
Streamed Approximate Counting of Distinct Elements

Beating Optimal Batch Methods

Daniel Ting
Facebook

1730 Minor Avenue
Seattle, WA

dting@fb.com

ABSTRACT
Counting the number of distinct elements in a large dataset
is a common task in web applications and databases. This
problem is difficult in limited memory settings where storing
a large hash table table is intractable. This paper advances
the state of the art in probabilistic methods for estimating
the number of distinct elements in a streaming setting New
streaming algorithms are given that provably beat the ”op-
timal” errors for Min-count and HyperLogLog while using
the same sketch.

This paper also contributes to the understanding and the-
ory of probabilistic cardinality estimation introducing the
concept of an area cutting process and the martingale es-
timator. These ideas lead to theoretical analyses of both
old and new sketches and estimators and show the new esti-
mators are optimal for several streaming settings while also
providing accurate error bounds that match those obtained
via simulation. Furthermore, the area cutting process pro-
vides a geometric intuition behind all methods for counting
distinct elements which are not affected by duplicates. This
intuition leads to a new sketch, Discrete Max-count, and the
analysis of a class of sketches, self-similar area cutting de-
compositions that have attractive properties and unbiased
estimators for both streaming and non-streaming settings.

Together, these contributions lead to multi-faceted ad-
vances in sketch construction, cardinality and error estima-
tion, the theory, and intuition for the problem of approxi-
mate counting of distinct elements for both the streaming
and non-streaming cases.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms,
Stochastic processes; H.2.8 [Database Applications]: Data
mining

Keywords
distinct elements, martingale, cardinality estimation, ran-
domized algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD 2014 New York, New York USA
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623669.

1. INTRODUCTION
Approximating the number of distinct elements in a dataset

while using a small amount of memory is an important prob-
lem with broad industrial applications. A web company may
wish to count the number of distinct users accessing a ser-
vice broken down by country of origin [12]. Other areas of
application include counting network flows to detect denial
of service attacks [6] and database warehousing [1].

A number of algorithms exist for approximately estimat-
ing these counts. Most tackle the problem by first construct-
ing a summarization of the data or sketch and then estimat-
ing the number of distinct elements, the cardinality, from
the sketch. In practice, Flajolet and Martin’s HyperLogLog
[8] and Chen et al’s Self-learning bitmap [4] (S-bitmap) con-
stitute the state of the art in the field when there is no prior
estimate of the cardinality. Several theoretical results ex-
ist as well. Kane et al [11] give an algorithm with optimal
space complexity but sub-optimal statistical efficiency while
Giroire’s Min-count algorithm [9] has optimal statistical ef-
ficiency but poor space requirements. Although these algo-
rithms have been described as streaming algorithms, only
the S-bitmap exploits the streaming property of data to
achieve better accuracy.

This paper develops a general recipe for constructing stream-
ing cardinality estimation algorithms by introducing the area
cutting process and an estimator for the cardinality using
martingale methods. The martingale methods extend the
estimation methods used by the S-bitmap [4]. This recipe
covers almost all sketching methods. Any sketch which is
generated by hashing of each element in the data stream and
is not affected by duplicates elements has a representation
as an area cutting process. The associated martingale esti-
mator is provably unbiased and provably optimal if queried
immediately after a sketch update.

Streaming versions of HyperLogLog and Min-count are
shown to have superior performance to their non-streaming
counterparts. Regular HyperLogLog is shown to require
approximately 1.5 times more bits than streaming Hyper-
LogLog to achieve the same error, and Min-count requires
twice the size of streaming Min-count. These streaming es-
timators are able to beat optimal estimators which use only
the final sketch is because the streaming estimators are able
to exploit the values of intermediate sketches as well. Fur-
thermore, unlike the S-bitmap which can only be used in
a streaming setting, these sketching methods have the ad-
vantage that they may also be used in distributed settings
where results may be need to be aggregated over multiple
servers or computed within a map-reduce framework.

A special class of decomposable self-similar area cutting
processes is introduced and shown to have attractive prop-
erties. They are shown to have an unbiased estimator for
non-streaming data as well as analytic formulas for the vari-
ance for both the streaming and non-streaming case. A new
sketch construction, Discrete Max-count, yields a decompos-
able self-similar area cutting process which has good perfor-
mance for small sketches. For a non-optimal encoding of the
Discrete Max-count sketch, the space-complexity is derived
and shown to have no term which jointly depends on both
the error ε and cardinality n.

The empirical performance of each method is evaluated
as well using both simulations and an anonymized Facebook
test dataset. Unlike HyperLogLog which requires special
corrections for small and medium sized cardinalities [10], the
performance of the estimators is consistently good through-
out the entire range of cardinalities tested.

Several ideas of note are introduced in this paper. To in-
troduce these ideas the paper is structured as follows. In
section 2, we formulate the cardinality estimation problem
by describing the probabilistic data generating process for
the sketches. This leads to the martingale estimator and its
properties, including its optimality properties. Next, several
existing sketches are described and shown to yield streaming
estimates. The area cutting process and a geometric inter-
pretation of the sketches are give in section 5. This paper
then focuses on self-similar area cutting processes and their
properties. Discrete Max-count is introduced as a special
case and its space complexity is analyzed, and the optimal
and near optimal estimators for the non-streaming versions
of Min-count and HyperLogLog are shown to be non-optimal
in streaming settings. The streaming methods are evaluated
via simulation in section 7 and future research directions are
discussed.

2. PROBABILITISTIC COUNTING
To fix the notation in this paper, let X = (X1, X2, ...) be

a stream of elements and n denote the cardinality, the num-
ber of distinct elements, of X . Cardinality estimation meth-
ods involve constructing a sequence of sketches Si which are
functions of the data seen up to some point, and then esti-
mating the cardinality N̂(Si) from the sketches. To ensure
that only distinct elements are counted, the sketches should
not be affected by duplicates. In other words, they should
have the property Si = Si−1 if Xi = Xj for some j < i.
In most probabilistic methods, the sketches are based on a
transformed stream of data which has been converted using a
strong universal hash function h so that (h(Xi1), h(Xi2),)
forms a sequence of independent Uniform(0, 1) random vari-
ables where the subsequence (ij) picks out the first occur-
rence of each distinct element. The hash function ensures
that duplicates remain duplicates after transformation. The
sketches Si are then random elements from some distribu-
tion parameterized by ni, the number of distinct elements
encountered up to the ith element in the stream. Thus,
the problem of estimating the cardinality is reduced to the
statistical problem of estimating a parameter for a known
family of distributions given the data Si.

