves in two-player adversarial games
based on game theory, where stochastic and simultaneous deci-
sion allows such nuanced strategies based on unpredictability. Our
method belongs to this class of approaches because we directly
synthesize multi-character animation by using only individually
captured motions (with no opponent present). However, we incor-
porate dynamic simulation to ensure the naturalness of impacts and
other physical effects.

2.2 Physics-based Character Animation
Physics-based character animation involves characters that are mod-
eled as interconnected rigid bodies with mass and moment of inertia
and controlled by joint torques or muscle models. The enforcement
of physics laws prevents motions that are physically unrealistic
but do not prevent unnatural motions such as those in which re-
sponse times are too fast or joints are too strong. Many different
approaches have been proposed to supplement the constraints of
physics with additional control, learning, or optimization to produce
natural motion for humanoid characters. Although physics-based
methods has shown promising results for individual characters per-
forming a wide variety of behaviors, there exist only a few studies
for multi-character animations. Zordan et al. [2002; 2005] proposed
motion capture-driven simulated characters that can react to exter-
nal perturbations, where two-player interactions such as fighting,

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports • 1:3

Fig. 2. Overview of the system.

boxing, table-tennis, and fencing were shown as examples. Recently,
deep reinforcement learning has shown ground breaking results for
physically simulated characters performing behaviors such as loco-
motion [Berseth et al. 2018; Peng et al. 2017; Yu et al. 2018], such as
imitation [Bergamin et al. 2019; Chentanez et al. 2018; Lee et al. 2019;
Merel et al. 2017; Peng et al. 2018; Wang et al. 2017; Won et al. 2020;
Won and Lee 2019], and such as other skills [Clegg et al. 2018; Liu and
Hodgins 2017, 2018; Xie et al. 2020]. However, the number of stud-
ies on multi-characters is still limited. Park and colleagues [2019]
showed an example of chicken hopping where two players hop on
one leg and bump into each other to knock their opponent over. Al-
though the paper demonstrated physically plausible multi-character
animations, the characters in the scenes do not have high-level
strategies (intelligence) for fighting. Haworth and colleagues [2020]
demonstrated a crowd simulation method for physically simulated
humanoids based on multi-agent reinforcement learning with a hi-
erarchical policy that is composed of navigation, foot-step planning,
and bipedal walking skills. Unlike the previous approaches, this ap-
proach learns control policies that can adapt to interactions among
multiple simulated humanoids. However, only limited behaviors
such as navigation and collision-avoidance were demonstrated. Our
work focuses on generating more complex and subtle interactions
automatically for competitive environments, which is one of the
challenging problems in multi-character animation.

2.3 Multi-agent Reinforcement Learning
We solve a multi-agent reinforcement learning (RL) problem that
learns optimal policies of multiple agents, where the agents interact
with each other to achieve either a competitive or a cooperative
goal. This research topic has a long history in machine learning, and
we recommend readers to [Busoniu et al. 2008; Hu and Wellman
1998; Nguyen et al. 2020] for a general introduction and details.

The multi-agent problem is much more challenging than the
single-agent problem because of the difficulty of learning with a
non-stationary (moving target). All agents update their policies si-
multaneously, so models of the policies of other agents can become
invalid after just one learning iteration. In multi-agent RL, there are
two types of problems: cooperative and competitive. In the coop-
erative problem, there exists a common goal that the agents need
to achieve together, so communication channels among the agents
are commonly included in the policy model [Claus and Boutilier
1998; Lowe et al. 2017; OroojlooyJadid and Hajinezhad 2020]. In the

competitive problem, each agent has their own goal that is incom-
patible with those of the other agents, so communication channels
are usually ignored and each agent performs autonomously with
only observations and models of their opponent’s behavior [Bai and
Jin 2020; Baker et al. 2019; Bansal et al. 2018; Seldin and Slivkins
2014].

Recently, Lowe et al. [2017] proposed an algorithm called MAD-
DPG that solves the multi-agent RL problem as if it were a single-
agent RL problem by using a shared Q-function across all the agents.
Bansal et al. [2018] showed control policies for physically simu-
lated agents, which emerged from a competitive environment set-
ting. Baker et al. [2019] demonstrated the evolution of policies in a
hide-and-seek game, where the policies were learned with simple
competitive rewards in a fully automatic manner. Although the last
two results showed the potential of multi-agent RL in generating
multi-character motions, there exists room for improvement: the
characters were very simple, the motions were not human-like, or
careful development of policies by curriculum learning was required.

3 OVERVIEW
Our framework takes a set of motion data that includes the basic
skills of a two-player competitive sport as input and generates
control policies for two physically simulated players. The control
policies allow the players to perform a sequence of basic skills
with the right movements and timing to win the match. Figure 2
illustrates the overview of the framework. First, we collect a few
motion clips that include the basic skills of the sport performed
without an opponent. A single imitation policy is then learned for
the motions by using single-agent deep reinforcement learning.
Finally, we transfer the imitation policy to competitive policies for
the players where each player enhances their own policy by multi-
agent deep reinforcement learning with competitive rewards. To
effectively transfer from the imitation policy to the competitive
policy, we use a new policy model composed of a task-encoder and
a motor-decoder, the details will be explained in section 4.

3.1 Environments
We created two competitive sport environments, boxing and fencing,
as our examples, where two players compete with each other in an
attempt to win the match (Figure 1). We developed the environments
based on publicly available resources from [Won et al. 2020]. In the
boxing environment, we enlarged both hands so that the size is

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:4 • Won et al.

(a) Boxing (b) Fencing

Fig. 3. The boxing and fencing characters. The body parts where points are
scored if they are hit are marked in green.

similar to the size of boxing glove. The size of the arena is 5𝑚 by
5𝑚, and the player is only allowed to hit the upper body of the
opponent with their gloves (Figure 3). One round time is 60 𝑠 and
the player who inflicts the most damage (physical forces) on his
opponent wins the match. For the fencing environment, we attached
a blade with a weld joint at the end of the right hand to mimic a
firmly held sword. The size of the arena is 12𝑚 x 2𝑚, the player
is only allowed to touch the torso of the opponent with the blade,
which is similar to the rules of foil, a type of fencing. The player
who touches their opponent first wins the match, however, the
match can become a draw if the player successfully counterattacks
within 1 𝑠 after the first touch occurs. We control the players in both
environments by using a target posture (i.e. a set of target joint
angles), then a stable PD controller [2011] computes joint torques
for all joints except for the root joint.

