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ABSTRACT

Continuous deployment is the practice of releasing software
to production as soon as it is ready. It is receiving widespread
adoption in industry and has numerous perceived advan-
tages including (i) lower risk due to smaller, more incremen-
tal changes, (ii) more rapid feedback from end users, and
(iii) better ability to respond to threats such as security vul-
nerabilities.

The frequency of updates of mobile software has tradition-
ally lagged the state of practice for cloud-based services. For
cloud-based services, changes can be released almost imme-
diately upon completion, whereas mobile versions can only
be released periodically (e.g., in the case of i0S, every two
weeks). A further complication with mobile software is that
users can choose when and if to upgrade, which means that
several different releases coexist in production. There are
also hundreds of Android hardware variants, which increases
the risk of having errors in the software being deployed.

Facebook has made significant progress in increasing the
frequency of its mobile deployments. In fact, over a pe-
riod of 4 years, the Android release has gone from a deploy-
ment every 8 weeks to a deployment every week. In this
paper, we describe in detail the mobile deployment process
at FB. We present our findings from an extensive analysis
of software engineering metrics based on data collected over
a period of 7 years. A key finding is that the frequency of
deployment does not directly affect developer productivity
or software quality. We argue that this finding is due to the
fact that increasing the frequency of continuous deployment
forces improved release and deployment automation, which
in turn reduces developer workload. Additionally, the data
we present shows that dog-fooding and obtaining feedback
from alpha and beta customers is critical to maintaining re-
lease quality.

Elisa Shibley

University of Michigan
2260 Hayward Street
Ann Arbor, Ml 48109

eshibley@umich.edu

Tony Savor

Facebook Inc.
1 Hacker Way
Menlo Park, CA 94025

tsavor@fb.com

Shi Su

Carnegie Mellon University
PO Box 1
Moffett Field, CA 94035

shis@andrew.cmu.edu

Michael Stumm

University of Toronto
10 Kings College Rd
Toronto, Canada M8X 2A6

stumm@eecg.toronto.edu

1. INTRODUCTION

Continuous deployment is the software engineering practice
of deploying many small incremental software updates into
production as soon as the updates are ready [1]. Continu-
ous deployment is becoming increasingly widespread in the
industry [2, 3, 4, 5, 6] and has numerous perceived advan-
tages including (i) lower risk because of smaller, more in-
cremental changes, (ii) more rapid feedback from end users,
and (iii) improved ability to respond more quickly to threats
such as security vulnerabilities.

In a previous paper, we described the continuous deploy-
ment process for cloud-based software; i.e., Web frontend
and server-side SAAS software, at Facebook and another
company’ [1]. We presented both its implementation and
our experiences operating with it. At Facebook each de-
ployed software update involved, on average, 92 Lines of
Code (LoC) that were added or modified, and each devel-
oper pushed 3.5 software updates into production per week
on average. Given the size of Facebook’s engineering team,
this resulted in 1,000’s of deployments into production each
day.

At both companies discussed in [1], the developers were
fully responsible for all aspects of their software updates. In
particular, they were responsible for testing their own code,
as there was (by design!) no separate testing team. The
only requirement was peer code reviews on all code before
it was pushed. However, there was considerable automated
support for testing and quality control. As soon as a devel-
oper believed her software was ready, she would release the
code and deploy it into production.

As demonstrated in the previous paper, cloud-based soft-
ware environments allow for many small incremental deploy-
ments in part because the deployments do not inconvenience
end-users — in fact, end users typically do not notice them.
Moreover, the environments support a number of features to
manage the risk of potentially deploying erroneous software,
including blue-green deployments [7], feature flags, and dark
launches [8]. As a worst case, stop-gap measure, it is always
possible to “roll back” any recently deployed update at the
push of a button, effectively undoing the deployment of the
target software module by restoring the module back to its
previous version.

LOANDA Corp.



In contrast with previous work, in this paper, we describe
and analyze how continuous deployment is applied to mobile
software at Facebook (FB). FB’s mobile software is used
by over a billion people each day. The key challenge in
deploying mobile software is that it is not possible to deploy
the software continuously in the same manner as for cloud-
based services, due the following reasons:

1. The frequency of software updates may be limited be-
cause (1) software updates on mobile platforms are not
entirely transparent to the end-user, and (i) the time
needed for app reviews to take place by the platform
owner; e.g., Apple reviews for iOS apps.

2. Software cannot be deployed in increments one module
at a time; rather all of the software has to be deployed
as one large binary; this increases risk.

3. Risk mitigation actions are more limited; for example,
hot-fixes and roll-backs are largely unacceptable and
can be applied only in the rarest of circumstances as
they involve the cooperation of the distributor of the
software (e.g., Apple).

4. The end user can choose when to upgrade the mobile
software (if at all), which implies that different ver-
sions of the software run at the same time and need to
continue functioning correctly.

5. Many hardware variants — especially for Android —
and multiple OS variants need to be supported simul-
taneously. The risk of each deployment is increased
significantly because of the size of the Cartesian prod-
uct: app version x (OS type & version) X hardware
platform.

Given the above constraints, a compelling open question
that arises is: How close to “continuous” can one update
and deploy mobile software?