Our insight for exploiting the streaming nature of the data
is that using just the last sketch Slast to estimate the car-
dinality throws away information contained in the entire se-
quence of sketches. We augment the sketch by including
the current estimate into the sketch S̃i = (Si, N̂i). This

Algorithm 1 Algorithm for updating an existing estimate
n̂prev and sketch with a new item.

function UpdateEstimate(n̂prev, sketch, itemnew)
q ← P (sketch is modified)
Add itemnew to sketch
if sketch is modified then

return n̂prev + 1/q
else

return n̂prev

end if
end function

augmentation allows the construction of a provably unbi-
ased martingale estimator with just an additional Op(lgn)
bits. Here, the notation Op(lgn) is the probabilistic ana-
log of O(lgn) where the bound holds for arbitrarily small
probabilities.

2.1 Counting with Markov processes and Mar-
tingales

The key idea behind all streaming algorithms described in
this paper is that a Markov chain is formed by the sequences
of sketches generated from a data stream. This Markov
chain is obtained by taking the original sequence of sketches

S
(orig)
i indexed by the number of items i encountered and

considering only the subsequence St indexed by the number
of distinct items t encountered.

Theorem 1. The sequence of sketches (St) forms a Markov
chain when h is a strong universal hash.

Proof. The next sketch St+1 = f(St, h(Xt)) is some
function of the current sketch and the next hashed value.
Since h is a strong universal hash, the h(Xt) are indepen-
dent and identically distributed, and the probability of tran-
sitioning to some value depends only on the previous value
of the sketch St

For ease of exposition, this paper will refer to the index
t interchangeably as both time and the number of distinct
elements encountered.

Define the martingale estimator to be the Markov chain

N̂t+1 = N̂t +
1

q(St)
1(St+1 6= St) (1)

where q(St) is the probability of modifying the current sketch
and transitioning out of the current state. The initial state
of the chain is N̂0 = 0. The idea behind this estimator is that
with one time step the expected increase in the estimator is
exactly 1. Note that although the underlying sequence (St)
is not observed since the number of distinct items t is not
known at an arbitrary location in the stream, the estimator
depends only on observable events, namely on modifications
to the sketch.

The resulting algorithm is simple and elegant and can
be applied to any sketch which is unaffected by duplicates.
Given a sketch, augment it with a counter c and add 1/q(STt−1)
every time there is a change in the sketch. Note that the esti-
mate is never updated when a duplicate item is encountered
since duplicates do not modify the sketch. The algorithm is
summarized in algorithm 1.

The name of the estimator comes from the fact that N̂t−t
is a martingale. A martingale Mt is a Markov process such
that E(Mt+1|Mt) = Mt. The martingale property aids in

Symbol Description
n True cardinality
m Number of bins or samples
St Sketch after t distinct items are encountered
Ti Time of the ith modification of the sketch

q(St) Probability that a new item modifies the sketch St

qi q(STi)
(∆t, Yt) offset and samples of an offset decomposition

Table 1: Table of symbols

deriving properties of the estimator. The most important
property is given by the following theorem.

Theorem 2. The process Mt = N̂t − t is a martingale.
Hence, N̂n is an unbiased estimate of the cardinality n.

Proof. The martingale property is trivial to check. EMt =
EE(Mt|Mt−1) = EMt−1. By induction, EMt = EM0 = 0.

In other words, EN̂n = n, and N̂n is unbiased.

Another way to view the estimator comes from decompos-
ing it in terms of holding times for the Markov chain. Let
T1, T2, . . . be the jump times of the chain, so that Ti be the
time of the ith modification to the sketch. The holding time
Ti − Ti−1 is the time the chain remains in state STi−1 . Let
TK be the sketch’s last modification time before time n.

n =
∑
Ti≤n

(Ti − Ti−1) + (n− TK) (2)

N̂t =
∑
Ti≤n

E(Ti − Ti−1|STi−1) =
∑
Ti≤t

1

q(STi−1)
. (3)

Since the holding time Ti − Ti−1 of a discrete Markov chain
has a Geometric(q(STi−1)) distribution, the estimator is in-
cremented by precisely the expected time it takes before the
sketch is modified.

For convenience, we provide a table of commonly used
symbols in table 1.

2.1.1 Bayesian approach
We also consider a Bayesian approach to estimation. This

leads to subtlely different estimators which are biased but
have slightly stronger optimality guarantees when the car-
dinality is drawn from a Geometric(α) prior. The Bayesian
formulation is also of additional interest when estimating
the error in section 2.2 since the posterior is tractable. The
Bayesian estimate with lowest squared error given the se-
quence of observed sketches is the conditional expectation
given the sketches

n̂Bayes = E(N |ST1 , . . . , STK ,K) (4)

=

K∑
t=1

E(Tt − Tt−1|STt−1) + E(N − TK |STK ,K).

(5)

Interestingly, this gives a slightly different decomposition
than the one for the martingale estimator described by 3.
The additional term E(N − TK |STK ,K) means that the es-
timator is biased even under a uniform prior on N .

Under a Geometric(α) prior on the cardinality N , it is
easy to derive

Tt − Tt−1|STt−1 ∼ Geometric(1− (1− α)(1− qt−1)) (6)

N − TK |STK ,K ∼ Geometric(1− (1− α)(1− qTK)) (7)

where qt = q(STt) and the holding times are conditionally
independent given the sketches. Note that as α → 0 the
prior approaches the improper uniform prior and the con-
ditional distributions simplify to Geometric(q(ST)) for ap-
propriate T . In this case, the estimator is identical to the
martingale estimator except that the Bayesian estimator has
one additional term for the last holding time. The Bayesian
conditional mean estimator is given by

N̂Bayes =

K∑
i=0

1

qi + α(1− qi)
. (8)

2.2 Error estimates
It is possible to maintain an estimate of the error in addi-

tion to keeping an estimate of the cardinality. We estimate
the error using both a martingale approach and a Bayesian
approach and describe the properties of each.

The martingale estimate of the variance gives an unbiased
estimate of the variance, but only at jump times when the
sketch is modified. The quadratic variation 〈Mt〉 of a process
(Mt) is defined to the the sum of its squared increments:

〈Mt〉 =

t−1∑
i=0

(Mi+1 −Mi)
2. (9)

It follows from Doob’s decomposition [5] that if Mt is a
martingale then the quadratic variation process 〈Mt〉 is the
unique predictable process such that M2

t −〈Mt〉 is a martin-
gale. In other words, since EM2

t = Var(Mt), the quadratic
variation process is an unbiased streaming estimate of the
variance.