3.2 Multi-agent Reinforcement Learning
We formulate our environment as a partially observable Markov
game [Littman 1994]. AMarkov gamewith𝑘 agents can be described
as a tuple {S,A1, · · · ,A𝑘 ,O1, · · · ,O𝑘 ,R1, · · · ,R𝑘 , 𝜌,T }, where S
is a set of states, A𝑖 and O𝑖 are sets of actions and observed states
for 𝑖-th agent, respectively, O𝑖 only includes partial information of
the entire game state S because there exist multiple independent
agents. The initial state of the game is sampled from the distribution
𝜌 : S → [0, 1], each agent takes an action a𝑖 ∈ A𝑖 given own
observed state o𝑖 ∈ O𝑖 , the game proceeds by the state transition
function T : S×A1×· · ·×A𝑘 → S and each agent receives a scalar
reward signal by own reward function R𝑖 : S×A1 × · · · ×A𝑘 → R.
The process repeats until one of the terminal conditions of the game
is satisfied. The goal of multi-agent deep reinforcement learning is
to find an optimal policy 𝜋𝑖 : O𝑖 × A𝑖 → [0, 1] that maximizes the
expected return E[Σ𝑇

𝑡=0𝛾
𝑡𝑟𝑖,𝑡] for each agent, where 𝛾 ∈ (0, 1) is a

discount factor, 𝑇 is the time horizon, and 𝑟𝑖,𝑡 is a reward value at
time 𝑡 .

4 METHODS
Figure 2 shows the overall framework of our approach. The policy
structure that provides effective transfer learning from the imitation
policy to the competitive policy is first described, followed by the
mathematical formalism for learning the two policies. For simplicity,
we drop the player index 𝑖 in the mathematical formalism below
unless it is explicitly required. Because the same framework can
be used for two different sports boxing and fencing with minimal

Fig. 4. Our transferable policy model. The model includes the task encoder
(green) and the motor decoder (blue) composed of the experts (yellow). The
output of task encoder is updated in an autoregressive manner (gray).

changes in the state and rewards, we first explain all the technical
components with boxing as the example and then the extra details
for fencing are described at the end of the section.

4.1 Transferable Policy Structure
In our environment, the default action is a target posture which is
represented as a 51 dimensional vector. Learning a control policy
from scratch in such high-dimensional space using naïve random
exploration and no prior knowledge can easily result in unnatural
albeit physically realistic motions. This result is particularly likely
when the reward function is under-specified (sparse). Incorporating
motion capture data allows us to utilize dense rewards by comparing
the data with the motions of the simulated character, however, there
are still unsolved challenges in adopting motion capture data for
multi-agent environments. First, collecting high-quality motion cap-
ture data with multiple actors is much harder than collecting data
from a single actor. Accurate capture is especially difficult when we
require dense and rich interactions amongmultiple actors because of
occlusions and subtleties in the motion during physical interactions.
Including two actors also increases the magnitude of what must be
captured to cover all of the needed interaction scenarios. We design
our framework to use motion capture data that were captured with
a single actor only and create the needed interactions through simu-
lation and learning. The framework uses a two step approach where
we first build a single imitation policy with individually captured
motions and then transfer the policy into two competitive poli-
cies for the players. The motivation for our approach comes from
the way that people learn how to play competitive sports. Novice
players first learn the basic skills through imitating expert players’
demonstrations, and then they refine the learned basic skills and
learn tactics while playing against an opponent.
Figure 4 illustrates the policy structure that we use for efficient

transfer learning, where the observed state of the player o𝑡 =

(b𝑡 , g𝑡) at time 𝑡 is composed of the body state (proprioception)
b𝑡 and the task-specific state g𝑡 . The structure is composed of a
motor decoder and a task encoder. The motor decoder includes a

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports • 1:5

Fig. 5. An illustration of the task-specific state in boxing for the blue player.

pool of 𝑁 experts where each expert has only the body state as
input. The output of the motor decoder is a set of outputs from
the experts e𝑡 = (e1

𝑡 , e
2
𝑡 , · · · , e𝑁𝑡). The task encoder receives the

whole observed state as input and then generates expert weights
𝝎𝑡 = (𝜔1

𝑡 , 𝜔
2
𝑡 , · · · , 𝜔𝑁

𝑡). The output of the task encoder is used
to update the latent expert weights �̂�𝑡 in an autoregressive man-
ner �̂�𝑡 = (1 − 𝛼)𝝎𝑡 + 𝛼�̂�𝑡−1, where 𝛼 controls smoothness of the
weight change. The mean action 𝝁𝑡 is computed by the weighted
sum 𝝁𝑡 = Σ𝑁

𝑖=1�̂�
𝑖
𝑡e

𝑖
𝑡 , and we sample an action a𝑡 stochastically from

a Gaussian distribution whose mean and covariance are 𝝁𝑡 and Σ, re-
spectively, with a constant diagonal matrix used for the covariance.
When transferring the imitation policy to the competitive policy,
only the motor decoder of the imitation policy is reused. The motor
decoder and a new task encoder whose input dimension matches to
the input competitive sport environment constitute a new policy
for each player as illustrated in Figure 2.

4.2 Pre-training: Imitation Policy
To learn a policy that can imitate basic boxing skills, we first used
a set of boxing motion clips from the CMU Motion Capture Data-
base [CMU 2002]. The data used is approximately 90 𝑠 , with four
motion clips each between 10-30 𝑠 . We also used their mirrored ver-
sions, so the total length is approximately 3 minutes. The actor in
the motion capture data performed several skills in an unstructured
way. We use this data without any extra post-processing such as
cutting them into individual skills or using manual labels such as
phase. Instead, we learn a single imitation policy by using deep re-
inforcement learning (RL) with imitation rewards. The body state is
b𝑡 = (p, q, v,w), where p,q,v, and w are positions, orientations, lin-
ear velocities, and angular velocities of all joints, respectively, which
are represented with respect to the current facing transformation
of the simulated player.