Facebook is striving to push the envelope to get as close as
possible to continuous deployment of mobile software. The
key strategy is to decouple software development and re-
leases from actual deployment; the former occurs frequently
in small increments, while the latter occurs only periodically.
In particular, developers push their mobile software updates
into a Master branch at the same frequency as with cloud
software and in similarly-sized increments. The developers
do this whenever they believe their software is ready for de-
ployment. Then, periodically, a Release branch is cut from
the Master branch — once a week for Android and once ev-
ery two weeks for iOS. The code in that branch is tested
extensively, fixed where necessary, and then deployed to the
general public. The full process used at FB is described in
detail in §2.

An important follow-on question is: How does this mobile
software deployment process affect development productivity
and software quality compared to the productivity and qual-
ity achieved with the more continuous cloud software deploy-
ment process?

We address this question in §5.2 where we show that pro-
ductivity, when measured either in terms of LoC modified
or added, or in terms of the number of commits per day, is
comparable with what it is for software as a whole at FB.
We show that mobile software development productivity re-
mains constant even as the size of the mobile engineering

team grows by a factor of 15X and even as the software
matures and becomes more complex. In fact, we show how
Android has gone from a deployment every 8 weeks to one
every week over a period of 4 years, with no noticeable effect
on programmer productivity.

Testing is particularly important for mobile apps given the
limited options available for taking remedial actions when
critical issues arise post-deployment (in contrast to the op-
tions available for cloud-based software). We describe many
of the testing tools and processes used at FB for mobile code
in §4. We show in §5.5 that the quality of FB mobile soft-
ware is better than what it is on average for all FB-wide
deployed software. And we show that the quality of the
mobile software code does not worsen as (i) the size of the
mobile software development team grows by a factor of 15,
(ii) the mobile product becomes more mature and complex,
and (iii) the release cycle is decreased. In fact, some of the
metrics show that the quality improves over time.

Finally, we present additional findings from our analysis
in §5. For example, we show that software updates pushed
on the day of a Release branch cut are of lower quality on
average. We also show that the higher the number of devel-
opers working on the same code file, the lower the software
quality.

A significant aspect of our study is that the data we base
our analysis on is extensive (§3). The data we analyzed cov-
ers the period from January, 2009 to May, 2016. It includes
all of the commit logs from revision control systems, all app
crashes that were captured, all issues reported by FB staff
and customers, and all issues identified as critical during the
release process.

The data prior to 2012 is noisier and less useful to draw
meaningful conclusions from. Those were the early days
of mobile software, and there were relatively few mobile-
specific developers working on the code base. In 2012, FB’s
CEO announced the company’s “Mobile First!” strategy to
the public at the TechCrunch Disrupt conference in San
Francisco. From that point on, the mobile development
team grew significantly, and the data collected became more
robust and meaningful. Hence, most of the data we present
is for that period of time.

In summary, this paper makes the following specific con-
tributions:

1. We are, to the best of our knowledge, the first to de-
scribe a process by which mobile software can be de-
ployed in as continuous a fashion as possible. Specifi-
cally, we describe the process used at FB.

2. This is the first time FB’s testing strategy for mobile
code is described and evaluated.

3. We present a full analysis with respect to productiv-
ity and software quality based on data collected over
a 7 year period as it relates to mobile software. In
particular, we are able to show that fast release cy-
cles do not negatively affect developer productivity or
software quality.

4. We believe we are the first to show two compelling
findings: (i) the number of developers modifying a file
is inversely correlated to the quality of software in that
file, and (ii) the software changes pushed on the day
of the release cut from the Master branch are of lower
quality than the files pushed on other days.



In the next section we describe the mobile release cycle
used at FB for both Android and iOS. Section 3 presents
the collected data that we used for our analysis. Section 4
describes the testing strategies used. Our analysis is pre-
sented in §5. Related work is covered in §6. We close with
concluding remarks.

2. MOBILE RELEASE CYCLE

In this section we describe in detail the development and
deployment processes and activities at FB for mobile apps.
The overall architecture is shown in Figure 1. As seen in
the figure, there are two classes of activities: development
activities and deployment activities.

2.1 Development activities

First we describe development activities. There is effectively
no difference between the development activities for mobile-
based and cloud-based software at FB. The developer forks a
local revision control system branch from the Master branch.
Updates to the software are made to the local branch with
frequent commits. After proper testing and when the devel-
oper believes her software update is ready for deployment,
she pushes? the updates into the Master branch. As we show
in §5, each developer pushes such updates into the Master
branch 3-5 times a week, a timescale comparable to cloud-
based software at FB.

A notable coding practice encouraged at FB is the use of
a mechanism called Gatekeeper, that allows one to dynami-
cally control the availability of features on the mobile device.
In effect, this mechanism provides the ability to dynamically
turn on or off a mobile-side feature from the server side,
even on devices in client hands. Hence, if a newly deployed
feature misbehaves, it can be turned off. This mechanism
can also be used to incrementally turn on new features in a
targeted way, say by targeting the OS, the specific OS ver-
sion, the hardware device type, the specific hardware device
model, the country, locale, etc. It can also be used for A/B
testing, for example to test whether one feature gets more
usage than an alternative.

2.2 Deployment activities

We now describe the lower half of the figure correspond-
ing to deployment activities. FB has a Release Engineering
Team (RelEng) that is responsible for these activities. The
team includes project managers who are responsible for their
target platform and who can make informed decisions as to
which issues are launch-blocking or not.

