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Abstract—Lookahead in propositional satisfiability has proven
efficient as a heuristic in pre- and in-processing, for partitioning
instances for parallel solving, and as the main driver of a stand-
alone solver. While applying similar techniques in satisfiability
modulo theories is potentially equally useful, adapting lookahead
to learning theory clauses and to estimating search space sizes
in the presence of first-order structures is not straightforward.
This paper addresses both of these observations. We give a
hybrid algorithm that integrates lookahead into the state-based
representation of an SMT solver and show that in the vast
majority of cases it is possible to compute full lookahead up
to depth four on inexpensive theories. We also show the role of
first-order structures in SMT search space: while in most of our
benchmarks the partitions are easier to solve than the original
instance, we identify cases where lookahead results in sequences
of increasingly difficult instances for a computationally expensive
theory.

I. INTRODUCTION

Large scale parallel SMT solving that would result in linear
speed-up reliably over any instance in a cloud environment
is a lucrative prize that has been intensively studied over the
recent years [26], [14], [13], [17]. A central sub-goal in this
project is in understanding how to apply successfully the cube-
and-conquer [24] approach in SMT solving. The lookahead
heuristic in propositional logic [27], in addition to being
efficient in solving certain types of structured problems [8], has
recently proven to be a powerful tool in constructing partitions
for divide-and-conquer-based parallel SAT solvers [10], [9].
The idea is to base the search-space traversal on the explicit
principle of branching on literals that reduce maximally the
remaining search space. In addition to SAT solvers, the heuris-
tic has been implemented in SMT solvers such as Z3 [20],
where it serves for in- and pre-processing, and by us in
OpenSMT [11], [12] as an alternative implementation for the
main SAT solver.

This paper studies how the literals chosen by lookahead
algorithm for SMT affect the difficulty of the instance from
the perspective of a standard CDCL-based SMT solver. This
question is central to divide-and-conquer-style parallel SMT
solving, where the lookahead heuristic is used to build a binary
lookahead tree of depth d, with nodes labeled by the literals
chosen with the lookahead heuristic, and root labeled with the
true literal >. Conjoining the literals in each rooted path to
the leaves with the original instance produces 2d−1 partitioned
instances that do not share models. The resulting instances can
be solved in parallel, and the original instance is satisfiable if
and only if one of the partitioned instances is satisfiable.

Our main contributions are rigorously defining what we
mean by lookahead heuristic for an SMT solver, and an
experimental study on how the use of this heuristic affects
the difficulty of the partitions. In defining the heuristic, we
show that lookahead can be integrated tightly into a CDCL(T)-
style algorithm that fully leverages learned clauses, including
determining unsatisfiability while constructing partitions. We
summarize our experimental results as follows. First, in many
cases the heuristic runs in seconds when producing a non-
trivial number of partitions (say, 16). This is already a non-
trivial observation given that the full lookahead heuristic in
SAT is known to be in most cases prohibitively expensive. Sec-
ond, usually the approach results in partitions that are easier to
solve than the original. While this result seems rather implicit
and obvious, it is made interesting by the next observation:
There are instances where the above described lookahead-
based parallel algorithm’s run time increases compared to the
original instance even when no overhead from partitioning or
communication is considered, and the number of partitions is
in the thousands. We show some details on the latter cases that
help to understand the underlying phenomena, and identify
a possible reason arising from the way the theory solving
algorithm for linear real arithmetics is implemented in most
SMT solvers. These cases serve to illustrate the complexity of
the ultimate goal of an efficient and general parallel solver.

Combining a lookahead algorithm with a CDCL-based SMT
solver in a meaningful way is not straightforward. First, the
lookahead heuristics assumes that the clauses of an instance
are known at computing time. In contrast, an SMT solver
produces a new clause whenever a propositional model is
inconsistent in the theory. A potentially very large number
of clauses remain invisible for the heuristic. Second, the ex-
planation clauses guide the search through non-chronological
backtracking. This means that the heuristic scores of vari-
ables change with each backtrack, and the algorithm may
determine unsatisfiable entire sub-trees of the lookahead tree.
The subtrees need to be re-computed to ensure that the
approach produces 2d partitions. Finally, it is not clear how
SMT solver’s theory specific reasoning part interacts with the
lookahead-heuristic that only measures the reduction in the
propositional space.

To the best of our knowledge, this paper is the first to build
lookahead partitioning into the SMT framework in a way that
observes the search space reduction resulting from learned
clauses, and guarantees the unit-propagation consistency of
the resulting partitions in case instance satisfiability is not de-
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termined. We consider the theories of uninterpreted functions
with equality [3] and linear real arithmetic [4]. These are the
two central algorithms that constitute, together with a SAT
solver, the core of most SMT solvers. Combinations of these
two theories with pre-processing techniques are capable of
handling the quantifier-free subset of the SMT-LIB benchmark
library instances. The algorithm either produces exactly 2d−1

instances none of which can be shown unsatisfiable through
(theory-aware) unit-propagation in the current state of the SMT
solver; or shows the original instance either satisfiable or un-
satisfiable. The partitioning algorithm compromises in certain
cases the exactness of the lookahead scores for decreased run
time. We believe that the efficiency of our proof-of-concept
implementation forms a solid basis for future research in this
direction. Since the approach also sheds light to the observed
slowdowns, we believe that the work will prove useful for
designing more general parallelization algorithms for SMT.