The task-specific state g𝑡 = (b𝑟𝑒 𝑓
𝑡+1 , b

𝑟𝑒 𝑓

𝑡+2 , · · ·) includes a sequence
of future body states extracted from the current reference motion.
In the examples presented here, we use two samples 0.05 and 0.15 𝑠
in the future. We use the multiplicative imitation reward function
and also perform early-termination based on the reward in a similar
fashion to [Won et al. 2020].

4.3 Transfer: Competitive Policy
To create a competitive policy, we replace the task encoder with
a new task encoder whose input dimension matches the boxing
environment and reuse the motor decoder as is. Please note that the
experts in the motor decoder do not represent specific individual
skills because they are learned simultaneously, rather they can be
regarded as basis functions for imitating the input motion capture
data. As a result, reusing the motor decoder implies that the action
space is a weighted combination of the experts (basis functions)
built from the imitation task, which is a greatly reduced space that
includes postures existing in the input motions when compared
to the entire posture space. A copy of the new policy is initially
assigned to each player, and then those policies are refined through
multi-agent deep reinforcement learning. Because the goal for the
two players in boxing is the same, they can be modeled by using
the same formulation. The reward function is

𝑟 = 𝑟match +𝑤close𝑟close +𝑤facing𝑟facing

−𝑤energy𝑟energy −𝑤penalty
∑
𝑖

𝑟 𝑖penalty (1)

where 𝑟match generates signals related to the match. In our boxing
example, it measures how much the player damaged the opponent
and how much the player was damaged by the opponent in the last
step. We measure damage by the magnitude of force,

𝑟match = ∥ 𝑓𝑝𝑙−>𝑜𝑝 ∥ − ∥ 𝑓𝑜𝑝−>𝑝𝑙 ∥ (2)

where 𝑓𝑝𝑙−>𝑜𝑝 is the contact normal force that the player applied
to the opponent and 𝑓𝑜𝑝−>𝑝𝑙 is the force applied by the opponent
to the player. When measuring damage, we only consider collisions
between both gloves and a subset of the upper bodies: the head, the
chest, and the belly (Figure 3). For numerical stability we clip the
magnitude of the force by 200N when computing ∥ 𝑓𝑝𝑙−>𝑜𝑝 ∥ and
∥ 𝑓𝑜𝑝−>𝑝𝑙 ∥. The close and facing terms increase the probability of
interaction while learning policies, 𝑟close = 𝑒𝑥𝑝 (−3𝑑2) encourages
the players to be close where 𝑑 is the closest distance between the
player’s gloves and the opponent’s upper body and 𝑟facing encour-
ages the players to face each other

𝑟facing = 𝑒𝑥𝑝 (−5∥v̄ · v̂ − 1∥)
v̄ = (p̂op − p̂pl)/∥p̂op − p̂pl∥

(3)

where v̂ is the facing direction and p̂op,p̂pl are the facing positions of
the opponent and the player, respectively (i.e. the root joint positions
projected to the ground). We also add an energy minimization term
to make the players move in an energy-efficient manner

𝑟energy = ^dist
∑
𝑗

∥a𝑗 ∥2

^dist = 1 − 𝑒𝑥𝑝 (−50∥𝑚𝑎𝑥 (0, 𝑙 − 1)∥2)
(4)

where a𝑗 is the angular acceleration of 𝑖-th joint and 𝑙 is the horizon-
tal distance between the two players. The energy term has an effect
only when the players are more than 1𝑚 apart. This term approxi-
mates the behaviors of boxers as they tend to conserve energy by
only throwing punches when their opponent is close enough that
they might be effective. Without this term, the boxers would throw
punches indiscriminately as the punches have no cost. Finally, we

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:6 • Won et al.

add extra penalty terms to prevent the players from entering un-
desirable or unrecoverable situations that hinder sample efficiency.
Each of these penalty terms is a binary signal:

𝑟 𝑖penalty =

{
1 if the condition is satisfied
0 otherwise

(5)

We also terminate the current episode if one of the conditions is
activated. In our boxing example, we use two conditions: fall and
stuck. The fall checks whether any body part of the player except
for the foot touches the ground. This penalty is helpful to learning
to maintain balance in the early phase of the learning (before tactics
emerge) and also for recovering from blows by the opponent. The
stuck was inspired by real boxing matches where a judge interrupts
and restarts the match if the two players are grasping each other
in their arms or one player is trapped on the rope and can only
defend themselves. The judge restarts the match because there are
almost no meaningful actions that can occur when the players are in
these configurations. We detect the first situation when the distance
between the players is less than 0.4𝑚 for more than 5 𝑠 and the
second situation when one of the players is located near the ropes
for more than 5 𝑠 .
The observed state of the player is composed of the body state

and the task-specific state, where the body state is the same as the
one used for learning the imitation policy and the task-specific state
includes the current status of the match

g𝑡 = (parena, darena, pop, vop, pglove, vglove, ptarget, vtarget) (6)

where parena, darena are the relative position and the facing direc-
tion of the player in the arena. pop, vop are relative positions and
velocities of the opponent’s body parts, which are represented in a
coordinate system aligned with the player’s facing direction. pglove,
vglove are the relative positions and velocities of the opponent’s
gloves with respect to the player’s upper body parts, and ptarget,
vtarget are relative positions and velocities of the opponent’s up-
per body parts with respect to the player’s gloves (Figure 5). The
dimension of the entire observed state is 623 in total.

