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Abstract

Backfilling is the process of re-extracting all gallery em-
beddings from upgraded models in image retrieval systems.
It inevitably requires a prohibitively large amount of com-
putational cost and even entails the downtime of the ser-
vice. Although backward-compatible learning sidesteps this
challenge by tackling query-side representations, this leads
to suboptimal solutions in principle because gallery em-
beddings cannot benefit from model upgrades. We address
this dilemma by introducing an online backfilling algorithm,
which enables us to achieve a progressive performance im-
provement during the backfilling process while not sacri-
ficing the final performance of new model after the com-
pletion of backfilling. To this end, we first propose a sim-
ple distance rank merge technique for online backfilling.
Then, we incorporate a reverse transformation module for
more effective and efficient merging, which is further en-
hanced by adopting a metric-compatible contrastive learn-
ing approach. These two components help to make the dis-
tances of old and new models compatible, resulting in de-
sirable merge results during backfilling with no extra com-
putational overhead. Extensive experiments show the effec-
tiveness of our framework on four standard benchmarks in
various settings.

1. Introduction
Image retrieval models [5, 10, 21, 23] have achieved re-

markable performance by adopting deep neural networks
for representing images. Yet, all models need to be up-
graded at times to take advantage of improvements in train-
ing datasets, network architectures, and training techniques.
This unavoidably leads to the need for re-extracting the fea-
tures from millions or even billions of gallery images using
the upgraded new model. This process, called backfilling

† This work was mostly done during an internship at Meta AI.

or re-indexing, needs to be completed before the retrieval
system can benefit from the new model, which may take
months in practice.

To sidestep this bottleneck, several backfilling-free ap-
proaches based on backward-compatible learning [4,13,19,
20, 22] have been proposed. They learn a new model while
ensuring that its feature space is still compatible with the old
one, thus avoiding the need for updating old gallery embed-
dings. Although these approaches have achieved substantial
performance gains without backfilling, they achieve feature
compatibility at the expense of feature discriminability and
their performance is suboptimal. We argue that backward-
compatible learning is not a fundamental solution and back-
filling is still essential to accomplish state-of-the-art perfor-
mance without performance sacrifices.

To resolve this compatibility-discriminability dilemma,
we relax the backfill-free constraint and propose a novel
online backfilling algorithm equipped with three technical
components. We posit that an online backfilling technique
needs to satisfy three essential conditions: 1) immediate de-
ployment after the completion of model upgrade, 2) pro-
gressive and non-trivial performance gains in the middle
of backfilling, and 3) no degradation of final performance
compared to offline backfilling. To this end, we first pro-
pose a distance rank merge framework to make online back-
filling feasible, which retrieves images from both the old
and new galleries separately and merge their results to ob-
tain the final retrieval outputs even when backfilling is still
ongoing. While this approach provides a monotonic perfor-
mance increase with the progress of backfilling regardless
of the gallery of interest and network architectures, it re-
quires feature computations twice, once from the old model
and another from the new one at the inference stage of a
query. To overcome this limitation, we introduce a reverse
transformation module, which is a lightweight mapping net-
work between the old and new embeddings. The reverse
transformation module allows us to obtain the query repre-
sentations compatible with both the old and new galleries
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using only a single feature extraction. On the other hand,
however, we notice that the scales of distance in the embed-
ding spaces of the two models could be significantly dif-
ferent. We resolve the limitation with a metric compatible
learning technique, which calibrates the distances of two
models via contrastive learning, further enhancing perfor-
mance of rank merge.

The main contributions of our work are summarized as
follows.

• We propose an online backfilling approach, a funda-
mental solution for model upgrades in image retrieval
systems, based on distance rank merge to overcome
the compatibility-discriminability dilemma in existing
compatible learning methods.

• We incorporate a reverse query transform module to
make it compatible with both the old and new galleries
while computing the feature extraction of query only
once in the middle of the backfilling process.

• We adopt a metric-compatible learning technique to
make the merge process robust by calibrating distances
in the feature embedding spaces given by the old and
new models.

• The proposed approach outperforms all existing meth-
ods by significant margins on four standard benchmark
datasets under various scenarios.

The rest of this paper is organized as follows. Section 2
reviews the related works. We present the main framework
of online backfilling in Section 3, and discuss the techni-
cal components for improvement in Section 4 and 5. We
demonstrate the effectiveness of the proposed framework in
Section 6 and conclude this paper in Section 7.