The paper is organized as follows. After discussing related
work, in Sec. III we define our SMT-related logical notation. In
Sec. IV we adapt the rule-based description of SMT from [25]
to the specific case of lookahead and introduce a running
example. In Sec. V we present our lookahead partitioning
algorithm, then provide experimental results in Sec. VI, and
conclude in Sec. VII.1

II. RELATED WORK

The lookahead heuristic was first introduced in the context
of DPLL-based SAT solving in [27]. The original idea uses
the number of propagated literals as a measure of search
space reduction [23], and is further extended to consider, e.g.,
equivalence reasoning [5], the clause-based Jeroslow-Wang
heuristic [16], and approaches for choosing which variables
to consider for lookahead [7].

Lookahead as a pre- and in-processor for clause-learning
SAT solvers was formalized in [6]. However, it was not
integrated into the CDCL algorithm in the sense that is done
in this work. A similar pre- and in-processing approach was
recently implemented for the SMT solver Z3 [20]. When
used as a pre- and in-processor for an ordinary, CDCL-based
solver, the lookahead implementation can be conceptually
fairly straightforward. Lookahead is not directly involved in
the CDCL search, and therefore the artifacts related to non-
chronological backtracking need not be necessarily considered.
In [12] we formalized an algorithm inspired by the lookahead
heuristic for solving quantifier-free first-order formulas based
on CDCL SMT solving. The approach is implemented in our
SMT solver OpenSMT [11] and was shown experimentally to
be efficient for solving linear integer arithmetic problems with
Boolean structure. Compared to the publication, in the current
work we give a more formal treatment of the implementation,

1An extended version of the paper, available at https:
//usi-verification-and-security.github.io/opensmt-doc/publications/
lookahead-in-partitioning-smt-extended.pdf, provides an appendix detailing
some of the optimizations we implemented for the lookahead approach,
further experiments, and a comparison to an alternate scoring for the
lookahead algorithm.

define the lookahead algorithm for partitioning, and provide
experimental data and analysis for parallel solving based on
cube-and-conquer.

Our focus is in how SMT lookahead can implement parti-
tioning in divide-and-conquer for parallel solving. The idea
was introduced for parallel SAT solving in [10], and an
implementation for parallel SMT solving was used in [13],
[17]. However, the details of this partitioning approach have
not been discussed before. The lookahead-based partitioning
implementation in [10] applies essentially lookahead-based
binary partitioning recursively. The downside of this design is
that it does not use the full information in the CDCL solver,
and producing the partitions might miss an unsatisfiability high
up in the tree. As a result it construct partitions that are known
to be unsatisfiable in an intermediate state of the partitioning
algorithm.

The substantial amount of research in SAT heuristics,
overviewed in [1] from the perspective of parallel solving,
provides a promising foundation for partitioning in SMT.
Recent relevant approaches include [15], where the authors
recognize high-level information that can be used for better
clause learning.

III. PRELIMINARIES

The Satisfiability Modulo Theories (SMT) problem [22],
[3] consists of determining whether a propositional formula is
satisfiable, given that some of the atoms have an interpretation
in first-order logic. A conflict-driven clause learning (CDCL)
SMT solver searches first for propositional models, which
are then checked for consistency with respect to the theory.
If found inconsistent, the propositional structure is enriched
with an explanation, that is, a clause containing in general
theory atoms. If instead during the process the propositional
part becomes unsatisfiable, the solver has shown the whole
formula unsatisfiable. The formula is satisfiable if the solver
finds a theory-consistent model.

1) SMT solving: This section fixes the notation for first-
order logic and SMT. We define sets of function symbols,
terms, constants, and predicate symbols as usual, the last
containing the special symbols >, ⊥, and = that represent,
respectively true, false, and equality. We call applications of
predicate symbols on terms atoms. Let U be a possibly infinite
set of elements containing at least the truth values true and
false. A model M assigns to each constant a unique element
from U , to each function symbol of arity n ≥ 1 a total function
Un → U , to each predicate symbol of arity zero a truth value
true or false, and to each predicate symbol of arity n ≥ 1
a total function Un → {true, false}. An interpretation A is
the extension of M to general terms in the usual sense.