For the martingale estimator, the quadratic variation con-
ditional on the observed sketches yields an unbiased estimate
of the martingale estimator’s variance at jump times:

V̂ar(N̂Tk) =

k∑
i=1

Var(Ti − Ti−1|qi−1) =

k∑
i=1

1− qi
q2
i

(10)

where the second line uses the fact that the increments
are geometrically distributed and that the variance of a
Geometric(q) random variable is 1−q

q2
,

The reason this estimator is inadequate for estimating the
variance at a fixed cardinality n, is that the increments af-
ter the last jump time involve the unobservable quantity∑n

t=TK+1 12 = (n−TK). We may get around this by apply-
ing a Bayesian argument. Given a uniform prior on n− Tk,
the posterior is given by n − TK ∼ Geometric(qK). This
gives us a slightly modified estimate

V̂ar(N̂) =

k−1∑
i=1

1− qi
q2
i

+
1

qk
. (11)

A fully Bayesian approach is simple to analyze. Under a
Bayesian model with a Geometric(α) prior, all of the hold-
ing times, including the last difference, are independent and
geometrically distributed according to equations 6 and 7.
The variance estimate for the Bayesian estimator at a fixed
cardinality is

V̂ar(N̂Bayes) =

K∑
i=0

1− (qi + α(1− qi)
(qi + α(1− qi))2

(12)

Note that if the estimate is at a stopping time, the Bayesian
estimate for the variance also drops the last term in the

sum. If α = 0 and the estimate is at a jump time, the
Bayesian estimate exactly matches the martingale estima-
tor. However, if the estimate is at a fixed time n, the con-
tribution of the last difference N −TK is 1−qK

q2
K

, the variance

of a Geometric(qK) random variable, rather than 1/qK , the
mean of a Geometric(qK) random variable and the contri-
bution of the last term for the martingale estimator.

3. OPTIMALITY
3.1 Statistical efficiency versus space-complexity

The optimality results in this paper primarily address the
notion of statistical efficiency. Given a sketch construc-
tion which yields a data generating distribution, what is
the estimator with the lowest variance or risk? Much of the
computer science theory literature focuses on optimal space-
complexity. The primary differences between these two no-
tions of optimality are three-fold. First, space-complexity is
concerned with an asymptotic rate while statistical efficiency
is concerned with the exact constant governing the rate. Sec-
ond, statistical efficiency is always analyzed with respect to
a given data generating distribution or the sketch construc-
tion in this case, while optimal space-complexity does not
assume a particular construction. Third, space-complexity
depends on both the estimation method from data and the
encoding of the data while statistical efficiency only deals
with estimation.

Although the method given by [11] has optimal space com-
plexity, it has non-optimal statistical efficiency and a non-
trivial probability of not returning any result whatsoever.
Empirical results [13] show that HyperLogLog has lower er-
ror for the same sketch size. Because of these reasons, we
do not consider finding an optimal algorithm for cardinality
estimation to be a closed problem.

Given the current state-of-the-art in cardinality estima-
tion, statistical efficiency has several advantages as a no-
tion of optimality for practical algorithms. Since any de-
cent statistical estimator for a parametric distribution has
standard deviation on the order of O(1/

√
m) where m is

the number of observations, the asymptotic rate of the stan-
dard deviation is typically meaningless. Statistical efficiency
appropriately addresses the estimation problem while leav-
ing the efficient encoding of the sketch as a separate issue.
Furthermore, methods like HyperLogLog achieve a space-
complexity of O(ε−2 log log n+ logn) compared to the opti-
mal space-complexity O(ε−2 + logn). The log logn term is
effectively constant as 6 bits allows estimation of cardinali-
ties approaching 264. If the log logn is ignored, the space-
complexity matches the optimal one.

3.2 Optimality of the estimators
We establish that both the martingale estimator and its

error estimate are optimal in the sense that they are mini-
mum variance unbiased estimator at jump times. In other
words, no other algorithm can also use the same sketch con-
struction and have lower squared error if it gives an unbiased
estimate. In Bayesian settings, the Bayesian cardinality es-
timators are optimal for both fixed cardinalities and at jump
times when the cardinality is drawn from the prior distribu-
tion.

First, we consider the optimality of the martingale esti-
mators at jump times for an infinite stream of data. Con-
ditional on the sequence of sketches (Si), the increments

Tt+1 − Tt|(Si) are independent random variables. This im-
plies that the estimator n̂T at a jump time T is the true
conditional mean of the jump time given the sequence of
sketches, and the martingale estimator of the variance is
the true conditional variance. Hence, they are the optimal
unbiased estimate under mean squared error. By the same
reasoning, the variance estimate for the martingale estima-
tor is also optimal at jump times. In the fixed n case, we are
not able to prove that the estimator is a minimum variance
unbiased estimator for fixed n.

In the Bayesian case, when the cardinality is a draw from
the prior distribution, the Bayesian posterior mean is always
optimal since it is the minimizer of squared error. However,
it is biased, and an appropriate prior distribution is gener-
ally not known. For the same reason, the variance estimate
for the Bayesian estimator is also optimal under these con-
ditions.

4. EXISTING METHODS AND THEIR
STREAMING COUNTERPARTS

The previous section presented universal estimators of the
cardinality and error for any Markov chain of sketches. In
this section, these estimators are applied to existing sketch
constructions. HyperLogLog [8] and Min-count [9] are de-
scribed and their streaming counterparts are derived using
the martingale estimator. We also describe the S-bitmap
streaming algorithm which already uses a martingale esti-
mator and show that the martingale estimator for Linear
Probabilistic Counting is nearly identical to the original non-
streaming version. Furthermore, we show that the martin-
gale estimator is optimal in non-streaming settings as well.

4.1 HyperLogLog
The HyperLogLog algorithm [8] estimates the cardinality

based on the Flajolet-Martin (FM) sketch. The sketch is an
integer valued m-vector Si = (Si1, ..., Sim). The sketch is
highly compact since each vector entry may be represented
in Op(lg lg(n/m)) bits. For the FM-sketch, each element Xi

is translated into a random pair

Xi → f(Ui) = (Mi, Yi)

Mi ∼ Uniform([m])

Yi ∼ Geometric(1/2).

The sketch updates bin Mi by taking the max of the current
value in the bin and the new value Yi

Si,j =

{
max{Si−1,j , Yi} if j = Mi

Si−1,j else
.

Sketch Si is updated in one time step with probability

q(Si) =
1

m

m∑
j=1

P (Yi > Sij) =
1

m

m∑
j=1

2−Sij . (13)

The HyperLogLog estimator is N̂hyperloglog = α/q(Sn) where
Sn is the final sketch and α is an appropriate constant to cor-
rect for bias. Section 6.4 show that this modification yields
a reduction in the variance by a factor of ≈ 1.56.

4.2 Min-count
Giroire’s Min-count algorithm [9] maintains the mth-order

statistics of the observed sample. In other words, it keeps
the m smallest elements in the sample. Let S(m) denote the

mth smallest element in S. Without loss of generality, as-
sume the hashed values are distributed Uniform(0, 1). The
probability a sketch Si is updated by a new element is

q(Si) = S
(m)
i . (14)

Like HyperLogLog, the non-streaming Min-count estimator
of the cardinality is only a function of the final update prob-
ability q(Sn) of the final sketch. The estimator is given by

N̂
(mincount)
n = m−1

q(Sn)
. This estimator is provably optimal

[3] when only the final sketch is observed. However, section
6.2 shows that the streaming estimator provably beats this
optimal estimator.