Both iOS and Android deploy software on a fixed-date
cycle in a pipelined fashion. We begin by describing the
specific process for iOS and then describe how the process
for Android differs.

ioS

For iOS, a Release branch is cut from the Master branch by
RelEng at a two week cadence every other Sunday at 6pm.
The release branch is first stabilized over a period of five

days, during which issues are fixed or eliminated, and other
polish and stabilization updates are applied. Some bugs are

’In this paper, we use the term push exclusively to refer
to the pushing of the local development branch up into the
Master branch; we do not use the term here to refer to the
act of deploying software.
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Figure 1: Release cycle for iOS. The process is pipelined
with each stage taking two weeks (for iOS mobile code): the sta-
bilization, soak, review, and deployment with the Release branch
takes two week, while new software updates are continuously be-
ing pushed to the master branch during the same two weeks until
the next Release branch is cut from the Master branch.

categorized by RelEng as launch-blocking; that is, bugs that
would prevent making the app available to end-users and
hence have to be fixed before deployment.® Finally, RelEng
may decide to circumvent some issues by reverting parts of
the code back to a previous version.

Developers are responsible for addressing any of the issues
raised by RelEng, such as identified bugs. Each update gen-
erated by a developer that addresses issues raised by RelEng
(regarding bug fixes, polishes, and stabilization) is only ever
pushed into the Master branch. The developer must then
make a request to RelEng to merge the update from the
Master branch into the Release branch. In doing so, she
must provide justification as to why the update should be
merged into the Release branch.

In turn, RelEng “cherry-picks” (i.e. selects), at its dis-
cretion, those updates that will be merged into the Release
branch. It does this carefully by taking various risk factors
into account. Merge requests may be declined for any num-
ber of reasons. Two examples of merge requests that would
likely be declined simply because the risk is deemed to be
too high are: updates having too many dependencies (e.g.,
more than 5) or updates that make significant changes to
core components like networking or display. Ultimately, the
decision is a judgement call by RelEng involving a trade-
off between risk and impact. For example, a polish update,
which may have lower impact, is only accepted during the
first 2-3 days and declined after that.

During the above described period of stabilization, the re-
lease branch is built and the resulting app is made available
to FB internal users as “dog food.” This occurs three times a
day. After five days of stabilization efforts, the code is frozen
and a “soak” period of three days begins. During the soak
period, only fixes for launch-blocking issues are accepted.

Finally, on the second Monday after the Release branch
cut, the software is shipped to Apple for review and subse-
quently deployed sometime later that week.

The overall timeline, shown in Fig. 1, is pipelined: new up-
dates are being pushed into the Master branch concurrently

3Note that despite the name, launch-blocking issues never
get to the point where they actually block a deployment.



with the stabilization of the current Release branch. Only
some of these new updates are cherry-picked to be merged
into the Release branch by RelEng. If, for whatever rea-
son, this two week timeline depicted in the right half of the
figure cannot be met safely, then the deployment is halted
and all changes are deferred to the next regularly scheduled
deployment.*

Android

The Android release cycle is almost identical, except that it
is compressed: branches are cut at a 1-week cadence rather
than a 2-week cadence. On Thursday, a code freeze occurs
and merge requests are only accepted for launch-blocking
issues.

On Monday mornings (one week after a branch cut), a
slow rollout of the app to the Play Store occurs: typically
first only 20%, then 50%, and finally 100% of the population
will obtain access to the new version over the following three
days, with periodic stability checks after every increase in
the rollout percentage.

For Android, FB also releases Alpha and Beta versions of
the app. Alpha is shipped from the Master branch once a
day. It is made available through the Google Play Store to
a small fraction of external users consisting of several 10,000
users. Beta is shipped from the Release branch once a day
and made available to a larger fraction of external users
(around 3 million).

Release Engineering Team

The Release Engineering Team plays a critical role in the
above process. Despite its importance, this team is perhaps
smaller than one might assume — it has fewer than 10 mem-
bers. The team can be kept small, in part because of the
tools it has at its disposal and the degree of automation in
the process, and in part because of the partnership it has
built up over many years with the development teams.

Senior product developers are continuously being seconded
to temporarily work for the Release Engineering Team for
one release every two months or so. A key advantage of this
arrangement is that it creates a collaborative partnership
between RelEng and the development teams. The develop-
ers become educated on what RelEng does, what its process
flows are, what its problems and pain-points are, etc. The
knowledge accrued by the developers during their stint with
RelEng is then permeated back to the rest of their develop-
ment teams when they return.

A further advantage of this arrangement is that develop-
ers, after having observed inefficiencies in the release process,
in some cases later develop tools for RelEng that allow the
process to be further simplified and automated.

3. DATA COLLECTED

Facebook collects a significant amount of data related to
each release and each deployment. It retains all of this data.
In this section, we describe the data sets we used for the
analysis we present in §5.

e Revision-control system records. This dataset
has a record of each commit and push, the date, the
size of the diff being committed (as measured in LoC),
the developer who issued the diff, etc.