Given a finite set of atoms At, a clause is a set of literals,
that is, positive and negative atoms x,¬x, x ∈ At. We extend
the negation to clauses, and write ¬(l1 ∨ . . . ∨ ln) for ¬l1 ∧
. . .∧¬ln. A propositional formula in conjunctive normal form
(CNF) is a conjunction of clauses. Throughout the text we use
both a set of literals and disjunction, and a set of clauses and
a conjunction, interchangeably. We also treat conjunctions of

https://usi-verification-and-security.github.io/opensmt-doc/publications/lookahead-in-partitioning-smt-extended.pdf
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unit clauses (cubes) as sets of literals when this cannot be
confused with a disjunction. A sequence of literals is written
l1 . . . ln, and when the order plays no role, we equate the
sequence with the corresponding set {l1, . . . , ln}.

A set of literals X is consistent if for no x both x ∈ X
and ¬x ∈ X . A consistent set σ is called an assignment. An
assignment is total if for all atoms x ∈ At either x ∈ σ or
¬x ∈ σ. An atom x is assigned if either x ∈ σ or ¬x ∈ σ.
The assignment σ satisfies a clause c when σ ∩ c 6= ∅, and
a formula φ if it satisfies all clauses of φ. A theory T is a
non-empty set of models. A CNF formula φ is T -satisfiable
if (i) there exists a satisfying total assignment σ for φ and
an interpretation A that is an extension of a model M ∈ T ,
and (ii) for each l ∈ σ, lA ≡ true if l is of the form x; and
lA ≡ false if l is of the form ¬x, where x is an atom of φ.
In particular, given a formula φ and an assignment σ that is
total (with respect to φ), we write σ |=T φ if σ is such an
assignment. In addition we write φ′ |=p φ if all assignments
that satisfy φ′ also satisfy φ propositionally, and |=T c if c is
entailed by the theory, that is, a theory lemma of a theory T .
For a formula, clause, literal, or assignment ξ we denote by
Ats(ξ) the set of atoms appearing in ξ.

In this work we study two theories: the theory of linear real
arithmetic (LRA) and the theory of uninterpreted functions
with equality (EUF). The universe of LRA consists of real
numbers, function symbols ∗ and + of arity two restricted to
expressing linear terms, and the predicate symbol ≤; all three
have their usual interpretations. The EUF theory places no
restrictions on the interpretations of constants, functions, or
predicates (apart from the inherent ones for equality, >, and
⊥).

2) Parallel SMT solving: Given an SMT instance φ, par-
titioning produces instances φ1, . . . , φk such that the satisfi-
ability of φ is equal to the satisfiability of the disjunction
φ1∨. . .∨φk. In addition, we are interested in partitionings such
that no two partitions φi, φj , i 6= j, share a total satisfying
assignment. The partitioning approach Part(k) consists of
solving an SMT instance φ by first constructing the partitions
φ1, . . . , φk, and then solving each resulting partition φi in
parallel until one of them is shown satisfiable, or all of them
are shown unsatisfiable.

IV. CONFLICT-DRIVEN CLAUSE-LEARNING LOOKAHEAD
IN SMT

The CDCL lookahead algorithm intuitively guides an SMT
solver in a binary tree, using the solver’s state to determine
how to expand the tree. To more precisely describe the algo-
rithm, we adapt here the rule-based presentation of CDCL(T )
from [25], [21] to our needs. As usual, in the first phase an
input SMT formula is converted into an equisatisfiable propo-
sitional formula φ in CNF while preserving the atoms in the
theories T . The state 〈σ | F 〉 of an SMT solver consists of σ,
an initially empty assignment, and F , a set of clauses initially
consisting of φ. The execution of the solver proceeds according
to a set of rules described below. In general, the algorithm
alternates between propagation, choosing a decision literal,

denoted by xδ , and analysing conflicts found in propagation.
The labels L and E refer to learned and explanation clauses.
When they appear on the left side of ·−→, the corresponding
rule matches only to clauses that have the label.

• The propagation rule 〈σ | F ∧ (c ∨ l)〉 Prop−−→ 〈σl | F ∧
(c ∨ l)〉 where c is a clause, and ¬c ⊆ σ, l 6∈ σ and
¬l 6∈ σ, expands the assignment with literals that are
logical consequences in the current state.

• The theory propagation rule 〈σ | F 〉 TProp−−−→ 〈σl | F ∧
(c ∨ l)L〉 uses theory lemmas to lift information to the
propositional level allowing new literals to propagate. It
can be applied if σ |=T l, l or ¬l appears in F , l 6∈ σ
and ¬l 6∈ σ, and c is a clause such that σ |=T ¬c and
|=T c ∨ l.

• The decision rule 〈σ | F 〉 Dec−−→ 〈σlδ | F 〉 decides a literal
l, where l or ¬l appears in F , and l 6∈ σ and ¬l 6∈ σ.

• The theory explanation rule 〈σ | F 〉 TExp−−−→ 〈σ | F ∧
cE〉 is used to lift theory to propositional level based on
observed conflicts in the theory solver. It can be applied
when each atom of c appears in 〈σ | F 〉, σ |=T ¬c, and
|=T c.