4.4 Learning
When transferring a pre-trained policy with an encoder and a de-
coder to a new task, there are two popular approaches. One is to
learn only the encoder while the decoder remains fixed (Enc-only),
the other is to update the entire structure in an end-to-end manner
(Enc-Dec-e2e). There are pros and cons to both approaches. Both
approaches show similar results if the new task is the same or sim-
ilar to the previous task (pre-training), whereas the Enc-Dec-e2e
usually shows faster and better adaptation and convergence if the
new task is quite different from the original task. For example in
the boxing environment, we pre-train our motor decoder in the
single-agent setting by imitating motion clips that do not have any
interaction with the opponent. The competitive policy, however,
needs to learn abilities such as withstanding an attack or punching
the opponent. Enc-only is not sufficient to learn sophisticated tactics
for the competitive environment unless we use motion capture data
that covers almost all possible scenarios in pre-training. Enc-only is
more robust to the forgetting problem (where a pre-trained policy
easily forgets its original abilities for the original task and adapts

only to the new task) because the motor decoder does not change
at all. The forgetting problem does not matter if the performance
on the new task is the only concern, however, it can be problematic
for generating human-like motions for the player because a large
deviation from the original motor decoder trained on motion cap-
ture data can easily lead to a situation where the motor decoder is
no longer generating natural motions. To tackle this challenge, we
do Enc-only in the early stage of transfer learning, then alternate
between Enc-Dec-e2e and Enc-only. This learning procedure enables
the players to learn meaningful tactics while preserving the style
of the motions existing in the original motion capture data. In our
experiments, we start with Enc-only for 300-500 iterations, then
alternate between them every 50th iteration.
We use the decentralized distributed proximal policy optimiza-

tion (DD-PPO) algorithm [2020] to learn imitation and competitive
policies. As the name implies, DD-PPO is an extended version of
the proximal policy optimization (PPO) algorithm, which runs on
multiple machines (distributed), requires no master machine (decen-
tralized), and does synchronized update for policy parameters. In
the original PPO, training tuples generated on each machine are col-
lected by the master machine, the machine computes gradients for
all the training tuples, the current policy is updated by the gradients,
and the updated policy parameters are shared over the network by
broadcasting. In the DD-PPO, each machine computes the gradi-
ents for training tuples that it generated and only the gradients are
shared over the network to compute the average gradients. This
process reduces the communication and the overhead of computing
gradients when the number of training tuples per iteration is large.

4.5 Details for Fencing
Building control policies for the fencing environment requires mini-
mal changes in the state and rewards. For the state, the terms related
to the gloves pglove, vglove are replaced by the state of the sword
attached to the right hand of the fencer. We also include a trigger
vector (𝑙pl, 𝑙op) that represents the history of touch, where 𝑙pl be-
comes 1 if the player touches the opponent and it does not change
until the end of the match, otherwise the value is zero, and 𝑙op is
the opposite. The reward function for fencing is

𝑟 = 𝑟match +𝑤close𝑟close −𝑤penalty
∑
𝑖

𝑟 𝑖penalty (7)

where 𝑟close is the same as the boxing environment, 𝑟match gives 1
for the winner, −1 for the loser, and 0 when the match becomes a
draw. In contrast to that the boxers can collect 𝑟match continuously
until the end of the match, the fencers can get non-zero 𝑟match only
once when the match terminates (i.e. when the winner and the loser
are decided). We use two penalty terms fall and out-of-arena. fall is
the same as in boxing and out-of-arena is activated when the fencer
goes out of the arena because there is no physical boundary in the
fencing environment unlike the boxing environment. We use the
same learning algorithm without changing any hyper-parameters.

5 RESULTS
Table 1 includes all parameters used for physics simulation, DD-PPO
algorithm, and the reward functions. We used the PyTorch [2019]
implementation in RLlib [2018] for the DD-PPO algorithm. We

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports • 1:7

Table 1. Parameters

Simulation Simulation rate (Hz) 480
Control rate (Hz) 30

DD-PPO

Policy learning rate (𝛼𝜋) 0.00001
Discount factor (𝛾) 0.99
GAE and TD (_) 0.95
of tuples per policy update (𝑇) 150000
Batch size for policy update (𝑛) 2000
Iteration for policy update (𝑁) 20
Clip parameter (𝜖) 0.2

Rewards

𝑤close 0.2
𝑤facing 0.05
𝑤energy 0.001
𝑤penalty 30.0

(a) Boxing.

(b) Fencing.

Fig. 6. Learning curves on the average return.

use 8 and 4 experts for the boxing and the fencing environments,
respectively. Each expert in the motor decoder consists of two fully-
connected hidden layers (64 nodes, ReLu activation units) followed
by one output layer (51 nodes, no activation unit). The task encoder
for the boxing environment is made up of a two-layer LSTM (128
hidden size) and a hidden layer (128 nodes, ReLu activation units)
followed by one output layer (𝑁 nodes, tanh activation unit), where
𝑁 is the number of experts. For the task encoder of the fencing
environment, we use two fully-connected hidden layers (128 nodes,
ReLu activation units) instead of the LSTM layers because long-term
memory is not crucial due to the short length of the match.
In all our experiments, we used 12 machines, where each ma-

chine has 2 CPUs (Intel Xeon CPU E5-2698 v4). The pre-trainig
(imitation policy learning) takes approximately 1 day (2e8 transition
tuples) for both sports, and the transfer learning (competitive policy
learning) requires 4-5 days (5e8-7e8 transition tuples) for the boxing

environment, 2-3 days (2e8-3e8 transition tuples) for the fencing
environments to learn plausible policies. The competitive policy
learning is almost 1.5 times slower than the imitation policy learn-
ing because the environment includes two simulated characters for
which both computing stable PD control and evaluating control
policies are required, respectively.

5.1 Competitive Policy
We learn competitive policies for the boxing and the fencing environ-
ments. Figure 11 depicts two boxers fighting each other. The boxer
moves around with light steps when the opponent is far away, keeps
the opponent in check by using light jabs in the middle distance
(slightly farther than the reach). When the opponent is entirely
within reach, the boxer punches the opponent repeatedly while
blocking or avoiding the opponent’s attack. If the boxer is held in a
corner, the boxer sometimes tries to reverse the situation by using
the ropes in the arena. These examples and others shown in the
accompanying video demonstrate that our approach successfully
learns plausible tactics for a boxing environment while preserving
the style of the original motions.
Figure 12 depicts an example of the fencing motion (animations

are in the accompanying video), where each row shows different
match results. The matches typically end within 5 𝑠 , which is similar
to actual human matches. In our experiments, one fencer typically
learns aggressive tactics while the other fencer learns to stay in
place and play defensively. Due to Gaussian noise in the action, the
outcome of the match changes every match.