4This has occurred only once in the last 9 months.

e Crash database. A crash report is automatically sent

to FB whenever a FB app crashes. The crash rate is
a direct indicator of app quality, which is why these
crash reports are carefully monitored and used to de-
termine the healthiness of a release. Bots automati-
cally categorize reliability issues into crashes, soft er-
rors, hung systems, etc. Whenever a given crash rate
metric is higher than a specified threshold, then the
crash is automatically submitted as a launch blocker
to the tasks database (described below). Additionally,
the stack trace of the crashed app is automatically
compared against recent changes recorded in the revi-
sion control system, and if any instruction on the stack
trace is close to changed code, then the developer who
made the change is informed in an automated way. We
aggregated crash reports by date and app version.

Flytrap database. This database contains issue re-
ports submitted by (internal or external) users. Users
can submit issues from a “Report a Problem” compo-
nent on the app which can be obtained from a pull-
down menu or by shaking the device. Alternatively,
they can fill out a Help Center “Contact Form” on a FB
Website. Employee-generated flytraps are automati-
cally entered into the tasks database (described below).
User-generated flytraps are not automatically entered
into the tasks database because many users submit
unimportant issues, new feature requests, various im-
provement suggestions, and sometimes just junk. In
aggregate, the Flytrap database is rather noisy. For
this reason, user-generated flytraps are entered into
the tasks database automatically only if a bot is able
to identify an issue reported by a sufficient number
of users exceeding a given threshold. We aggregated
Flytrap issues by date and app version.

Tasks database. This database is a core compo-
nent of the release engineering management system. It
records each task that is to be implemented and each
issue that needs to be addressed. Tasks are entered by
humans and bots; the number of bot-created tasks is
increasing rapidly. Tasks related to a mobile release
include:

— launch-blocking issues: critical issues marked by
RelEng which need to be addressed before deploy-
ment.

— crashbot issues: tasks created by a bot when a
crash affects more than a threshold number of
users.

— flytrap issues: tasks created by a bot for employee-
reported issues and when more than a threshold
number of flytrap reports identify the same issue.

— test fails: tasks created for failed autotests (see

§4).

Cherry-pick database. All cherry-pick requests are
recorded, and those accepted by RelEng are marked
as such. We use the number of cherry-picks as a proxy
metric of software quality.

Production issues database. All errors identified
in production code are recorded in a separate database
and each is categorized by severity: critical, medium



priority, and low priority. The recorded errors are en-
tered by humans when they believe a production error
needs to be fixed (even if low priority). We use the
number of issues in this database as one measure of
quality of the software that was deployed to produc-
tion.

Daily Active People (DAP). This database records
the number of users using FB apps. We aggregated the
numbers by data and app version. We use this data
in certain cases to normalize crash and flytrap quality
indicators.

e Boiler room. This database contains information
about each mobile deployment, including the deploy-
ment date, the deployment status, the release branch
from which the build was made, the cut date of the re-
lease being deployed, the versions of the alpha/beta/-
production builds, etc.

e Staff database. This data identifies how many devel-
opers were working on mobile software per day. The
information is extracted from the commit logs: if a
developer committed mobile code in the previous two
weeks then she is deemed have been working on mobile
software.

e Source and configuration code. We used informa-
tion from this source to identify how and when auto-
mated jobs are schedule, thresholds bots use to deter-
mine when to create a task, etc.

4. TESTING

Testing is particularly important for mobile apps for the
following reasons:

e Thousands of updates are made to mobile software
each week.

e There are hundreds of device and OS version combi-
nations the software has to run on.

e The options available for taking remedial actions when
critical issues arise post-deployment are limited.

As one might expect, FB applies numerous types of tests,
including unit tests, static analysis tests, integration tests,
screen layout tests, performance tests, build tests, as well as
manual tests.

Tools and automation play a key role, supported in part by
hundreds of developers devoted to developing tools. Most of
the tests are run in an automated fashion. When a regression
is detected, an attempt is made to automatically tie it back
to specific code changes that were made recently, and an
email is automatically sent to the developer responsible for
that particular change.

Before we describe some of the tests and when they are
used, we briefly describe the testing infrastructure available
at FB as well as the principles that guide the FB testing
strategies.

Testing Infrastructure

Thousands of compute nodes are dedicated for testing mo-
bile software. Both white-box and black-box testing strate-
gies are applied by running tests on simulated and emulated
environments.

For testing on real hardware, FB runs a mobile device
lab located in the Prineville data-center [9]. The mobile lab
is primarily used to test for performance regressions, with
a primary focus on app speed, memory usage, and battery
efficiency.

The mobile lab contains electromagnetically isolated racks.
Each rack contains multiple nodes that are connected to the
iOS and Android devices that will be used for the target
tests. The nodes install, test and uninstall target software.
Chef, a configuration management tool [10], is used to con-
figure the devices. A wireless access point in the rack sup-
ports device Wi-Fi communication. The devices are set up in
the racks so that their screens can be captured by cameras.
Engineers can access the cameras remotely to observe how
each phone reacts to code changes. Thus, the lab effectively
offers testing Infrastructure-as-a-Service.

Testing Principles at FB
FB’s testing strategy encompasses the following principles:

1. Coverage. Testing is done as extensively as possible.
Almost every test ever written that is still useful is run
as frequently as it makes sense to do so.

2. Responsive. The faster a regression is caught, the
easier it is to deal with; quickly caught issues are easier
to address by the developers because the code and code
structure are still top of mind. For instance, parallel
builds are used so as to be able to provide feedback
more quickly. The objective is to be able to provide
the developer with the results from smoke-tests within
10 minutes of her actions.