• the propositional explanation rule 〈σ | F 〉 PExp−−−→ 〈σ |
F ∧ (c1∨c2)E〉 is the standard resolution rule, which can
be applied if c1 ∨x ∈ F and c2 ∨¬x ∈ F . However, due
to the invariants of the underlying SAT solver, we require
in addition that ¬c1 ⊆ σ and ¬c2 ⊆ σ.

• the backjump rule 〈σlδσ′ | F ∧ cE〉 BJ−→ 〈σl′ | F ∧ (c′ ∨
l′)L〉 learns clauses that steer the search. It is applicable if
¬c ⊆ σlδσ′, there is a clause c′∨ l′ such that (1) F, c |=p
c′ ∨ l′ and ¬c′ ⊆ σ; (2) l′ 6∈ Ats(σ) and ¬l′ 6∈ Ats(σ);
and (3) l′ or ¬l′ occurs in σlδσ′ or F ∧ c.

• The fail rule 〈σ | F ∧ c〉 Fail−−→ ⊥ corresponds to
determining unsatisfiability. It is applicable if ¬c ⊆ σ,
and σ contains no decision literals.

• The reset rule 〈σ | F 〉 Reset−−−→ 〈∅ | F 〉 can be applied at
any time.

• the forget rule 〈σ | F ∧ cL〉 Forget−−−→ 〈σ | F 〉 is used for
forgetting learned clauses, essentially to keep memory
usage in control

• The undo rule 〈σlδσ′ | F 〉 Undo−−−→ 〈σ | F 〉 is finally
required to implement the backtracking while computing
lookahead.

A CDCL(T )-based SMT solver works by applying the
above rules with two restrictions. (i) The solver always com-
putes the unit propagation closure before deciding a new
literal, i.e. the rule Dec is never applied if the rule Prop is
applicable; and (ii) to notice any theory inconsistencies when
a propositional assignment is found, if the rule Dec cannot be
applied (i.e., all atoms are assigned) the solver applies the rule
TProp. The solver always terminates if both the rules Reset
and Forget are applied with an increasing interval [2].

Since the unit-propagation closure has a central role in com-
puting lookahead, we give here two useful, related definitions
in the above notation. Given a solver state 〈σ | φ〉, the unit



propagation closure UP(σ, φ) is the set of literals σ′ ⊇ σ,
where 〈σ′ | φ〉 is the state obtained by applying the rules Prop
and TProp until neither one applies. A solver state 〈σ | φ〉
is called unit propagation consistent or consistent if the set
UP(σ, φ) is consistent.

The following running example illustrates the use of the
rules. The notation Prop∗ indicates a sequence of propagations.

Example 1: Consider the conjunction F =
(
¬x ∨ (b ≤

c)
)(1) ∧ (

¬x ∨ (a ≤ b)
)(2) ∧ (

¬(a ≤ d) ∨ ¬(a ≤ b) ∨ ¬(a ≤
c)
)(3) ∧ (

(c ≤ d) ∨ ¬(b ≤ c) ∨ (a ≤ d)
)(4) ∧ (

(c ≤ d) ∨
¬(a ≤ d) ∨ (a ≤ c)

)(5)
where the numbers in parentheses

label the clauses. The following is a possible computation of
the CDCL(T ) system.

〈∅ | F 〉 Dec−−→ 〈xδ | F 〉 Prop∗−−−→ 〈xδ(b ≤ c)(a ≤ b) | F 〉 Dec−−→
〈xδ(b ≤ c)(a ≤ b)¬(c ≤ d)δ | F 〉 Prop∗−−−→
〈xδ(b ≤ c)(a ≤ b)¬(c ≤ d)δ(a ≤ d)¬(a ≤ c) | F 〉 PExp−−−→
〈xδ(b ≤ c)(a ≤ b)¬(c ≤ d)δ(a ≤ d)¬(a ≤ c) |

F ∧
(
(c ≤ d) ∨ ¬(b ≤ c) ∨ (a ≤ c)

)E〉 BJ−→
〈xδ(b ≤ c)(a ≤ b) | F ∧ CL1 〉

where the learned clause, obtained by resolution, is CL1 :=
(c ≤ d∨¬b ≤ c∨¬a ≤ b)L. Continuing the example, we get

TProp−−−→ 〈xδ(b ≤ c)(a ≤ b)(c ≤ d)(a ≤ c) | F ′〉

where F ′ := F ∧ CL1 ∧
(
¬(a ≤ b) ∨ ¬(b ≤ c) ∨ (a ≤ c)

)L
,

the last being a valid clause in the theory, and

Prop∗−−−→ 〈xδ(b ≤ c)(a ≤ b)(c ≤ d)(a ≤ c)¬(a ≤ d) | F ′〉
TExp−−−→ 〈xδ(b ≤ c)(a ≤ b)(c ≤ d)(a ≤ c)¬(a ≤ d) |
F ′ ∧

(
¬(a ≤ c) ∨ ¬(c ≤ d) ∨ (a ≤ d)

)E〉
BJ−→ 〈¬x | F ′ ∧ ¬xL〉

where ¬xL is obtained through a resolution derivation on
clauses in F ′ and the explanation.