2. Related Work

Backward compatible learning Backward compatibility
refers to the property to support older versions in hardware
or software systems. It has been recently used in model
upgrade scenarios in image retrieval systems. Since the fea-
ture spaces given by the models relying on training datasets
in different regimes are not compatible [11, 24], model up-
grades require re-extraction of all gallery images from new
models, which takes a huge amount of computational cost.
To prevent this time-consuming backfilling cost, backward
compatible training (BCT) [1, 13, 15, 19, 22, 26] has been
proposed to learn better feature representations while be-
ing compatible with old embeddings, which makes the new
model backfill-free. Shen et al. [19] employ the influence
loss that utilizes the old classifier as a regularizer when
training the new model. LCE [13] introduces an alignment

loss to align the class centers between old and new mod-
els and a boundary loss that restricts more compact intra-
class distributions for the new model. Bai et al. [1] pro-
pose a joint prototype transfer with structural regularization
to align two embedding features. UniBCT [26] presents a
structural prototype refinement algorithm that first refines
noisy old features with graph transition and then conducts
backward compatible training. Although these approaches
improved compatible performance without backfilling, they
clearly sacrifice feature discriminability to achieve feature
compatibility with non-ideal old gallery embeddings.

Compatible learning with backfilling To overcome the
inherent limitation of backward compatible learning, sev-
eral approaches [17, 20, 25] have been proposed to uti-
lize backfilling but efficiently. Forward compatible train-
ing (FCT) [17] learn a lightweight transformation mod-
ule that updates old gallery embeddings to be compati-
ble with new embeddings. Although it gives better com-
patible performance than BCT, it requires an additional
side-information [2] to map from old to new embeddings,
which limits its practicality. Moreover, FCT still suffers
from computational bottleneck until all old gallery embed-
dings are transformed, especially when the side-information
needs to be extracted. On the other hand, RACT [25]
and BiCT [20] alleviate this bottleneck issue by backfilling
the gallery embeddings in an online manner. RACT first
trains a backward-compatible new model with regression-
alleviating loss, then backfills the old gallery embeddings
with the new model. Because the new feature space is
compatible with the old one, the new model can be de-
ployed right away while backfilling is carried out in the
background. BiCT further reduces the backfilling cost
by transforming the old gallery embeddings with forward-
compatible training [17]. Although both approaches can
utilize online backfilling, they still sacrifice the final perfor-
mance because the final new embeddings are constrained by
the old ones. Unlike these methods, our framework enables
online backfilling while fully exploiting the final new model
performance without any degradation.

3. Image Retrieval by Rank Merge
This section discusses our baseline image retrieval al-

gorithm that makes online backfilling feasible. We first
present our motivation and then describe technical details
with empirical observations.

3.1. Overview

Our goal is to develop a fundamental solution via online
backfilling to overcome the compatibility-discriminability
trade-off in compatible model upgrade. This strategy
removes inherent limitations of backfill-free backward-
compatible learning—the inability to use state-of-the-



Figure 1. Image retrieval with the proposed distance rank merge technique. In the middle of backfilling, we retrieve images independently
using two separate models and their galleries, and merge the retrieval results based on their distances. Note that the total number of gallery
embeddings are fixed throughout the backfilling process, i.e., |G| = |Gnew|+ |Gold|.

art representations of gallery images through model
upgrades—while avoiding prohibitive costs, including the
situation that we cannot benefit from model upgrade of the
offline backfilling process, until backfilling is completed.
To be specific, the proposed image retrieval system with
online backfilling should satisfy the following three condi-
tions:

1. The system can be deployed immediately as soon as
model upgrade is complete.

2. The performance should monotonically increase with-
out negative flips1 as backfill progresses.

3. The final performance should not be sacrificed com-
pared to the algorithm relying on offline backfilling.

We present a distance rank merge approach for image re-
trieval, which enables online backfilling in arbitrary model
upgrade scenarios. Our method maintains two separate re-
trieval pipelines corresponding to the old and new models
and merges the retrieval results from the two models based
on distances from a query embedding. This allows us to run
the retrieval system without a warm-up period and achieve
surprisingly good results during the backfill process. Note
that the old and new models are not required to be com-
patible at this moment but we will make them so to further
improve performance in the subsequent sections.

3.2. Formulation

Let q ∈ Q be a query image and G = {g1, ...,gN} be
a gallery composed of N images. An embedding network
φ(·) projects an image onto a learned feature embedding
space. To retrieve the closest gallery image given a query,
we find argming∈G dist (φ(q), φ(g)), where dist(·, ·) is a
distance metric. Following [19], we define the retrieval per-
formance as

M(φ(Q), φ(G)), (1)

1The “negative flip” refers to performance degradation caused by in-
correct retrievals of samples by the new model, which were correctly rec-
ognized by the old model.

where M(·, ·) is an evaluation metric such as mean aver-
age precision (mAP) or cumulative matching characteristics
(CMC), and φ(·) indicates embedding models for query and
gallery, respectively.