3. Quality. Tests should identify issues with surgical
precision. False positives and false negatives need to
be minimized. This is important not only to minimize
the time developers spend on chasing false alarms, but
also to prevent test results from being ignored over
time.

4. Automation. Tests are automated as much as pos-
sible. This makes them repeatable, and it ensures the
tests are run on a regular basis. An additional aspect
of automation has proved to be useful: automatically
identifying the developer that caused a regression with
his code changes so that he can be informed immedi-
ately with specific details on the detected issue and the
code that might have caused the issue. This is done
by comparing the location in the code likely to have
caused the detected issue with recently applied code
changes. Much effort has gone into developing this ca-
pability since it is effective only when the quality is
high.

5. Prioritization. Testing requires a great deal of com-
puting resources if it is to be exhaustive and respon-
sive at the same time. Since resources will invariably
be limited, a prioritized testing strategy is imperative.
For example, when a change is pushed to the Master
branch, integration tests are only done on those por-
tions of the app that might be affected by the changes
being pushed, instead of running the full test-suite.
This makes it possible to provide key test results to
the developer more quickly. Complete integration tests
are run every few hours on the Master and Release
branches.



Unit tests:

These white-box tests primarily verify the logic of target units. Limited unit tests are run manually
on the development environments, XCode or Android Studio, using tools such as XCTest [11],
JUnit [12], or Robolectric [13]. More extensive as well as automated unit tests are run on server-
based simulators.

Static analysis:

This analysis identifies potential null-pointer dereferences, resource leaks, and memory leaks. Be-
cause exceptions are often the root cause of resource leaks, the tool is careful to identify where
these particular leaks might occur.

Build tests:

These tests determine whether the code builds properly.

Snapshot tests:

These tests generate images of screen views and components, which are then compared, pixel by
pixel, to previous snapshot versions [14, 15].

Integration tests:

These standard (blackbox) regression tests test key features and key flows of the app. They
typically run on simulators and are not necessarily device specific. Moreover they employ degrees
of scope: “smoke tests” primarily target specific changes to the code (diffs) or target high-level
functionality; long-tail integration tests run the full suite of regression tests and run against a live
server so that they also cover client-server integration.

Performance tests:

These tests run at the mobile lab to triage performance and resource usage regressions as described

above.

Capacity tests:

These tests verify that the app does not exceed various specified capacity limits.

Conformance tests:

These tests verify that the app conforms to various requirements.

Table 1: Range of tests performed on mobile software.

Tests and when they are run

Table 1 lists some of the types of testing conducted on the
mobile software. These tests are run in all phases of the
development and deployment cycle.

Pre-Push Testing. A developer will frequently run unit
tests on her PC/laptop while developing code. Given the
size of the apps and the limited power of the development
PCs and laptops, more extensive unit tests will be run on
servers in simulation environments. The developer can also
manually invoke any of the other tests listed in the table,
with static analysis and some integration testing being the
most common ones invoked. Finally, a subtle point, while
there is no separate testing team, a code review is required
before any code can be pushed to the Master branch.

On Push. When the developer believes her changes are
complete and work correctly, she initiates a push of her
changes to the Master branch. Before the actual push oc-
curs, a number of tests are run automatically to determine
whether the push should be blocked. These include stan-
dard unit tests as well as a number of smoke tests that verify
that heavily used features and their key flows work correctly.
Moreover, a test is run to ensure a build with the changes
works correctly. However, since a full build is time and re-
source intensive, the build test here only tests dependencies
a few levels deep.

If all the tests pass, then the changes are pushed onto the
Master branch. The merging process may identify conflicts,
in which case the developer is alerted so she can address
them.

Continuous testing on Master and Release branch.
All of the tests are run continuously (every few hours) on
both the Master and the Release branch. The most impor-
tant of these are the full build tests, integration regression
tests, and performance tests in the mobile device lab.

As mentioned in §2, alpha versions are built from the Mas-
ter branch (twice a day for iOS and once a day for Android)
and beta versions are built from the Release branch three
times a day. Release of the alpha version of software is
blocked if a certain percentage of tests fails. This happens
very rarely.

Manual testing

A contracted manual testing team (of about 100) is used
to test the mobile apps. They do various smoke tests and
edge-case tests to ensure the apps behave as expected. The
testing team is primarily used to test new features for which
automated tests have not yet been created. Finally, they are
responsible for Ul testing after language translations have
been added to ascertain the quality of the look and feel is
high.

5. ANALYSIS
5.1 Methodology

Our quantitative analysis of the FB mobile software engi-
neering effort is based on the data described in §3. The
data extracted from those data sets was cleaned, interpreted,
cross-checked and the conclusions drawn were presented to
FB-internal subject-matter experts for confirmation. We de-
scribe how the data sets were cleaned in the figure captions
where relevant.

Some of the data sets start from January 2009. All con-
tinue until 2016. The metrics collected between 2009 and
2012 are rather noisy, to the point where it is difficult to
infer useful insights. While the first several graphs in this
section depict data from 2009 onwards, later graphs focus
on the period from 2012 to 2016. In 2012, fewer than 100
developers worked on mobile code, while by 2016, over 1,500
developers did. Over one billion users use the software anal-
ysed here on a daily basis.