5.2 Learning Curves
The progress of learning does not increase monotonically in compet-
itive multi-agent RL environments as it often does in single-agent
RL or cooperative multi-agent RL environments. A similar phenom-
enon is also observed in learning a generative adversarial network
(GAN) [Kod [n.d.]]. What mostly drives the entire learning process
is the match reward, which has the property of a zero-sum game.
Figure 6a illustrates a learning curve of the average return for the
boxing environment. The learning process can be described in five
stages: learning to stand in place (stage 1), wandering around while
unintended collisions happen (stage 2), development of punches
(stage 3), development of blocks and avoidance (stage 4), repeated
fluctuation between stage 3 and stage 4 (stage 5). The fencing en-
vironment also shows the five stages during learning except that
there is less fluctuation in the 5th stage (Figure 6b). In the case of
two-player zero sum games, it is referred to as convergence when
both players behave in a regret-minimizing manner (i.e. the player
tries to minimize loss when the opponent maximizes their own
benefit). In our experiments, we judge that the policies converge
when the match reward is around zero during stage 5.

5.3 Evaluation
5.3.1 Learning Procedure. Asmentioned in section 4.4, our learning
procedure for the task encoder and the motor decoder is crucial
to build policies that generate human-like motions. We compare
our learning procedure of updating the task encoder first and then
updating the entire structure later with two alternative methods:

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:8 • Won et al.

(a) Enc-only (b) Enc-Dec-e2e

Fig. 7. Other learning procedures. Enc-Dec-e2e generates unnatural postures especially for the red boxer and all experts are activated equally all the time so
the trajectory of the expert weights (top-row) looks like a point, which implies that the learned experts have deviated far from the original experts. On the
other hand, Enc-only generates similar postures included in the input motions, however, the boxers can only stand in place, which implies that high-level
tactics were not learned successfully.

Enc-only and Enc-Dec-e2e by using the boxing environment (The
bottom row of Figure 7). In Enc-only, the player’s motion is similar
to that of the input motions, however, the player is not able to hit
the opponent accurately and falls down after just a small amount
of perturbation from the opponent. In Enc-Dec-e2e, the player can
collect the match reward successfully during the match, however,
the generated motions look unnatural. For example, the player uses
an extremely wide stance to avoid losing balance when hit hard by
the opponent and leans back too much to minimize the probability
of being hit. The mismatch between the generated motions and the
input motions can also be confirmed quantitatively by the output of
the task encoder, where all the experts are always activated unlike
our method and Enc-only (The upper row of Figure 7). Our method
shows plausible tactical behaviors while preserving the style of the
input motions.

5.3.2 Policy Model Components. We also evaluate how individual
components in our policy model affect the resulting motion. The
two key design choices are the number of experts in the motor de-
coder and the autoregressive parameter 𝛼 that enforces smoothness
on the change of the expert weights. We tested five different box-
ing policies using different parameters for the two design choices,
where Expert𝑁 /AR𝑘 means that there are 𝑁 experts and the value
of 𝛼 is 𝑘 . We first compare the performance of the imitation policies
(Figure 10a). Policies having fewer than four experts show degraded
performance due to the lack of representational power. To compare
the performance of the competitive policies, we measure how much
damage the player can deliver to the opponent during a match. More
specifically, we compute the difference of 𝑟𝑝𝑙−>𝑜𝑝 when the two
boxers are controlled by different control policies, and we average
the values over 20 matches for each policy pair (Figure10b). For
example, the value 217.4N between the two polices Expert8/AR0.9
and Expert4/AR0.9 means that the boxer controlled by the first pol-
icy can deliver 217.4N more damage to the other boxer on average.
First, Expert8/AR0.9 performs the best whereas Expert2/AR0.9 per-
forms the worst, which implies that a sufficient number of experts
is essential. Another observation is that the polices with lower 𝛼
(Expert8/AR0.5 and Expert8/AR0.0) show worse performance when
compared to Expert8/AR0.9 although their imitation polices perform

(a) Closeness (b) Facing (c) Energy

Fig. 8. Ablation studies on rewards.

Fig. 9. A new motion style. The imitation motor decoder was trained with
motions mimicking gorillas.

similarly. This difference is probably due to the fact that higher 𝛼
would help to learn a well-conditioned latent space for the motor
decoder, which allows the deep RL algorithm to discover pre-trained
skills more easily in the transfer learning.

5.3.3 Rewards. To understand how auxiliary reward terms affect
the results, we performed ablation studies for the three auxiliary
terms, 𝑟close, 𝑟facing, and 𝑟energy for the boxing environment (Fig-
ure 8). If the closeness term is ignored, boxers have only a sparse
signal on physical interaction, which made competitive policies
converge to sub-optimal behaviors. The boxers had difficulty return-
ing to close positions after being apart from each other. When the
facing term was discarded, the boxers occasionally attempted to
punch their opponents from behind, which does not occur in real
boxing matches. Finally, the control policies showed more aggres-
sive behaviors when they were learned without the energy term.
The boxers threw many punches indiscriminately regardless of the
distance between the boxers. Although the control policies looked
less energy efficient, we observed that the results were interesting

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports • 1:9

(a) Performance of imitation policies

(b) Performance of competitive policies. We measure the
difference of damages between the two players during a
match. Please note that the values are anti-symmetric.

Fig. 10. Performance comparison according to design choices

and visually appealing perhaps because aggressive players are loved
by spectators more even if their tactics are ineffective.

5.3.4 Different Motion Styles. In our framework, the style of input
motions are embedded into the motor decoder of the imitation pol-
icy, which eventually determines the style of the output motions
generated by the competitive policies. To test how our framework
adapts to a new motion style, we trained a new motor decoder with
motions that are unrelated to the boxing environment, then we
learned new competitive policies based on the new motor decoder.
We used motions where an actor mimics gorilla’s behaviors, which
include a few steps and swinging arms. Figure 9 shows that the
new motion style was successfully embedded into the competitive
policies. One interesting observation is that the new competitive
policies seemed inefficient when compared to the policies learned
with the boxing motions. We suspect that the input motions having
less relevance to the competitive environment (i.e. the boxing en-
vironment was originally designed for the boxing motions) might
affect the final performance of the policies.