V. LOOKAHEAD-BASED PARTITIONING FOR SMT

This section describes the lookahead-based algorithm for
partitioning an SMT instance into 2d partitions or determining
whether the instance is satisfiable.

A. The Lookahead Score

Lookahead in a backtracking search consists in general of
repeated trial and backtracking on all available branches at
a certain point of the search, and committing to the one
that seems most promising. We define the relation between
SMT solver states before and after the trial branch, and
the lookahead score as the difference between the two. The
approach is oblivious to the details on how the lookahead score
between two states s and s′ is defined. Our implementation
supports two scoring functions, one based on the number
of free atoms in the instance globally [23], and the other
on unassigned atoms in the clauses of the instance [8]. Our
examples and experiments in this paper use the former.

Lookahead aims to assign with the rule Dec the literal that
minimizes the upper bound for the remaining search space.
Given a state s where neither Prop nor TProp applies, we
define the lookahead step on a literal l as the sequence of rules
starting from s, having Dec on l as the first rule, followed by
unit propagation closure computation resulting in the state s′,
and finally an Undo on l ending in state s. This sequence is not
always possible, and we describe in Sec. V how we handle the
failed cases. For a consistent state 〈σ | φ〉, the set UP(σ, φ)
is unique. Therefore we can define the lookahead score of
a literal l based on a difference between 〈UP(σ, φ) | φ〉 and
〈UP(σl, φ) | φ〉. We denote the lookahead score of literal l by
score(l) = |UP(σ∪{l}, φ)\UP(σ, φ)|, that is, the number of
propagated literals after deciding l, and extend the definition
to atoms x as

score(x) = min
(
score(x), score(¬x)

)
, (1)

which minimizes the sum of the upper bounds for the remain-
ing search spaces [23].2

B. Lookahead-Based Partitioning

Algorithm 1: The lookahead partitioning algorithm.
Input : An SMT instance φ in CNF; Tree depth d
Output: Sat, Unsat, or a balanced binary tree of depth d
Data : Solver s, DFS stack stack

1 restart← true
2 while restart do
3 restart← false;
4 r ← empty node;
5 stack .push(r);
6 while stack .size 6= 0 do
7 n← stack .pop();
8 res ← setSolverToNode(s, n);
9 if res = Unsat then return Unsat;

10 if res = BackJump then
11 restart ← true;
12 break;
13 if Depth of n is d then continue;
14 c, c′, res ← expandTree(s);
15 if res = Unsat then return Unsat;
16 if res = Sat then return Sat;
17 if res = BackJump then
18 restart ← true;
19 break;
20 stack .push(c);
21 stack .push(c′);
22 end
23 end
24 return the tree rooted at r;

The approach is presented in Alg. 1. The algorithm con-
structs a tree with nodes labelled with literals. The tree is
constructed depth-first using the stack , with the help of a
CDCL(T ) SMT solver s. The intuition is that the tree is
being built by guiding the SMT solver along the rooted paths
and lookahead heuristic is used to expand a leaf node. The

2There are other definitions for lookahead score, but they all favor atoms
that minimize the remaining search space on both polarities [8].



algorithm limits the search depth to the input value d , and is
also a sound but incomplete (if |Atsφ| > d) SMT solver.

Let ni denote a node n at depth i in the tree. Then each
path in the tree from the root n0 to a leaf ni corresponds
to a partition as follows. We label the nodes n with a literal
Lab(n), and n0 is labelled Lab(n0) = >. A path n0 . . . ni is
interpreted as a cube, and n0 . . . nd in the tree corresponds to
the partition φ ∧ Lab(n0) ∧ . . . ∧ Lab(nd).

The main work, done in the loop between lines 6 – 22,
consists of two phases: setting the solver s to a given node
on Line 8, and expanding the lookahead tree on Line 14. We
describe both phases, referring to the rules in Sec. III.

1) Expanding the lookahead tree: The lookahead tree is
expanded with new nodes c, c′ by the function expandTree
on Line 14. Using the solver s the function computes the
lookahead step for each literal x,¬x not assigned in σ as
described in Sec. V-A. The process may be interrupted by
three special conditions:

• The rule Fail becomes applicable. In this case the function
returns Unsat.

• A total assignment is found: the function returns Sat.
• The rule BJ becomes applicable. In this case:

– If BJ becomes applicable with lδ = x or lδ = ¬x,
the function does a local restart: it forgets the com-
puted lookahead scores and restarts the lookahead
computation.

– If BJ is applicable with lδ = y or lδ = ¬y for some
earlier decision literal y 6= x, the function does a
complete restart by returning BackJump.

If expandTree determines satisfiability, the algorithm ter-
minates and reports the result immediately. The distinction
between local and complete restarts is motivated by efficiency
and has deep implications to the algorithm. We discuss this
point in Sec. V-B3.