4.3 Linear probabilistic counting
The Linear Probabilistic Counting algorithm (LPCA) [15]

uses a simple bitmap as a sketch. Each item in the data
stream is hashed to a bit, and that bit is set if it is not al-
ready. This algorithm is poor for large counts, as it requires
space roughly linear in n. If Bt is the total number of bits
set at time t, then the probability of transitioning out of the
current state is q(St) = 1−Bt/m. In this case, the martin-
gale estimator has a simple analytic expression. This may
be compared to the usual LPCA estimator.

N̂ (Harmonic)
n =

Bn∑
i=1

m

m− i = m(Hm −Hm−Bn) (15)

N̂ (LPCA)
n = −m log

(
1− Bn

m

)
(16)

where Hi denotes the ith harmonic number. Since log i ≈
Hi, the LPCA estimator is a very good approximation to
the martingale estimator.

The martingale estimator is, in fact, provably optimal for
both streaming and non-streaming cases. Since the estima-
tor is a function of the number of bits set, Bn, in the final
sketch and the sketch is not affected by the order in which
elements are encountered, it is applicable in non-streaming
settings. Furthermore, Bn uniquely determines the likeli-
hood function, and hence, is a minimal sufficient statistic.
Since the martingale estimator is an unbiased estimator and
a function of a minimal sufficient statistic, the Rao-Blackwell
theorem states that it is a minimum variance unbiased esti-
mator [2].

4.4 S-bitmap
The S-bitmap algorithm also uses a simple bitmap as

a sketch. The special property of the S-bitmap is that
the relative error of the cardinality estimate defined to be√

Var(N̂)/N is constant over a chosen range. Like LPCA,

the S-bitmap is highly efficient for smaller cardinalities. Ta-
ble 2 in [4] shows that it often requires less space to achieve
a desired error for cardinalities up to 107. One downside of
the S-bitmap is that it is not applicable to distributed set-
tings because the value of sketch Si depends on the order in
which the distinct elements are observed.

The derivation of the S-bitmap directly chooses transition
probabilities q(Si) that yield a constant relative root mean
squared error.

Xi → (Mi, Ui)

Mi ∼ Uniform([m])

Ui ∼ Uniform(0, 1)

The sketch is updated by setting bit Mi if that bit is empty
and Ui > c(Bi−1) for a carefully chosen cutoff function c that
is monotonically increasing. The cutoff function is chosen in
a manner that ensures that the relative error is constant up
to the capacity of the sketch. This update process is further
illustrated in section 5 and figure 2.

The S-bitmap estimator is identical to the martingale es-
timator. Like LPCA, the estimator is purely a function of
the number of positive bits Bn in the final sketch, and Bn is
a minimal sufficient statistic. Thus, the S-bitmap estimator
is an optimal streaming estimate.

5. AREA CUTTING PROCESSES: A GEO-
METRIC INTERPRETATION

So far, this paper has shown how the theory of Markov
chains and martingales lead to cardinality estimators and
their properties. We now give a geometric interpretation of
sketch constructions via the area cutting process. This pro-
cess is universally applicable as it can describe any sketch
for counting distinct elements which is not affected by du-
plicates. It is useful as it can be used to create new sketches
as well as to analyze existing ones.

Consider a Markov process that cuts out sections of a unit
square. At each time step, a point is uniformly drawn from
the unit square. Rather than hashing to a single random
variable, hash each element to a pair of independent uni-
forms, Xi → (Ui, U

′
i). If that point falls on a portion of

the square that has already been cut off, then do nothing.
Otherwise, apply a deterministic procedure to cut off some
section of the square that contains that point. It is easy to
see that a duplicated point cannot induce more than one cut,
so the sketch is not affected by duplicates and approximate
for counting distinct items. The probability of an update at
step i is equal to the remaining uncut area Ai.

Theorem 3. All sketches that are not affected by dupli-
cates have a representation as an area cutting process when-
ever the universe from which elements are drawn is measure-
able.

Proof. The uncut area is simply the measure of the re-
maining elements which can affect the sketch.

Theorem 4. The area process forms a sufficient statistic
for the unknown cardinality n.

Proof. Write down the log-likelihood of the process. The
only terms that depend on the holding times Ti − Tj are
functions of the area.

Together with the likelihood and sufficiency principles [14],
theorems 3 and 4 say that for any sketch construction, all
information that is useful for estimating the cardinality is
contained in the area process. More specifically, the Rao-
Blackwell theorem [2] states that if n̂ is an unbiased esti-
mator and the sequence of areas (ATi) is a sufficient statis-
tic, then E(n̂|AT1 , AT2 , . . . , An) has variance no worse than
n̂. Formally, this means that any estimator which is not a
function of the area process can be improved by turning it
into a function of the area process by taking the conditional
mean.

5.1 Existing methods as area cutting processes
To illustrate the area cutting process, we describe several

existing sketch constructions as area cutting processes.

Figure 1: Pictoral representation of the Discretized Max-
count (top) and FM (bottom) sketch. The + signs represent
distinct items that are hashed uniformly to the rectangle. As
each point is placed on the rectangle, shade an area covering
the point if it is not already shaded. The shaded area rep-
resent the areas that are cut out of the sketch. New points
that land in a shaded region do not affect the sketch. For
the Discrete Max-count sketch, everything to the left of the
cutoff is shaded regardless of whether or not a point falls in
a particular box.

5.1.1 Hyperloglog
First, consider a continuous process corresponding to the

FM-sketch used in HyperLogLog. Divide the unit square
into m horizontal strips of equal size. The point (Ui, U

′
i)

picks out a strip which contains the point and then cuts off
everything to the left of Ui within that strip. At any given
time, the remaining area in strip j is equal to the one minus
the maximum of the Ui that fall into that strip.

A discretization of this continuous process leads to the
FM-sketch. For each horizontal strip, divide it along the
vertical axis into intervals [2v, 2v−1) indexed by the expo-
nent v. Rather than store the exact location Zj of the
maximum element in the strip, store the exponent of the
interval it belongs to. Equivalently, store b− lgZjc. Since
b− lgUic ∼ Geometric(1/2) when Ui ∼ Uniform(0, 1), this
is equivalent to taking the maximum of Geometric(1/2) ran-
dom variables. Figure 1 illustrates this sketch as an area
cutting process.

5.1.2 Min-count
The Min-count sketch is even simpler to visualize as an

area cutting process. Instead of a unit square, the process
cuts a unit interval. Everything greater than the mth sample
is cut off. Note that each of the m samples that are stored
also cut off the exact location of the unit interval on which
it falls. That prevents duplicates from affecting the sketch.
However, those locations form a set of measure 0 since two
independent Uniform(0, 1) variables are equal with proba-
bility 0. This also highlights the primary weakness of the
Min-count algorithm. In order to have enough precision to
treat each sample as occupying an area of 0 measure, each
sample requires many bits to store.