6 CONCLUSION
In this paper, we explore techniques to create control policies for
physically simulated humanoids performing two-player competitive

games.We propose a two-step approach that first learns an imitation
policy and then transfers it into competitive policies. Boxing and
fencing are demonstrated as examples. Although this approach
generates competitive matches, there are limitations of our approach
and promising avenues for future work, which we discuss below.
Our system requires a fair amount of computation to generate

plausible competitive policies. As the number of agents involved in
the environment increases, possible interactions increase exponen-
tially, so the number of tuples required increases in a similar manner.
Not only our results but also other previous studies reported that
almost a billion training tuples are required for convergence [Bansal
et al. 2018], whereas single-agent environments usually converge
with a hundred million tuples [Peng et al. 2018]. To apply our frame-
work to sports that involve many players like basketball or soccer,
more sample-efficient methods would be necessary. This computa-
tional complexity might be solved by a breakthrough in the learning
algorithms such as model-based RL algorithms, or collecting more
data that can bootstrap interactions among the agents.

One assumption in our framework is that the individual skills of
sports can be captured by a single actor, which enabled us to learn an
effective pre-trained policy for the competitive environments later.
However, there exist some two-player competitive sports where that
assumption does not hold. For example, in wrestling, one player first
needs to grab the other’s bodies and utilizes contacts continuously
to perform the skills (i.e. get a point). Such skills would not be
captured by a single actor only. We expect that our framework
might also work if two-player imitation policies for those skills are
available, however, learning such imitation policies still remains an
open problem.
Although our method is able to generate emergent behaviors

for competitive policies, the naturalness of the generated motions
still depends on the quality of the input reference motions. For
example in boxing, professional athletes show extremely agile be-
haviors during the match, whereas our simulated athletes move
slowly in comparison. We believe that the primary reason for this
discrepancy is that the input motions used in our experiments were
captured from a boxer with very limited training, who attempted to
mimic professional boxers. A few studies have shown production-
quality results by using an hour of coordinated motion capture
data [Holden et al. 2017; Starke et al. 2019]. Using such data would
be helpful to increase the naturalness and diversity of the generated
motions in our framework. As the number of input motions and
the included behaviors become larger and more diverse, learning an
imitation policy in an end-to-end manner would fail. A hierarchical
approach [Won et al. 2020] could be a remedy, where we first cluster
the input motions into several categories, learn imitation policies
for each category, and finally combine them into a single imitation
policy.

To the best of our knowledge, the method described in this paper
is the first to automatically generate human-like control policies
for many degree-of-freedom, physically simulated humanoids per-
forming two-player competitive sports. We hope that this initial
work will lead to follow-up studies that improve performance and
overcome the limitations to the current method. In the long term,
this research direction aims to provide an immersive way that hu-
man users will be able to compete/interact by controlling intelligent

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:10 • Won et al.

Fig. 11. An example of a fight between two boxers. The boxers move around and get closer (top-row), keep each other in check by using light jabs (middle-row),
and the red boxer is knocked down by the blue boxer (bottom-row).

Fig. 12. Three fencing match examples. The blue fencer wins (top-row), a draw (middle-row), and the red fencer wins (bottom-row).

characters in a physically plausible manner in various applications
such as video games and virtual reality.

REFERENCES
[n.d.].
Yu Bai and Chi Jin. 2020. Provable Self-Play Algorithms for Competitive Reinforcement

Learning. In Proceedings of the 37th International Conference on Machine Learning,
Vol. 119. PMLR, 551–560. http://proceedings.mlr.press/v119/bai20a.html

Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob Mc-
Grew, and Igor Mordatch. 2019. Emergent Tool Use FromMulti-Agent Autocurricula.
CoRR (2019). arXiv:1909.07528

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. 2018.
Emergent Complexity via Multi-Agent Competition. arXiv:1710.03748

Kevin Bergamin, SimonClavet, Daniel Holden, and James Richard Forbes. 2019. DReCon:
Data-driven Responsive Control of Physics-based Characters. ACM Trans. Graph.
38, 6, Article 206 (2019). http://doi.acm.org/10.1145/3355089.3356536

Glen Berseth, Cheng Xie, Paul Cernek, and Michiel van de Panne. 2018. Progressive
Reinforcement Learning with Distillation for Multi-Skilled Motion Control. CoRR
abs/1802.04765 (2018).

L. Busoniu, R. Babuska, and B. De Schutter. 2008. A Comprehensive Survey of Multia-
gent Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 38, 2 (2008), 156–172. https://doi.org/10.1109/
TSMCC.2007.913919

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and Stefan
Jeschke. 2018. Physics-based motion capture imitation with deep reinforcement
learning. In Motion, Interaction and Games, MIG 2018. ACM, 1:1–1:10. https://doi.
org/10.1145/3274247.3274506

Caroline Claus and Craig Boutilier. 1998. The Dynamics of Reinforcement Learning
in Cooperative Multiagent Systems. In Proceedings of the Fifteenth National/Tenth
Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence
(AAAI ’98/IAAI ’98). 746–752.

Alexander Clegg, Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. 2018. Learning
to Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning.
ACM Trans. Graph. 37, 6, Article 179 (2018). http://doi.acm.org/10.1145/3272127.
3275048

CMU. 2002. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/.
Brandon Haworth, Glen Berseth, Seonghyeon Moon, Petros Faloutsos, and Mubbasir

Kapadia. 2020. Deep Integration of Physical Humanoid Control and Crowd Naviga-
tion. In Motion, Interaction and Games (MIG ’20). Article 15. https://doi.org/10.1145/
3424636.3426894

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

http://proceedings.mlr.press/v119/bai20a.html
http://arxiv.org/abs/1909.07528
http://arxiv.org/abs/1710.03748
http://doi.acm.org/10.1145/3355089.3356536
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1145/3274247.3274506
https://doi.org/10.1145/3274247.3274506
http://doi.acm.org/10.1145/3272127.3275048
http://doi.acm.org/10.1145/3272127.3275048
http://mocap.cs.cmu.edu/
https://doi.org/10.1145/3424636.3426894
https://doi.org/10.1145/3424636.3426894