2) Setting the solver to a given node: A lookahead path
obtained from the stack is used to set the solver s to the
correct state where the lookahead scores of literals can be
computed. This is done in Line 8 by the call to the function
setSolverToNode that takes as arguments the solver s = 〈σ |
F 〉, and the current node n = nk. The function initially
applies the rule Reset on the solver, and computes the unit
propagation closure at the root by σ = UP(∅, F ). Then, for
each n0 . . . nk the function applies Dec with l = Lab(ni), and
sets σ = UP(σl, F ). The process may be interrupted in two
cases:

• Fail becomes applicable. This corresponds to the deriva-
tion of unsatisfiability, and the process returns Unsat.

• BJ becomes applicable. The node is locally unsatisfiable
and our implementation restarts the construction of the
lookahead tree to avoid unbalancedness.

Otherwise, setting solver to the node succeeds and the algo-
rithm proceeds with expanding the tree.

To clarify the behavior of the algorithm, we show its
execution on the running example (Example 1).

Example 2: Let φ = F from Ex. 1 and d = 2 for Alg. 1.
The algorithm advances to line 14 to compute the lookahead
scores of the variables using solver s. No conflicts are detected
by s, literal x propagates {b ≤ c, a ≤ b}, and literals ¬b ≤
c and ¬a ≤ b propagate {¬x}. No other branch results in
propagations. Hence the score from Eq. (1) is zero for all
atoms.

Say the algorithm expands the tree, that up to now consisted
only of the empty root, with nodes labeled ¬x, x, and pushes
both nodes to the DFS stack. Assume that the algorithm first
branches on ¬x. None of the free literals propagate, and tree
is expanded for example with ¬a ≤ d and a ≤ d. Once these
are popped from the stack, the tree would consist so far of
branches

(
¬x(a ≤ d)

)
,
(
¬x¬(a ≤ d)

)
, and (x).

The algorithm will now pop x on line 7. On line 14, during
the execution of the lookahead heuristic, the algorithm will do
the lookahead step on b ≤ c. This triggers the conflict-handling
sequence shown in Ex. 1 resulting in the solver state 〈¬x |
F ∧

(
(c ≤ d) ∨ ¬(b ≤ c) ∨ ¬(a ≤ b)

)L ∧ (
¬(a ≤ b) ∨ ¬(b ≤

c) ∨ (a ≤ c)
)L〉. Backjump is on the earlier decision literal

a ≤ c, not on the most recent decision literal b ≤ c (see the
description above for expandTree), and therefore expandTree
will return BackJump, restarting the tree construction.

The algorithm builds now the tree similar to the first time,
but when computing lookahead in state 〈x(b ≤ c)(a ≤ b)(c ≤
d)(a ≤ c)¬(a ≤ d) | F ′〉 there are no free variables, and the
algorithm reports satisfiability.

3) Observations on the backjumps: The backjump during
the above execution is critical for the partition quality. It is
relatively easy to see that applying recursively a lookahead al-
gorithm on the original problem, as in [10], produces partitions
that in a later state of the solver would not be unit-propagation
consistent.

First, one could imagine a version of the algorithm that
backtracks to the level indicated by the backjump, similar
to the underlying SMT solver. This choice would intuitively
result in less repeated work as the previously built lookahead
tree would be preserved, and therefore conceivably in a more
efficient algorithm. However, there are two reasons why the
restart is necessary. First, a clause c learned in a backjump
at expandTree on node ni alters the lookahead scores in an
unpredictable way in the solver states closer to the root. The
current lookahead tree becomes in general invalid from the
heuristic perspective. Without the restart, the clause should be
considered in all previous invocations of expandTree at least
in the nodes n0 . . . ni−1, and tracking such propagations would
be expensive. Second, allowing backjumps in the lookahead
tree means that when setting the solver to a new node (Line 8),
a learned clause can cause a conflict not present when the node
was pushed (lines 20 and 21). In this case it is unclear how
the algorithm should proceed to construct the balanced binary
tree with consistent partitions.

The distinction between local and complete restarts stems
from the above two observations. Complete restarts are too
expensive to be performed on every conflict, a relatively



common event during the lookahead computation. Instead,
they are done only on the long backjumps that are rare in
lookahead-based branching. The consequence of having the
local restarts is that setSolverToNode may result in a conflict.
While this introduces a performance overhead, it turns out to
be very rare and therefore insignificant in practice.3

We still recompute the lookahead scores in a local restart,
since the error caused by omitting this may grow very large, as
shown by this example where not recomputing the lookahead
after a conflict would mis-calculate a literal’s score with a
maximum possible error.

Example 3: Consider the following derivation, where a
lookahead at 〈σ | G〉 on xd fails with the learned clause
(c ∨ ¬x)L:

〈σxd | G〉 PExp−−−→ 〈σxd | G ∧ c′E〉 BJ−→ 〈σ¬x | G ∧ (c ∨ ¬x)L〉
Prop−−→ 〈σ¬xσ′ | G ∧ (c ∨ ¬x)L〉.