5.1.3 Linear probabilistic counting
Divide the unit square into m uniform vertical strips. Let

each item in the stream hash to a uniformly distributed point
on the square. Cutting out the vertical strip that an item
falls into is equivalent to setting that bit. Figure 2 illustrates
the difference between the S-bitmap and LPCA sketch.

Figure 2: Pictoral representation of the (top) S-bitmap,
(bottom) LPCA. Both share the same set of items that are
hashed uniformly on the rectangle, but each cuts out a dif-
ferent area. Each vertical cut or equivalently, each bit that
is set, results in a horizontal cut as well. Due to this, the
S-bitmap sketch has fewer bits set and more remaining ca-
pacity.

5.1.4 S-bitmap
The area cutting process for the S-bitmap sketch is similar

to the LPCA sketch. In addition to cutting a vertical strip
out, every update to the square also cuts out an additional
horizontal strip. Figure 2 illustrates this process. By cutting
out a larger area with each bit, the capacity of the sketch is
increased by extending the time until the next bit is set.

5.1.5 Virtual and Multiresolution bitmap
The virtual bitmap counting algorithm is the same as

LPCA except that with probability 1 − α an element is
hashed to a null bucket and does not update the sketch.
This is equivalent to starting with 1 − α of the unit square
already cut out and dividing the remaining area into m ver-
tical strips like linear probabilistic counting. This allows the
sketch to work for larger cardinalities at the cost of worse
estimation for smaller cardinalities. The unbiased martin-
gale estimator is simply 1/α times the martingale LPCA
estimator.

The multiresolution bitmap [6], covers a range of cardinal-
ities effectively by using multiple virtual bitmaps. Similarly
to all the other bitmap based sketches, it cuts out vertical
strips corresponding to the bin each element hashes to. The
difference between the multiresolution bitmap and virtual
bitmap is that for the multiresolution the strips have vary-
ing widths.

5.1.6 Adaptive sampling
Adaptive sampling is a method similar to Min-count pro-

posed by Wegman and analyzed by Flajolet [7]. Rather than
always keeping a fixed number of samples m, adaptive sam-
pling specifies a maximum number of samples. Whenever
the maximum is exceeded, half of the remaining area is cut
off, and the samples that fall below the cutoff are kept.

The adaptive sampling estimator is illustrative of the dif-
ference between traditional estimators and the martingale
estimator. The usual estimator for adaptive sampling is k/p
where p is the remaining area in the sketch. Each item stored
in the sketch equally adds 1/p to the estimate. For the mar-
tingale estimator, the estimator is

∑
x

1
px

where the sum is
over all points that updated the sketch, including ones not

stored in the final sketch, and px is the sampling probability
or area at the time of adding x.

5.2 Creating new sketches: Discrete Max-count
In addition to better understanding of existing sketches,

the area cutting process also leads to other sketches that
may be used in approximate counting. The primary weak-
ness of the Min-count algorithm is the number of bits re-
quired per sample stored, since each sample is a real num-
ber. We present the Discrete Max-count sketch which is a
simple modification of the Min-count sketch that allows the
sketch to be stored more efficiently. The Max-count sketch
is obtained by hashing each distinct element to a discrete
distribution F and taking the largest m values. The distri-
bution F may be used as a tuning parameter which yields
improves accuracy for targeted ranges of cardinalities. Note
that when the distribution F is continuous, there is effec-
tively no difference from the usual Min-count algorithm since
F is monotonically increasing and F (X) ∼ Uniform(0, 1)
when X ∼ F . Thus, the Min-count sketch is obtained by a
simple variable transformation. We consider the case when
the discrete distribution is Geometric(1/m).

Under this distribution, Discrete Max-count has several
interesting properties. First, it has infinite capacity since
it can estimate arbitrarily large cardinalities. Second, the
sketch may be decomposed into an offset which grows as
O(logn) with the number of distinct elements encountered
and a set of samples which does not grow with n. Third, the
relative error of the algorithm is O(1/

√
m). Together this

gives the sketch a space complexity of O(logn + ε−2g(ε))
where g is some function and ε is the relative error. If g
is bounded by a constant, the sketch would have optimal
space-complexity. Section 6.3 shows that g(ε) may be upper
bounded by log ε using a naive encoding of the samples. We
also note that there is no interaction between the relative
error ε and n in the space complexity bound. Kane et al
[11] give an extensive list of space complexities for distinct
counting algorithms. Only their theoretically optimal but
empirically impractical [13] algorithm has this property.

We present the main tool to analyze this process, the no-
tion of self-similarity, and give a dense set of proofs justifying
these claims. An analysis of the method’s running time is
deferred to section 7.

6. SELF-SIMILAR AREA CUTTING
We introduce the notions of an offset decomposition and

self-similarity for area cutting process. Consider a sequence
of sketches St with areas q(St) and jump times Ti. An area

process is defined to be self-similar if q(STi)/q(STi+j)
d
=

q(S0)/q(STj) for all i > j. In other words, it is self-similar
when the proportion of the area cut out by j jumps re-
mains the same in distribution over time. An area process
is strongly self-similar if, in addition, the relative area cut
off by a jump q(ST)/q(ST−1) is independent of q(ST−1). If
an area cutting process can be written as an offset ∆t and a
set of samples Yt so that there is a bijection between St and
(∆t, Yt) and there exist functions q0, q1 such that for all t

q(St) = q0(∆t)q1(Yt)

Yt is independent of ∆t and q1(Yt)
d
= q1(Y1)

then (∆t, Yt) is an offset decomposition of the area cutting
process. An offset decomposition is (strongly) self-similar if

the offset area q0(∆t) is (strongly) self-similar and a process
is a decomposable area cutting process if a non-trivial self-
similar offset decomposition exists. When 0 ≤ q0, q1 ≤ 1,
the decomposition conditions state that the area may be
obtained by first cutting off an area specified by the offset
∆t and then independently cutting off part of the remaining
area specified the samples Yt. The condition also implies
that the samples Yt do not carry information about the car-
dinality since the distribution of Yt does not depend on t.
However, the samples do contain information that prevents
double counting of duplicates.

The Min-count sketch is an example of a strongly self-
similar area cutting process once at least m items have been
encountered. The offset is equal to the mth smallest item

S
(m)
t , and the samples are the remaining items in the sketch

scaled by S(m). These rescaled samples are independent
Uniform(0, 1) and independent of the offset. The propor-
tion of area remaining after another cut is the maximum of
these samples and a new independent Uniform(0, 1) vari-
able. This maximum is alwaysBeta(m, 1) distributed. Hence,
the remaining proportion is independent of the offset, and
its distribution does not change over time.

These self-similarity conditions lead to several attractive
properties. Strong self-similarity ensures that a sketch has
infinite capacity if the offset cannot cut off all the area, and
it allows the variance of the martingale estimator to be com-
puted exactly. An offset decomposition ensures that the size
of the sketch is well-controlled. These properties are proved
in the following theorems.