5.2 Developer Productivity

Figure 2 depicts developer productivity as measured by lines
of code (LOC) that are ultimately pushed and deployed on
average per developer and per day. The figure shows that
developers produce on average 70 LoC per day for both An-
droid and iOS. This is in line with the 64.5 LoC produced
per developer per day company-wide across all software.®

®Code for backend services is produced more slowly than
the average.
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as averaged each month. The insert shows the same data from
mid 2012 onwards at a larger scale. (Pushes from bots were re-
moved from the data set, as were pushes that changed more than
2,000 lines to avoid including third-party software packages, and
directories being moved or deleted.)
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Figure 3: Number of pushes per developer per day as
averaged each month. (Pushes from bots were removed from the
data set.)

Figure 3 depicts developer productivity as measured by
number of pushes per day on average for both Android and
i0S. Over the last two years, the average number of pushes
per developer per day was 0.7 and 0.8 for Android and iOS,
respectively. When averaged over all company-wide soft-
ware, it is 0.7 pushes per developer per day; hence, iOS
has slightly more frequent pushes. While Android has fewer
pushes than iOS per developer per day, it has the same num-
ber of LoC generated per developer per day than iOS, which
implies that Android pushes will be slightly larger than the
iOS pushes.

More interesting than the absolute numbers is how pro-
ductivity changes over time as a function of the number of
developers producing code for the mobile platforms — Fig-
ure 4 depicts how the number of these developers changes
over time:

Finding 1: Productivity remains constant even as the num-
ber of engineers working on the code base grows by a factor
of 15. This is the case for both Android and iOS developers,
and whether measured by LoC pushed or number of pushes.

One hypothesis for why this is the case might be that the
inefficiencies caused by larger developer groups and a larger,
more complex code base are offset, in part, by (i) tooling
and automation improvements over time, and (i) the agile
development, continuous release, and deployment processes
being used. One can, however, definitively conclude:
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Figure 4: Growth of the size of the Android and iOS
development teams. The y-axis has been deliberately left out
so as not to divulge proprietary information.

Finding 2: The continuous deployment processes being used
for mobile software at FB does not negatively affect produc-
tivity even as the development organization size scales sig-
nificantly.

5.3 Quality

At FB, each issue with production code that someone be-
lieves needs to be addressed is registered in the Production
Issues Database and categorized by severity: (i) critical,
where the issue needs to be addressed immediately at high
priority, (ii) medium-priority, and (iii) low-priority. We use
the number of issues found in production code as one mea-
sure of production software quality.

Figure 5 depicts the number of issues for each severity
level as a function of the number of pushes per month for
Android and i0S. The (red) triangles represent critical er-
rors; they have been almost constant since 2012, with each
release either having 0 or 1 critical issue.

Finding 3: The number of critical issues arising from de-
ployments is almost constant regardless of the number of de-
ployments.

We surmise that the number of critical issues is low for
two reasons. Firstly, critical errors are more likely to be
detected in testing. Secondly, the company takes critical
issues seriously, so after each occurrence, a standing review
meeting is used meetings to understand the root cause of
the issue and to determine how similar issues of the same
type can be avoided in future deployments.

Unsurprisingly, the number of medium-priority and low-
priority issues grows linearly with the number of pushes,
albeit with very low slopes: for medium-priority issues the
slope is 0.0003 and 0.00026 for Android and iOS respectively,
and for low priority issues the slope is 0.0012 and 0.00097 for
Android and iOS respectively. The slope for both medium-
and low priority issues is higher for Android than for iOS;
the relatively large number of Android hardware platforms
may be one potential explanation. Interestingly, company-
wide, across all software, the two corresponding slopes are
0.0061 and 0.0013, respectively, which are both steeper than
for the mobile code alone. Overall, we argue that these
numbers are evidence that the testing strategies applied to
mobile software is effective.

Figure 6 shows the number of launch-blocking issues and
number of cherry-picks per deployment for Android and iOS.
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Figure 5: Number of recorded issues with Android and
iOS production code as a function of the number of
pushes per month for the period between March, 2011 and
May, 2016. The top graph is for Android; the bottom for iOS.
Note that the scale of the x- and y-axes are very different: all of
the linear trendlines have a slope less than 0.0012.

To allow for direct comparison, the numbers are normalized
by the length of the release cycle, under the assumption
that a release cycle twice as long will have twice as many
pushes and twice as many LoC modified. That is, each data
point in the graph depicts for each release cycle number of
cherry-picks and launch-blockers recorded per day on aver-
age. Overall, the number of launch-blockers and the number
of cherry-picks seem to oscillate somewhat over time, but
with no particular trend: the number of cherry-picks seem
to mostly stay within a range of 5-25 for Android and within
a range of 5-15 for iOS.

Finding 4: The length of the deployment cycle does not
significantly affect the relative number of cherry-picks and
launch-blockers as it decreases from J weeks to 2 weeks (and
then to 1 week for Android).

From this we conclude that the length of the deployment
cycle does not directly affect the quality of the software pro-
duced, with the described continuous deployment process.
In particular, there is no discontinuity in the curves at the
points where the frequency of deployments changes.

One should note that the number of launch-blocking is-
sues is impacted in at least two ways. First whether an
issue is declared to be launch-blocking or not is subjective.
RelEng believes that they have become more stringent over
time on deciding what constitutes a launch-blocker. This
is somewhat intuitive: as more people use the mobile app,
standards tend to increase. Secondly, a large number of
testing tools were developed in 2015 and 2016. These tools
should lead to an improvement in code quality, and hence
reduce the number of launch-blocking issues.