Assume now that G has as a subformula (x∨v∨p1)∧ . . .∧
(x∨ v∨ pn)∧ (x∨¬v∨ q1)∧ . . .∧ (x∨¬v∨ qn), where pi, qi
and v do not appear in Ats(σ′). Then the lookahead score of
v at 〈σ | G〉 is 0 but in the state 〈σ¬xσ′ | G∧ (c∨¬x)L〉 the
score is n. Note that n is upper bounded by |Atsφ| which in
our scoring is also the highest heuristic value.

4) Correctness and termination: We finish the discussion
with proofs on correctness and termination for Alg. 1

Theorem 1: The algorithm either determines the satisfiability
of the instance or constructs a balanced binary tree with each
rooted path leading to the leaves corresponding to a unit-
propagation consistent SMT instance.
Proof. The correctness of the Sat and Unsat results reported
by the algorithm follow immediately from the observation
that the result is obtained by modifying the solver state with
the rules outlined in Sec. IV. Each rooted path of the tree
corresponds to a unit propagation consistent instance. This
follows from two observations. First, if setSolverToNode
succeeds on a node n, the instance corresponding to the node is
unit propagation consistent. Second, if expandTree succeeds,
similarly by construction the instances corresponding to the
nodes c and c′ are consistent. The resulting tree is balanced,
since unless the execution terminates in lines 9, 15, or 16, the
algorithm performs a DFS with a cutoff at depth d . �

Theorem 2: The algorithm terminates.
Proof. The procedure setSolverToNode terminates since it
performs a sequence that is bounded by the depth of the
node and consists of rules Dec and unit propagation closure
computations that both terminate. The procedure expandTree
terminates in quadratic number of applications of Dec, Undo
and unit propagation closure computations: the computation
consists of lookahead steps each bounded by the number of
atoms |Ats(φ)|. The local restart at a node n can be done at
most |Ats(φ)| times, since each related backjump will assign
at least one atom in the truth assignment of the solver state at
node n.

3We observed three conflicts while partitioning over 9000 instances in
different ways.
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The restarts in tree construction on lines 11 and 18 will
not cause non-termination since the solver state is persistent
(modulo possible applications of Reset) over such restarts.
Following [18], the assignments of the solver together with
the literals can be seen as a finite ordered sequence that is
increased by every backjump and has a maximum element
where every atom is assigned with no decision literals. �

VI. EXPERIMENTS

We report experiments on our implementation on the non-
incremental benchmark divisions QF UF and QF LRA of
SMT-LIB.4 The two divisions are chosen since they constitute
the foundation of most other SMT logics and allow us to
directly observe the behaviour of the congruence closure
(egraph) and the Simplex algorithms under lookahead. All the
experiments were run using the SMT solver OpenSMT [13].
The partitions are constructed with the implementation of
Alg. 1, and, when applicable, solved with OpenSMT’s default
CDCL(T ) engine running the VSIDS heuristic [19], a setup
similar to most CDCL(T ) solvers. The CPU time consumed
by the experiments is slightly under 338 CPU days. We used
a Linux cluster, equipped with two Intel Xeon E5-2650 v3
@ 2.30GHz CPUs, yielding (2 × 10) cores per node. Each
node has 64GB of DDR4@2133MHz memory. We ran at most
ten solvers on each node simultaneously, limiting the memory
available for a solver to 4GB. The time out was 7200 s for both
the partitioning and solving, except in Fig. 2 where the timeout
was 1200 s. We first report on the efficiency of the partitioning
implementation, and then show that the partitioning in general
works well. Finally we study instances showing a slowdown
anomaly. All times are given in seconds and refer to wall-clock
times.

1) Lookahead partitioning efficiency: The plots in Fig. 1
illustrate the run times of Alg. 1 on the QF LRA and QF UF

4The benchmarks are available at https://clc-gitlab.cs.uiowa.edu:2443/
SMT-LIB-benchmarks under commit hash 33961bc4.

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks
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instances when partitioning into 16. The instances are ordered
based on the run time. We only report the instances not solved
during partitioning. The implementation is efficient in partic-
ular for QF UF, where the maximum stays in the majority
of cases within a few seconds. The lookahead on QF LRA is
much more involved, perhaps due to the more expensive theory
solving. Our implementation partitions 98% of the benchmarks
within two hours, showing that the approach is realistic.

2) Effect of partitioning on instance difficulty: To mea-
sure how partitioning affects the instance difficulty, we study
instances that OpenSMT can solve between 100 and 1000
seconds sequentially, a range where parallelization is useful
but the baseline can still be computed within a reasonable time.
This resulted in 13 instances for QF UF and 144 instances
for QF LRA. The reported times do not include partitioning.