Theorem 5. The size required to store the samples Yt of
any offset decomposition does not depend on the cardinality
n. Furthermore if the remaining area q(∆t, Yt) > 0 for all
t almost surely, then the sketch can give unbiased estimates
for arbitrarily large cardinalities almost surely.

Proof. The size required to store the samples Yt is purely
a function of the conditional distribution Yt|∆t Since Yt is
independent of ∆t and the marginal distribution of Yt is
the same for all t, the storage requirement for Yt does not
depend on n or ∆t. If the remaining area is always greater
than 0 then the martingale estimator will give an unbiased
estimate for any cardinality.

Theorem 6. For any area cutting process with an offset
decomposition (∆t, Yt), the variance of the martingale esti-
mator is

Var(N̂n) =
n∑

t=1

(
E
(

1

q0(∆t−1)

)
E
(

1

q1(Y1)

)
− 1

)
(17)

Proof. Consider the increments of the quadratic vari-
ation process for the martingale estimator. The expected
squared increment for the tth distinct item is 1

q(St)2
q(St)(1−

q(St)) = 1/q(St)−1. The rest follows from the independence
of ∆t and Yt and the product form for the area.

Theorem 7. For any strongly self-similar offset decom-
position, 1/q0(∆t) − ct is a martingale for some constant
c. The variance of the martingale estimator has an analytic
form given by

Var(N̂n) = n

(
E 1

q0(∆0)
+ c

n− 1

2

)
E 1

q1(Y1)
− n (18)

≈ n2r

2
E(q1(Y1))E(q1(Y1)−1) (19)

where r =
(
E q0(∆T−1)

q0(∆T)
− 1
)

.

Proof. Note that 1
q0(∆t+1)

= 1
q0(∆t)

q0(∆t)
q0(∆t+1)

and that

the two terms on the right hand side are independent con-
ditional on t + 1 being a jump time. Applying the law of
total probability on t+ 1 being a jump time with probabil-
ity q0(∆t)q1(Yt), it is easy to show that 1/q0(∆t) − ct is a
martingale with c = rEq1(Y1). The variance follows from
equation 17.

This theorem shows how the two components of an off-
set decomposition affects the variance of the estimate. The
estimates are more accurate if the expected proportion r
that is cut off is small and if the expected area cut off by
the sample has low variance. This may be seen from apply-
ing the delta method to obtain E(1/q1(Y1)) ≈ 1/Eq1(Y1) +
Var(q1(Y1))/(Eq1(Y1))2. Furthermore, this gives a simple
method to compute a closed form estimate of the error.
Compute r,E(q1(Y1)−1), and Eq1(Y1) analytically or via sim-
ulation and plug those values into equation 19.

6.1 Non-streaming estimators
Another consequence of theorem 7 is that a strongly self-

similar decomposition leads to an unbiased estimator in non-
streaming settings. Since 1/q0(∆t)− ct is a martingale,

N̂ (batch)
n =

1

c

(
1

q0(∆n)
− 1

q0(∆0)

)
(20)

is an unbiased estimator that only depends on the final
sketch Sn and a known initialization condition ∆0. Note
that the samples Yn do not appear in the estimator. Since
the distribution of Yt does not depend on t and is indepen-
dent of ∆t, it is an ancillary statistic.

The variance of this estimator may be analyzed in the
same manner as showing 1/q0(∆t)− ct is a martingale. Let

κ = E q0(∆T−1)2

q0(∆T)2
− 1 for a stopping time T .

E
(

1

q0(∆t+1)2
|q0(∆t)

)
=

1

q0(∆t)2
E
(

q0(∆t)
2

q0(∆t+1)2

)
(21)

=
1

q0(∆t)2
+
κEq1(Y1)

q0(∆t)
(22)

Recursing and using the non-streaming estimator to com-
pute E1/q0(∆t) yields that the variance of the non-streaming
estimator is approximately

Var(N̂ (batch)
n) ≈

(κ
2c
− 1
)
n2. (23)

6.2 Streaming versus Non-streaming Min-count
For Min-count, the optimal non-streaming estimator as

well as its variance are known. Since it yields a strongly self-
similar area cutting process, the variance of the martingale
estimator is also known. The optimal non-streaming estima-
tor [3] is m−1

∆t
. Since ∆t ∼ Beta(m, t−m+1), the estimator

has variance (t−m+1)t
m−2

≈ t2/(m − 2). By equation 19, the

martingale estimator has asymptotic variance t2

2(m−1)
. The

streaming estimator easily beats the optimal non-streaming
estimator and achieves the same error with half the num-
ber of samples. Furthermore, the non-streaming estimator
in equation 20 is the same as the optimal non-streaming
estimator, and the variance estimate converges to the true
variance as m→∞.

6.3 Analysis of Discrete Max-count

Theorem 8. Discrete Max-count converges almost surely
to an area cutting process with a strongly self-similar decom-
position.

Proof. Let ∆t be the mth largest element S
(m)
t in the

sketch and Yti = S
(i)
t − S

(m)
t . By the memoryless property

of the geometric distribution, ∆t and Yt are independent,
and this is an offset decomposition once the sketch contains
at least m items. The proportion of area cut off by the
offset q(ST)/q(ST−1) is the minimum of the samples YTi−1

and the newly observed value h(XT) −∆T−1 which is also
independent of ∆T−1 by the memoryless property. Hence,
the offset area process q0(∆t) is strongly self-similar.

The self-similarity property aids in upper bounding the
variance and space-complexity of the algorithm. Since Dis-
crete Max-count converges to a process with a strongly self-
similar decomposition, the asymptotic variance isO(r) where
r is defined in theorem 7. The number of strips cut off by the
offset at jump time T is obtained by taking the minimum
of the samples YT−1 along with the newly observed value
XT −∆T−1. It may be upper bounded by taking the min-
imum of m independent Geometric(1/m) variables rather
than m unique Geometric(1/m) variables. The probabil-
ity that the minimum of m independent Geometric(1/m)
random variables is at most i is 1 − (1 − 1/m)im. This is
the distribution function of a Geometric(1 − (1 − 1/m)m)
variable. Using the moment generating function for the geo-
metric distribution gives that r < 1

m
1

(1−(1−1/m)m)(1−1/m)
≈

1
m

1−e−1

≈ 1.58/m. The term γ = Eq1(Y1)E(q1(Y1)−1) trivially

satisfied the inequality 1 < γ < 1/(1 − 1/m)m+1 ≈ e. Em-
pirically, we find that γ ≈ 1 for a range of m ∈ [100, 10000].
This provides an both an approximate upper bound for the
variance of 1.58n2/m and proves that the relative error is
order O(1/

√
m).