Figure 7 shows the crash rates experienced by end users
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Figure 6: Number of launch-blocking issues (blue solid
lines) and number of cherry-picks (orange dashed lines)
per deployment for Android (top) and iOS (bottom), normalized
by length of release cycle. Each data point in the graph depicts for
each release cycle the number of cherry-picks and launch-blockers
recorded per day on average. The vertical straight lines show
where release cycle was reduced, first from a 4 week cadence to a
two week cadence, and then for Android to a one week cadence.

Android
0.40
035
030
025 [
0.20
015
0.10
0.05
0.00

4 Weeks 2 Weeks 1 Week

extended scope of events considered as crashes |

0.40
035 4 Weeks. 2 Weeks.
0.30
0.25
0.20
0.15
0.10
T LT T T T
000 T
() () O o () \J \}] ] 3 \J \J 6 J 6
B T S R R S T ST Lt SN SRV

Figure 7: Normalized daily crash rate for Android (top
graph) and iOS (bottom graph): proportion of end users
experiencing a crash relative to the total number of active users
normalized to a constant. The vertical straight lines show where
release cycle was reduced, first from a 4 week cadence to a two
week cadence, and then for Android to a one week cadence. The
curve is normalized to the same constant in order to hide the
absolute values but to allow a comparison.

per day, normalized to a constant in order to hide the ab-
solute values. The different colors of the bars represent dif-
ferent releases: the color swaths become more narrow each
time the deployment cycle is reduced (but may be wider
around holidays).

Finding 5: The shortening of the release cycle does not
appear to affect the crash rate.

The number of Android crashes increased in the first half
of 2015; there are two reasons for this. First, the scope of
what was considered to be a crash was extended to also in-
clude Java crashes when running a FB app and apps that
were no longer responding. Second, a set of third-party soft-
ware libraries were introduced that increased the crash rate;
some of the offending software was removed in the second
half of the year.

Internal FB employees play a critical role in helping to test
the mobile software through dog-fooding. The iOS platform
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Figure 8: Normalized daily crash rate for alpha (top
graph), beta (middle graph), and production (bottom
graph) versions of Android FB apps: Proportion of end
users experiencing a crash relative to the total number of active
users normalized to a constant. Note that the bottom graph here
is identical to the top graph of Fig. 7, just with a different scale
for the y-axis. These graphs show the importance of having users
testing alpha and beta versions of the software to improve soft-
ware quality.

gets far better dog-food coverage internally, because employ-
ees tend to skew towards iOS (over Android). This is par-
ticularly problematic, since there is such a wide variety of
hardware that Android runs on. For this reason, Android
relies more heavily on alpha and beta releases of its software.
Figure 8 shows the effectiveness of the alpha releases with
respect to crashes. A significant decrease in the crash rate
is visible when going from alpha to beta; crash rate spikes
that occur occasionally with the beta version of the software
no longer appear in the production version of the software.
The crash rate for alpha versions of the software is roughly
10X higher than for production versions.

5.4 Deadline Effects

There is a clear increase in the number of pushes to the
Master branch on the day the Release branch is cut. This
may indicate that developers rush to get their code in before
the deadline, which begs the question of whether there is a
decrease in quality of code submitted on the day of release
cut.

Figure 9 depicts the number of cherry-picks per push as
a function of the proportion of pushes on the day of the
Release branch cut. The number of cherry-picks is used as
a proxy for software quality. There is a correlation between
the percentage of pushes made on the day of release cut and
the number of cherry-picks per day: as the number of pushes
made on the day of a release cut increases, so do the number
of needed cherry-picks.

In absolute terms, Android has a higher proportion of
pushes on the cut day. This is primarily because many of
the datapoints represent releases that occurred at a one-
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Figure 9: Cherry-picks per push as a function of the
proportion of pushes on the release cutoff day. Thursday
cutoffs are shown as red circles; Sunday cutoffs as blue triangles.
For Android, only releases after June, 2014 are included, which is
when the release cycle switched to a two week cadence. For iOS,
only releases after September, 2014 are included, which is when
the release cycle switched to a two week cadence. Releases up to
the end of May, 2016 are shown for both Android and iOS.

week cadence, while all iOS datapoints represent releases at
a two-week cadence. That is, if all of the Android pushes are
evenly distributed across the seven days, one would expect
each day to have 14% of all pushes; on the other hand, if
the i0S pushes are evenly distributed over the 14 days, then
one would expect each day to have 7% of all pushes.

Finding 6: Software pushed on the day of the deadline is
of lower quality.

Our hypothesis is that the software pushed on the cut
day is likely rushed and that rushed software will have lower
quality.

When, normalized, Android has a lower proportion of
pushes on the cut day, and because of this a smaller pro-
portion of cherry-picks. An intuitive explanation for this
goes as follows: if a developer believes her update will not
make the cut, they will only have to wait one week and
hence do not force a push. However, if the next cut is fur-
ther out, then some developers rather force a push than to
have to wait the longer period of time before their updates
get deployed.