Backward compatibility Denote the old and new embed-
ding networks by φold(·) and φnew(·) respectively. If φnew(·)
is backward compatible with φold(·), then we can perform
search on a set of old gallery embeddings using a new
query embedding, i.e., argming∈G dist(φnew(q), φold(g)).
As stated in [19], the backward compatibility is achieved
when the following criterion is satisfied:

M(φnew(Q), φold(G)) >M(φold(Q), φold(G)). (2)

From now, we refer to a pair of embedding networks for
query and gallery as a retrieval system, e.g., {φ(·), φ(·)}.

Rank merge Assume that the first M out of a total of
N images are backfilled, i.e., Gnew = {g1, ...,gM} and
Gold = {gM+1, ...,gN}. Note that the total number of
stored gallery embeddings is fixed to N during the back-
filling process, i.e., Gold = G −Gnew. Then, we first con-
duct image retrieval using the individual retrieval systems,
{φold, φold} and {φnew, φnew}, independently as

gm = argmin
gi∈Gold

dist
(
φold(q), φold(gi)

)
, (3)

gn = argmin
gj∈Gnew

dist (φnew(q), φnew(gj)) . (4)

Figure 1 illustrates the retrieval process. For each query
image q, we finally select gm if dist(φold(q), φold(gm)) <
dist(φnew(q), φnew(gn)) and gn otherwise. The retrieval
performance after rank merge during backfilling is given by

Mt := (5)

M({φold(Q), φnew(Q)}, {φold(Gold
t ), φnew(Gnew

t )}),

where t ∈ [0, 1] indicates the rate of backfilling completion,
i.e., |Gnew

t | = t|G| and |Gold
t | = (1 − t)|G|. The criteria
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Figure 2. mAP and CMC results on the standard benchmarks using ResNet-18. Old and New denote the performance without backfilling
and with offline backfilling, respectively. The proposed distance rank merging of the old and new models, denoted by Merge, exhibits
desirable results; the performance monotonically increases as backfill progresses without negative flips for all datasets and our algorithm
based on online backfilling achieves competitive final performances with offline backfilling. The numbers in the legend indicate either
AUCmAP or AUCCMC scores.

discussed in Section 3.1 are formally defined as

M0 ≥M(φold(Q), φold(G)), (6)
M1 ≥M(φnew(Q), φnew(G)), (7)
Mt1 ≥Mt2 if t1 ≥ t2. (8)

Comprehensive evaluation To measure both backfilling
cost and model performance comprehensively during online
backfilling, we utilize the following metrics that calculate
the area under mAP or CMC curves as

AUCmAP =

∫ 1

0

mAPtdt and AUCCMC =

∫ 1

0

CMCtdt.

3.3. Merge Results

We present the results from the rank merge strategy on
two standard benchmarks, including ImageNet-1K [18] and
Places-365 [28], in Figure 2. Our rank merging approach
yields strong and robust results for all datasets; both mAP
and CMC monotonically increase without negative flips as
backfill progresses even though the old and new models are
not compatible each other. Also, it takes full advantage of
the new model until the end of backfilling without suffering
from performance degradation. This validates that our rank
merge technique satisfies the criteria for online backfilling
discussed in Section 3.1 and 3.2. Please refer to Section 6.1
for the experimental detail.

Figure 3. Reverse query transform module, ψ(·), learns a mapping
from new to old feature spaces. We only update the parameters of
the module ψ(·) (in red rectangle) during training.

4. Reverse Query Transform

Our baseline image retrieval method is model-agnostic,
free from extra training, and effective for performance im-
provement. However, one may argue that the proposed ap-
proach is computationally expensive at inference time be-
cause we need to conduct feature extraction twice per query
for both the old and new models. This section discusses how
to alleviate this limitation by introducing a small network,
called the reverse query transform module.