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports • 1:11

Joseph Henry, Hubert P. H. Shum, and Taku Komura. 2014. Interactive Formation
Control in Complex Environments. IEEE Transactions on Visualization and Computer
Graphics 20, 2 (2014), 211–222. https://doi.org/10.1109/TVCG.2013.116

Edmond S. L. Ho, Taku Komura, and Chiew-Lan Tai. 2010. Spatial Relationship Pre-
serving Character Motion Adaptation. ACM Trans. Graph. 29, 4, Article 33 (2010).
https://doi.org/10.1145/1778765.1778770

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned Neural Networks
for Character Control. ACM Trans. Graph. 36, 4, Article 42 (2017). http://doi.acm.
org/10.1145/3072959.3073663

Junling Hu and Michael P. Wellman. 1998. Multiagent Reinforcement Learning: Theo-
retical Framework and an Algorithm. In Proceedings of the Fifteenth International
Conference on Machine Learning (ICML ’98). 242–250.

K. Hyun, M. Kim, Y. Hwang, and J. Lee. 2013. Tiling Motion Patches. IEEE Transactions
on Visualization and Computer Graphics 19, 11 (2013), 1923–1934. https://doi.org/10.
1109/TVCG.2013.80

Jongmin Kim, Yeongho Seol, Taesoo Kwon, and Jehee Lee. 2014. Interactive Manipula-
tion of Large-Scale Crowd Animation. ACM Trans. Graph. 33, 4, Article 83 (2014).
https://doi.org/10.1145/2601097.2601170

Manmyung Kim, Kyunglyul Hyun, Jongmin Kim, and Jehee Lee. 2009. Synchronized
Multi-Character Motion Editing. ACM Trans. Graph. 28, 3, Article 79 (2009). https:
//doi.org/10.1145/1531326.1531385

T. Kwon, Y. Cho, S. I. Park, and S. Y. Shin. 2008. Two-Character Motion Analysis and
Synthesis. IEEE Transactions on Visualization and Computer Graphics 14, 3 (2008),
707–720. https://doi.org/10.1109/TVCG.2008.22

Taesoo Kwon, Kang Hoon Lee, Jehee Lee, and Shigeo Takahashi. 2008. Group Motion
Editing. ACM Trans. Graph. 27, 3 (2008), 1–8. https://doi.org/10.1145/1360612.
1360679

Jehee Lee and Kang Hoon Lee. 2004. Precomputing Avatar Behavior from Human
Motion Data. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA ’04). 79–87. https://doi.org/10.1145/1028523.1028535

Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. 2006. Motion Patches: Building
Blocks for Virtual Environments Annotated with Motion Data. ACM Trans. Graph.
25, 3 (2006), 898–906. https://doi.org/10.1145/1141911.1141972

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable Muscle-
actuated Human Simulation and Control. ACM Trans. Graph. 38, 4, Article 73 (2019).
http://doi.acm.org/10.1145/3306346.3322972

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg,
Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. 2018. RLlib: Abstractions for
Distributed Reinforcement Learning. arXiv:1712.09381

Michael L. Littman. 1994. Markov Games as a Framework for Multi-Agent Reinforce-
ment Learning. In Proceedings of the Eleventh International Conference on Interna-
tional Conference on Machine Learning (ICML’94). 157–163.

C. Karen Liu, Aaron Hertzmann, and Zoran Popović. 2006. Composition of Com-
plex Optimal Multi-Character Motions. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’06). 215–222.

Libin Liu and Jessica Hodgins. 2017. Learning to Schedule Control Fragments for
Physics-Based Characters Using Deep Q-Learning. ACM Trans. Graph. 36, 3, Article
42a (2017). http://doi.acm.org/10.1145/3083723

Libin Liu and Jessica Hodgins. 2018. Learning Basketball Dribbling Skills Using Tra-
jectory Optimization and Deep Reinforcement Learning. ACM Trans. Graph. 37, 4,
Article 142 (2018). http://doi.acm.org/10.1145/3197517.3201315

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS’17). 6382–6393.

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg
Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion capture
by adversarial imitation. CoRR abs/1707.02201 (2017).

T. T. Nguyen, N. D. Nguyen, and S. Nahavandi. 2020. Deep Reinforcement Learning
for Multiagent Systems: A Review of Challenges, Solutions, and Applications. IEEE
Transactions on Cybernetics 50, 9 (2020), 3826–3839. https://doi.org/10.1109/TCYB.
2020.2977374

Afshin OroojlooyJadid and Davood Hajinezhad. 2020. A Review of Cooperative Multi-
Agent Deep Reinforcement Learning. arXiv:1908.03963

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
Predict-and-simulate Policies from Unorganized Human Motion Data. ACM Trans.
Graph. 38, 6, Article 205 (2019). http://doi.acm.org/10.1145/3355089.3356501

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32. 8024–8035.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel van de Panne. 2018. DeepMimic:
Example-guided Deep Reinforcement Learning of Physics-based Character Skills.
ACM Trans. Graph. 37, 4, Article 143 (2018). http://doi.acm.org/10.1145/3197517.

3201311
Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco:

Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article 41 (2017). http://doi.acm.org/10.1145/3072959.3073602

Yevgeny Seldin and Aleksandrs Slivkins. 2014. One Practical Algorithm for Both
Stochastic and Adversarial Bandits. In Proceedings of the 31st International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 32). 1287–1295.
http://proceedings.mlr.press/v32/seldinb14.html

Hubert P. H. Shum, Taku Komura, Masashi Shiraishi, and Shuntaro Yamazaki. 2008.
Interaction Patches for Multi-Character Animation. ACM Trans. Graph. 27, 5 (2008).
https://doi.org/10.1145/1409060.1409067

Hubert P. H. Shum, Taku Komura, and Shuntaro Yamazaki. [n.d.]. Simulating Inter-
actions of Avatars in High Dimensional State Space. In Proceedings of the 2008
Symposium on Interactive 3D Graphics and Games (I3D ’08). 131–138. https:
//doi.org/10.1145/1342250.1342271