Another interesting observation is that moving the cut
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Figure 10: Proportion of files cherry-picked when modi-
fied by n developers for n = 1..40.

date to a weekend leads to improved quality, in part because
there is a lower tendency to rush to push updates when the
cut date is on a weekend. The cut date was moved from a
Thursday to a Sunday in August, 2015 for Android and in
February, 2016 for iOS. While the average number of pushes
on the weekend increased from 0.3 pushes per developer per
day to 0.5 for iOS, and from 0.175 to 0.5 for Android (not
shown in any figure),® the number of weekend pushes is still
significantly lower than the number of weekday pushes. As
Figure 9 shows, the lower number of pushes for weekend
cut days, correlates with a lower number of cherry picks for
those releases, a sign of improved quality.

5.5 Factors Affecting Software Quality

An interesting question what factors affect software quality.
Above we showed that that software pushed on the cutoff
day will be of lower quality. But we also showed that the
length of the release cycle, the size of the engineering team,
and the number of pushes do not seem to affect software
quality directly. We have also not been able to find any
correlation between software quality and

e the size of the change of each push (as measured in
LoC modified)

e the size of the file being changed

We did, however, find two factors that do appear to affect
software quality, although both factors are highly correlated.
First, we found that as the number of developers that com-
mit code to a file of a release increases, so does the probabil-
ity of the file being cherry-picked. This is shown in Figure 10

Finding 7: The more developers involved in modifying a
file for a release, the lower the software quality of the file.

Some files are modified by a surprisingly large number of
developers. An example scenario where this happens natu-
rally are very large switch statements, where the code asso-
ciated with individual case statements are modified by dif-
ferent developers.

The above finding suggests that files needing modification
by multiple developers should perhaps be split up to improve
quality.

SMoving the cut date to a Sunday did not affect overall
developer productivity.
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Figure 11: Proportion of files cherry-picked when com-
mitted n times for n = 1..40.

A second factor we found that appears to affect software
quality is the number of times a file is pushed between cuts.
A high number of pushes leads to a higher probability of the
file being cherry-picked (Figure 11). However, note that a
high number of developers modifying a file implies a high
number of pushes for the file.

6. RELATED WORK

Continuous deployment is a natural extension of the pro-
gression from agile software development [16, 17, 18, 19] to
continuous integration [20, 21, 22] to continuous delivery (7,
23]. Agile development, where software is developed itera-
tively with cycles as short as half a day, started in the late
1990’s and is now used in some form in many if not most or-
ganizations. Continuous Integration is the practice in which
software updates are integrated at the end of each software
cycle; this allows integration to be verified by an automated
build and automated tests to detect integration errors as
quickly as possible. Continuous Delivery goes one step fur-
ther and ensures that the software is built and tested in such
a way that the software can be released to production at any
time. Continuous deployment deploys each software change
to production as soon as it is ready.

Related developments include lean software development [24],

kanban [25], and kaizan [26]. DevOps is a movement that
emerged from combining roles and tools from both the de-
velopment and operations sides of the business [27, 28].

In a recent study, Mcllroy et al. showed that of 10,713 mo-
bile apps in the Google Play store (the top 400 free apps at
the start of 2013 in each of the 30 categories in the Google
Play store), 1% were deployed more frequently than once
a week, and 14% were deployed at least once every two
weeks [29]. While the study is based on a relatively small
time window, it suggests that continuous deployment is ac-
tively being pursued by many organizations.

However, the literature contains only limited explicit ref-
erences to continuous deployment for mobile software. Klep-
per et al. extended their agile process model Rugby to ac-
commodate mobile applications [30]. Etsy, a leader in con-
tinuous deployment, has presented how they do continuous
integration for their mobile apps in talks [31]; effectively,
they deploy mobile software out to their employees on a
daily basis [32].

With respect to testing, Kamei et al. evaluate just-in-
time quality assurance [33], which is similar to the strat-



egy describe in §4. Gao et al. describe mobile Testing-As-
A-Service infrastructure for mobile software [34]. Amazon’s
Appthwack offers a mobile device farm for that purpose [35].

7. CONCLUDING REMARKS

This paper described continuous deployment for mobile ap-
plications at Facebook. Shorter release cycles have numer-
ous advantages including quicker time to market and better
ability to respond to product feedback from users, among
others. The release cycle was shortened from 8 weeks to 1
week for Android over a period of four years. We described
learnings throughout this period.

Shortening the release cycle forces the organization to im-
prove tools, automate testing and procedures. Our obser-
vations is that over the four year period when the Android
release cycle was reduced from 8 weeks to 1 week, these ef-
forts to improve tools and increase automation represented
the bulk of the work to make continuous deployment suc-
cessful. The data collected show that tools and process im-
provements increased quality and permitted faster release
cycles. However, continuous deployment itself did not offer
any productivity or quality improvements.

Releasing software for mobile platforms is more difficult,
because it is not possible to roll back/forward in the event
of a problem as it is with cloud software. Feature flags are
used to enable or disable functionality remotely so that a
buggy feature doesn’t require a new release. Alpha and beta
programs were extremely effective in providing bug reports
that reduce problems, provided that reporting of such issues
was automated.

Analysis revealed several patterns leading to lower quality
software. One was cramming for a release on a branch date:
software committed on the day a release branch is cut was
found to be of lower quality. Shortening the release cycle
improved this, because developers were less likely to rush
their software pushes, knowing that another release was up-
coming shortly. Another pattern that led to lower-quality
software was having too many developers work on the same
file concurrently: the number of problems per file was found
to increase proportionally to the number of developers who
modified the file.
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