The space complexity of the sketch may be analyzed by
considering the size required for the offset ∆t and for the
samples Yt. In a naive encoding of the samples, each sample
is encoded as a difference from the offset, and the number of
bits required for each sample is on the order of log(m)/ log(1−
1/m) ≈ m logm = O(ε−2 log ε) where ε is the relative error.
Naively encoding the offset as an integer requires O(m logn)
space due to the fine granularity of the discretization. How-
ever, the non-streaming estimator in equation 20 demon-
strates that the offset is close to a function of the cur-
rent estimate. The offset may be encoded as a difference
from this expectation. Equations 19 and 23 establish that
1
c

(
1

q0(∆n)
− 1

q0(∆0)

)
have mean n and variance O(n2m).

Note that q0(∆n) = (1 − 1/m)∆n is smooth. A simple
Chebyshev bound and Taylor expansion yields that ∆0 −
m log N̂n = Op(n

√
m). In other words, the offset may be

stored in Op(logn + log ε) bits. This gives the space com-
plexity of Discrete Max-count to be O(logn+ ε−2 log ε).

6.4 Analysis of Streaming HyperLogLog
A trivial decomposition for any area cutting process al-

ways exists where the samples Yt = {}. Theorem 6 gives
that the variance that is approximately the sum of expected
reciprocal areas. Since HyperLogLog estimates the cardinal-
ity in terms of the reciprocal area, N̂hll = αmm/q(St) where

●

●

●

●

● ●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

● ● ●
●

●
● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ●

●

●
●

●

●

●

●

●
●

●

●
●

●
● ● ● ● ● ●

● ● ●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ●
● ●

●
●

●

●
●

● ●
●

●
● ● ● ●

● ● ● ●
●

● ● ● ● ● ●
● ● ● ● ● ●

●
●

● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ●
●

●
●

●

●
●

●

●

●

●
●

● ●
●

● ● ●
● ● ● ● ● ● ●

● ●
● ● ● ● ● ●

● ●

●
●

● ●

●

●

●

●

● ●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ●
● ●

●
●

●

●

●

●

●
●

●
● ●

●
● ● ● ●

● ● ● ●
● ●

● ●
●

●
●

● ● ●

●
● ● ●

●
● ● ●

●
●

●
● ● ●

●
●

●

● ● ● ●

● ● ● ● ● ●

● ● ● ● ●

●

●

●

●

● ●

●

●

●
● ● ●

●
● ● ●

● ●
●

●
●

●
● ● ●

● ● ●
●

● ●
● ● ● ●

● ● ● ● ●
●

● ●

●
●

●

●

●
●

●
● ●

● ● ●
● ● ●

● ● ● ●

● ●
● ●

● ● ●

size=128 size=2048

size=512 size=8192

0.06

0.07

0.08

0.09

0.10

0.0125

0.0150

0.0175

0.0200

0.0225

0.025

0.030

0.035

0.040

0.045

0.050

0.006

0.008

0.010

0.012

1e+03 1e+05 1e+07 1e+03 1e+05 1e+07

1e+03 1e+05 1e+07 1e+03 1e+05 1e+07
True cardinality

R
el

at
iv

e
er

ro
r

method

●

●

●

Streaming
Discrete
Max−count

HyperLogLog

Streaming
HyperLogLog

Figure 3: Relative error plot with size number of bins. Both
streaming methods beat HyperLogLog over the entire range
of cardinalities.

αm = 0.7213/(1 + 1.079/m) for m ≥ 128, substituting n for

N̂hll gives the plug-in estimate

Var(N̂ (SHLL)
n) ≈ 1

αmm

n(n+ 1)

2
− n ≈ 1

1.4426m
n2. (24)

By comparison, the estimated variance for HyperLogLog

is 1.042

m
n2. In other words, HyperLogLog is predicted to

use approximately 1.4426 × 1.042 ≈ 1.56 times the space
of Streaming HyperLogLog to achieve the same error. This
matches extremely closely to our empirical evaluation where
we found that Streaming HyperLogLog’s variance bested
HyperLogLog’s by a factor of 1.57.

7. EXPERIMENTAL EVALUATION
The streaming cardinality and error estimates are empir-

ically validated using both simulations and a real dataset.
For all the simulations a 64 bit hash is used. A stream of
107 distinct elements is passed through each method and
both cardinality and error estimates are obtained at regu-
lar intervals on a log scale. This is repeated 5 × 105 times
for each method, and the results are averaged. The meth-
ods considered are HyperLogLog, Streaming HyperLogLog,
and Streaming Discrete Max-count with a Geometric(1/m)
discretization.

To evaluate each method, we compare the relative error
and effective bits per sample which are defined as

RelError(N̂n) =
1

n

√
E(n− N̂n)2

meffective = RelError(N̂n)−2

BitPerSample(N̂n) =
sizesketch
meffective

.

The definition of the effective sample size meffective is moti-
vated by the fact that for many approximate counting meth-
ods including HyperLogLog, the relative error is approxi-
mately 1/

√
m.

Note that the effective bits per sample is tied to the en-
coding of the sketch. For HyperLogLog, a typical imple-
mentation of the sketch which allocates five bits per bin is
used. For Discrete Max-count, the sketch is encoded in three
parts: the offset which is stored as an integer, a bitmap with

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●

●●
●

●
●

●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●

●
●

●

●

●

●●
●●●

●●●●●●●●●●●●●●●
●●●●●●

●●

●●●●●●
●

●
●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●

●

●

●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●

●
●

●
●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●
●

●

●

●

●

●
●

●
●●●●

●
●●●

●
●

●●●●

●
●

●
●●●●

●●●●●●
●●●●●

●

●

●

●

●●

●

●
●

●●●
●

●●●
●●

●

●
●

●
●●●

●●●
●

●●●●●●●●●●●●●●
●

●
●

●
●●

●●●●●●●●●●●●●
●●●●

●●●

size=128 size=2048

size=512 size=8192

0

2

4

6

8

0

2

4

6

8

1e+03 1e+05 1e+07 1e+03 1e+05 1e+07
True cardinality

Bi
ts

 p
er

 e
ffe

ct
ive

 s
am

pl
e

method

●

●

●

Streaming
Discrete
Max−count

HyperLogLog

Streaming
HyperLogLog

Figure 4: Effective bits per sample with size number of
bins. For small sketches, Discrete Max-count outperforms
both HyperLogLog based methods and requires half the size
of HyperLogLog. For larger sketches, the encoding used by
Discrete Max-count requires O(logm) bits per bin which
results in worse performance for larger sketches.

2m bits, and a sorted array of values above the offset plus
2m. Each value in the array uses dlog2 max v − 2me bits
where the max is taken over values in the array. We note
this is not an optimal encoding of Discrete Max-Count, but
it provides an upper bound on the optimal bits required
per sample. In this case, the amortized running time of the
method is Op(n logm + m logm logn). Each distinct ele-
ment requires O(logm) time to search through the sorted
array, and each update requires O(m logm) time. There are
Op(logn/ log(1− 1/m)) = Op(m logn) updates.