Hubert P. H. Shum, Taku Komura, and Shuntaro Yamazaki. 2007. Simulating Com-
petitive Interactions Using Singly Captured Motions. In Proceedings of the 2007
ACM Symposium on Virtual Reality Software and Technology (VRST ’07). 65–72.
https://doi.org/10.1145/1315184.1315194

H. P. H. Shum, T. Komura, and S. Yamazaki. 2012. Simulating Multiple Character Inter-
actions with Collaborative and Adversarial Goals. IEEE Transactions on Visualization
and Computer Graphics 18, 5 (2012), 741–752. https://doi.org/10.1109/TVCG.2010.257

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine
for character-scene interactions. ACM Trans. Graph. 38, 6 (2019), 209:1–209:14.
https://doi.org/10.1145/3355089.3356505

Jie Tan, C. Karen Liu, and Greg Turk. 2011. Stable Proportional-Derivative Controllers.
IEEE Computer Graphics and Applications 31, 4 (2011), 34–44. https://doi.org/10.
1109/MCG.2011.30

Kevin Wampler, Erik Andersen, Evan Herbst, Yongjoon Lee, and Zoran Popović. 2010.
Character Animation in Two-Player Adversarial Games. ACM Trans. Graph. 29, 3,
Article 26 (2010). https://doi.org/10.1145/1805964.1805970

Ziyu Wang, Josh Merel, Scott Reed, Greg Wayne, Nando de Freitas, and Nicolas Heess.
2017. Robust Imitation of Diverse Behaviors. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS’17). http://dl.acm.org/
citation.cfm?id=3295222.3295284

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh,
Manolis Savva, and Dhruv Batra. 2020. DD-PPO: Learning Near-Perfect PointGoal
Navigators from 2.5 Billion Frames. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable Approach to
Control Diverse Behaviors for Physically Simulated Characters. ACM Trans. Graph.
39, 4, Article 33 (2020). https://doi.org/10.1145/3386569.3392381

Jungdam Won and Jehee Lee. 2019. Learning Body Shape Variation in Physics-based
Characters. ACM Trans. Graph. 38, 6, Article 207 (2019). http://doi.acm.org/10.1145/
3355089.3356499

Jungdam Won, Kyungho Lee, Carol O’Sullivan, Jessica K. Hodgins, and Jehee Lee. 2014.
Generating and Ranking Diverse Multi-Character Interactions. ACM Trans. Graph.
33, 6, Article 219 (2014). https://doi.org/10.1145/2661229.2661271

Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and Michiel van de Panne. 2020. ALL-
STEPS: Curriculum-driven Learning of Stepping Stone Skills. In Proc. ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation.

Barbara Yersin, Jonathan Maïm, Julien Pettré, and Daniel Thalmann. 2009. Crowd
Patches: Populating Large-Scale Virtual Environments for Real-Time Applications.
In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D
’09). 207–214. https://doi.org/10.1145/1507149.1507184

Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning Symmetric and Low-energy
Locomotion. ACM Trans. Graph. 37, 4, Article 144 (2018). http://doi.acm.org/10.
1145/3197517.3201397

Victor Brian Zordan and Jessica K. Hodgins. 2002. Motion Capture-Driven Simulations
That Hit and React. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (SCA ’02). 89–96. https://doi.org/10.1145/545261.
545276

Victor Brian Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. 2005. Dynamic
Response for Motion Capture Animation. ACM Trans. Graph. 24, 3 (2005), 697–701.
https://doi.org/10.1145/1073204.1073249

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1109/TVCG.2013.116
https://doi.org/10.1145/1778765.1778770
http://doi.acm.org/10.1145/3072959.3073663
http://doi.acm.org/10.1145/3072959.3073663
https://doi.org/10.1109/TVCG.2013.80
https://doi.org/10.1109/TVCG.2013.80
https://doi.org/10.1145/2601097.2601170
https://doi.org/10.1145/1531326.1531385
https://doi.org/10.1145/1531326.1531385
https://doi.org/10.1109/TVCG.2008.22
https://doi.org/10.1145/1360612.1360679
https://doi.org/10.1145/1360612.1360679
https://doi.org/10.1145/1028523.1028535
https://doi.org/10.1145/1141911.1141972
http://doi.acm.org/10.1145/3306346.3322972
http://arxiv.org/abs/1712.09381
http://doi.acm.org/10.1145/3083723
http://doi.acm.org/10.1145/3197517.3201315
https://doi.org/10.1109/TCYB.2020.2977374
https://doi.org/10.1109/TCYB.2020.2977374
http://arxiv.org/abs/1908.03963
http://doi.acm.org/10.1145/3355089.3356501
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3072959.3073602
http://proceedings.mlr.press/v32/seldinb14.html
https://doi.org/10.1145/1409060.1409067
https://doi.org/10.1145/1342250.1342271
https://doi.org/10.1145/1342250.1342271
https://doi.org/10.1145/1315184.1315194
https://doi.org/10.1109/TVCG.2010.257
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1109/MCG.2011.30
https://doi.org/10.1109/MCG.2011.30
https://doi.org/10.1145/1805964.1805970
http://dl.acm.org/citation.cfm?id=3295222.3295284
http://dl.acm.org/citation.cfm?id=3295222.3295284
https://doi.org/10.1145/3386569.3392381
http://doi.acm.org/10.1145/3355089.3356499
http://doi.acm.org/10.1145/3355089.3356499
https://doi.org/10.1145/2661229.2661271
https://doi.org/10.1145/1507149.1507184
http://doi.acm.org/10.1145/3197517.3201397
http://doi.acm.org/10.1145/3197517.3201397
https://doi.org/10.1145/545261.545276
https://doi.org/10.1145/545261.545276
https://doi.org/10.1145/1073204.1073249

	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-character Animation
	2.2 Physics-based Character Animation
	2.3 Multi-agent Reinforcement Learning

	3 Overview
	3.1 Environments
	3.2 Multi-agent Reinforcement Learning

	4 Methods
	4.1 Transferable Policy Structure
	4.2 Pre-training: Imitation Policy
	4.3 Transfer: Competitive Policy
	4.4 Learning
	4.5 Details for Fencing

	5 Results
	5.1 Competitive Policy
	5.2 Learning Curves
	5.3 Evaluation

	6 Conclusion
	References