Figure 2 compares Part(2) to sequential solving for
QF LRA (top) and QF UF (bottom). We plot the line y = x
corresponding to no speed-up, and the dashed line y = 2x
corresponding to two-fold slowdown. The dashed horizontal
and vertical lines in the top figure show the timeout of 1200
seconds. Crosses (×) and boxes (�) indicate satisfiable and
unsatisfiable instances, respectively.

Except for three cases, Part(2) provides a consistent speed-
up in QF UF. We ran these instances in Part(64) and each
became easer to solve than the original instance (as shown
by the downwards arrows that point to the corresponding
Part(64) measurement). As a conclusion, it seems that looka-
head is efficient when combined with the congruence closure
algorithm. This is somewhat expected since lookahead is
efficient in purely propositional solving, and the congruence
closure algorithm is scalable.

It is interesting to compare these results to QF LRA, where
lookahead is efficient in 60% of the instances, but we also
observe significant slowdowns, corresponding to up to 6-fold
increase in run time. Repeating the experiment of partitioning
with Part(64) did not result in a positive result similar to
QF UF (see figures 3 – 4), suggesting that this phenomenon
has a different origin.

The partitioning run times for the anomalies are shown with
the labels in Fig. 1. Typically their run times are above the
average.

3) Slowdown analysis for partitioning: Despite Part re-
sulting in most cases in a consistent speed-up, the significant
slowdowns in QF LRA warrant a separate study, as it poses
a threat for lookahead partitioning in SMT. We label with
(a) – (i) in Fig. 2 (top) nine instances where the run time
more than doubles. We removed the randomness common in
heuristic search by solving each partition several times with
the OpenSMT VSIDS engine while changing the branching
heuristic’s random seed. We refer to this approach as the
simulated parallel solver.

We ran as a pre-processing phase Part(k) for k =
2, 4, 8, . . . , 2048 for the instances (a) – (i) and stored the
resulting partitions if the instance was not solved by Part .
As a result of time outs and one of the instances being solved
during partitioning, we could run the full experiment set only
for the instances (a), (d), and (f). We concentrate on these
three instances since they seem representative for the others
as well.

Figure 3 (top) shows run times for the simulated par-
allel solver on the only satisfiable instance (f). While the
slowdown is consistent for Part(2), we observe speedup for
Part(k), k ≥ 4. Figure 3 (bottom) shows the simulated parallel
median run times on instance (d). The partitions are easy only
once a big number, 1024, is reached. We show in addition
run time ranges (green bars) and medians (blue starts) for
the individual partitions. The instance (i) behaves similarly to
this. Figure 4 shows the results for the instance (a), where
the minimum, median, and maximum run times consistently
increase. We show also the individual Part runs as yellow
boxes. Instances (b), (c), (e), (g), and (h) behave similarly to
(a). While the lookahead clearly identifies easier partitions,
the hardest partitions seem to get more difficult. In particular
Figs. 3 (bottom) and 4 show a significant amount of partitions
having the median time higher than the sequential median. The
slowdown can be argued to result in part directly from these
partitions.

The slowdown, affecting not uniformly all instances, seems
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to be the result of an intricate interaction between lookahead
and the incremental Simplex implementation typically used in
SMT solvers [4]. The implementation maintains an internal
model for its real valued variables that satisfies all currently
asserted inequalities. If a new inequality is not satisfied in the
model, this triggers the pivoting sequence of Simplex that is
in the worst-case exponential. SMT solvers try to avoid this
behavior by branching as much as possible on inequalities that
are consistent with the model. Because of lookahead, Simplex
is sometimes forced to follow such a sequence, causing the
increasing run times for some of the partitions. It is a natural
further question how to generalize lookahead to mitigate or
avoid these cases.

To conclude, we note that the lookahead partitioning pro-
duces in the vast majority of cases very balanced partitions and
good speed-up. Nevertheless, the instance run times increase
in a significant portion of the benchmarks. In the studied
SMT-LIB benchmark divisions, we observed slowdown only
for QF LRA. We believe that it is possible to obtain speed-
up also for these instances by developing a version of the
lookahead heuristic that considers also the configuration of
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Fig. 4. Scalability and partition difficulty for an unsatisfiable instance. The
horizontal axis refers to number of partitions produced, and the vertical axis
to run time in seconds.

the theory solvers run inside the SMT solver.

VII. CONCLUSIONS

We present an algorithm for partitioning SMT with looka-
head based on CDCL(T ) calculus and show experimentally
that the approach is highly promising. We also demonstrate
that the classical propositional lookahead is not in general
sufficient in SMT, where the theory reasoning engines may
unexpectedly interfere with lookahead heuristic’s view of the
search space. In particular we found that in combination with
Simplex as implemented in many SMT solvers, lookahead
partitioning sometimes creates instances that are increasingly
difficult to solve.

In future we plan to extend the lookahead heuristic to better
consider the theories. In parallel, we will also study looka-
head partitioning in a more applied setting, including theory
combinations and non-convex theories, when new atoms are
introduced.
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