In addition to simulated data, the methods are evaluated
on an anonymized Facebook test dataset. The sample con-
tains 50 million rows containing approximately 1 million dis-
tinct users. To obtain accurate estimates of the relative er-
ror, each algorithm is run 4000 times with a randomly salted
hash for each run. Figure 5 shows that the results on the
dataset match the simulation.

8. DISCUSSION AND FUTURE WORK
There remain several questions of interest in this paper.

In particular, questions about the space-complexity of these
methods and the encoding used for each sketch remain. The
ideas behind the self-similar area cutting processes and the
decomposition into an offset ∆t and set of samples Yt leads
to the Discrete Max-count sketch and space-complexities
that only depend on the cardinality n through a counter.
However, the encoding of the samples Yt used in this paper
has a space-complexity of O(ε−2 log 1/ε) rather than a rate
of O(ε−2) to obtain the optimal space-complexity. Like-
wise, the FM-sketch yields a self-similar area cutting pro-
cess. However, in the formulation of the process in section
6.4 the offset requires storage that grows at a rate greater
than the optimal rate. We also conjecture that there are
alternate decomposition of the FM-sketch into an offset and
samples along with an encoding that yields optimal space-
complexity. One possible offset is to take the median value
of the bins.

●

●

●

● ● ●
●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●
●

●

●
● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

● ●

●
●

●
● ●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●
●

●
●

size=2048

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

1e+03 1e+05
True cardinality

Re
lat

ive
 e

rro
r method

●

●

●

Streaming
Discrete
Max−count

HyperLogLog

Streaming
HyperLogLog

size=2048

0.94

0.96

0.98

1e+03 1e+05 1e+07
True cardinality

C
o
ve

ra
g

e

method
Streaming
Discrete
Max−count
HyperLogLog
Streaming
HyperLogLog

Coverage of 95% CIs

Figure 5: The left figure shows results on real data match
the simulations. The right figure shows that the error esti-
mates yield confidence intervals with the correct asymptotic
coverage. HyperLogLog has worse coverage in an interme-
diate region due to bias. Bias corrected HyperLogLog [10]
may improve on the observed coverage; however, the bias
corrected method does include any improved estimates of
the variance.

Another problem that remains is how to exploit the in-
formation in individual sketches that are merged. This may
occur because the sketches are computed in a distributed
fashion or because the cardinality of interest is the union of
several sets with precomputed sketches. Although both Hy-
perLogLog and Discrete Max-count have sketches that can
be merged. Their estimators either only use the information
contained in the final merged sketch or require access to the
complete stream and cannot use precomputed sketches.

Another unexplored area is the effect of discretization
on the underlying continuous area cutting process. Hyper-
LogLog uses the Geometric(1/2) distribution for discretiza-
tion while Discrete Max-count uses the Geometric(1−1/m)
distribution. The discretizations lead can lead to different
operating ranges as well as a different numbers of bits re-
quired per stored sample. The tradeoff between sketch size
and accuracy due to discretization is not well-understood.

9. CONCLUSION
This paper presents a recipe for constructing practical al-

gorithms that probabilistically estimate the number of dis-
tinct elements in a stream of data as well as the error of
the estimate. These streaming algorithms provably outper-
form optimal non-streaming methods and yield substantial
improvements in the storage requirements to obtain a de-
sired relative error. This is born out in both theoretical and
empirical results which show that HyperLogLog requires 50
percent more space than Streaming HyperLogLog to achieve
the same error and Min-count requires twice as much space
as Streaming Min-count.

We also provide a geometric interpretation to all sketches
for distinct counting via the area-cutting process. Existing
methods such as HyperLogLog, LPCA, and the S-bitmap
are described via this process. This interpretation provides a
link between different discretizations yielding different sketches
and a common continuous area cutting process. Further-
more, we introduce the notion of decomposable self-similar
area cutting process. Such processes have notable proper-
ties including infinite capacity and an encoding in which
the sketch may be separated into two components, an off-
set which depends on the cardinality n and a set of samples

whose the size depends only on the accuracy ε. This has in-
teresting implications for the space-complexity of methods.

The proposed algorithms are analyzed under both fre-
quentist and Bayesian settings. The cardinality estimators
are proven to be optimal in various settings. In particu-
lar, the proposed martingale estimator is proven to be unbi-
ased and optimal when queried immediately after a sketch
is modified by an element in the stream. As a simple con-
sequence of the analysis, we also give a provably optimal,
unbiased estimator for the LPCA sketch which applies in
both streaming and non-streaming settings.

These contributions lead to multi-faceted advances in sketch
construction, cardinality and error estimation, theory, and
intuition for the problem of approximate counting of distinct
elements for both the streaming and non-streaming cases.

10. REFERENCES
[1] K. Aouiche and D. Lemire. A comparison of five

probabilistic view-size estimation techniques in olap.
In DOLAP, 2007.

[2] G. Casella and R. L. Berger. Statistical inference.
Duxbury Press Belmont, CA, 2001.

[3] P. Chassaing and L. Gerin. Efficient estimation of the
cardinality of large data sets. DMTCS Proceedings,
pages 419–422, 2006.

[4] A. Chen, J. Cao, L. Shepp, and T. Nguyen. Distinct
counting with a self-learning bitmap. Journal of the
American Statistical Association, 106(495):879–890,
2011.

[5] R. Durrett. Probability: theory and examples,
volume 3. Cambridge university press, 2010.

[6] C. Estan, G. Varghese, and M. Fisk. Bitmap
algorithms for counting active flows on high speed
links. In Internet Measurement Conference, 2003.

[7] P. Flajolet. On adaptive sampling. Computing,
43(4):391–400, 1990.

[8] P. Flajolet, É. Fusy, O. Gandouet, F. Meunier, et al.
Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. In AofA, 2007.

[9] F. Giroire. Order statistics and estimating
cardinalities of massive data sets. Discrete Applied
Mathematics, 157(2):406–427, 2009.

[10] S. Heule, M. Nunkesser, and A. Hall. Hyperloglog in
practice: Algorithmic engineering of a state of the art
cardinality estimation algorithm. In EDBT, 2013.

[11] D. M. Kane, J. Nelson, and D. P. Woodruff. An
optimal algorithm for the distinct elements problem.
In PODS, 2010.

[12] A. Metwally, D. Agrawal, and A. E. Abbadi. Why go
logarithmic if we can go linear?: Towards effective
distinct counting of search traffic. In EDBT, 2008.

[13] J. Rae. Data stream cardinality: An empirical study
of theoretically optimal algorithms. Master’s thesis,
University of Bristol, 2012.

[14] C. Robert. The Bayesian Choice: From
Decision-Theoretic Foundations to Computational
Implementation. Springer Texts in Statistics. Springer,
2001.

[15] K.-Y. Whang, B. T. Vander-Zanden, and H. M.
Taylor. A linear-time probabilistic counting algorithm
for database applications. TODS, 1990.