4.1. Basic Formulation

To reduce the computational cost incurred by comput-
ing query embeddings twice at inference stage, we compute
the embedding using the new model and transform it to the
version compatible with the old model through the reverse



Figure 4. Image retrieval merging with reverse query transform module. Backward retrieval system consists of reversely transformed new
query and old gallery, {φrev, φold}. The final image retrieval results are given by merging the outputs from {φrev, φold} and {φnew, φnew}.

query transform module as illustrated in Figure 3. To estab-
lish such a mechanism, we fix the parameters of the old and
new models {φold, φnew} after training them independently,
and train a lightweight network, ψ(·), which transforms the
embedding in the new model to the one in the old model.
For each training example x, our objective is minimizing
the following loss:

LRQT(x) := dist
(
ψ (φnew(x)) , φold(x)

)
, (9)

where dist(·, ·) is a distance metric such as `2 or cosine dis-
tances. Because we only update the parameters in ψ(·), not
the ones in φnew(·) or φold(·), we can still access the repre-
sentations given by the new model at no cost even after the
optimization of ψ(·). Note that this reverse query transform
module differs from FCT [17] mainly in terms of transfor-
mation direction and requirement of side information. FCT
performs a transformation from the old representation to the
new, while the opposite is true for our proposed approach.
Since the embedding quality of a new model is highly likely
to be better than that of an old one, our reverse transforma-
tion module performs well even without additional side in-
formation and, consequently, is more practical and efficient.

4.2. Integration into Baseline Retrieval System

Figure 4 illustrates the distance rank merge process to-
gether with the proposed reverse transformation module.
The whole procedure consists of two retrieval systems de-
fined by a pair of query and gallery representations, back-
ward retrieval system {φrev, φold} and new retrieval system
{φnew, φnew}, where φrev := ψ(φnew). Note that we obtain
both the new and compatible query embeddings, φnew(q)
and φrev(q) = ψ(φnew(q)), using a shared feature extrac-
tion network, φnew(·).

The entire image retrieval pipeline consists of two parts:
1) feature extraction of a query image and 2) search for the
nearest image in a gallery from the query. Compared to the
image retrieval based on a single model, the computational
cost of the proposed model with rank merge requires negli-
gible additional cost, which corresponds to feature transfor-
mation ψ(·) in the first part. Note that the number of total

gallery embeddings is fixed, i.e., |Gnew|+ |Gold| = |G|, so
the cost of the second part is always the same in both cases.

5. Distance Calibration

While the proposed rank merge technique with the ba-
sic reverse transformation module works well, there ex-
ists room for improvement in calibrating feature embedding
spaces of both systems. This section discusses the issues in
details and presents how we figure them out.

5.1. Cross-Model Contrastive Learning

The objective in (9) cares about the positive pairs φold

and φrev with no consideration of negative pairs, which can
sometimes lead to misranked position. To handle this issue,
we employ a supervised contrastive learning loss [7, 14] to
consider both positive and negative pairs as follows:

LCL(xi, yi) = − log

∑
yk=yi

sold
ik∑

yk=yi
sold
ik +

∑
yk 6=yi

sold
ik

, (10)

where sold
ij = exp

(
−dist

(
φrev(xi), φ

old(xj)
))

and yi de-
notes the class membership of the ith sample. For more ro-
bust contrastive training, we perform hard example mining
for both the positive and negative pairs2. Such a contrastive
learning approach facilitates distance calibration and im-
proves feature discrimination because it promotes separa-
tion of the positive and negative examples.

Now, although the distances within the backward re-
trieval system {φrev, φold} become more comparable, they
are still not properly calibrated in terms of the distances
in the new retrieval system {φnew, φnew}. Considering dis-
tances in both retrieval systems jointly when we train the
reverse transformation module, we can obtain more com-
parable distances and consequently achieve more reliable
rank merge results. From this perspective, we propose a

2For each anchor, we select the half of the examples in each of positive
and negative labels based on the distances from the anchor.



Figure 5. Illustration of cross-model contrastive learning loss with
backward retrieval system {φold, φrev} and new retrieval system
{φnew, φnew}. Two boxes with dotted lines corresponds to two
terms in (11). For each retrieval system, the distances between
positive pairs are learned to be both smaller than those of negative
pairs in the two retrieval systems.

cross-model contrastive learning loss as

LCMCL(xi, yi) = (11)

− log

∑
yk=yi

sold
ik∑

yk=yi
sold
ik +

∑
yk 6=yi

sold
ik +

∑
yk 6=yi

snew
ik

− log

∑
yk=yi

snew
ik∑

yk=yi
snew
ik +

∑
yk 6=yi

snew
ik +

∑
yk 6=yi

sold
ik

,

where snew
ij = exp(−dist

(
φnew(xi), φ

new(xj)
)
) and sold

ij =

exp(−dist
(
φrev(xi), φ

old(xj)
)
). Figure 5 illustrates the

concept of the loss function. The positive pairs from the
backward retrieval system {φrev, φold} are trained to locate
closer to the anchor than not only the negative pairs from
the same system but also the ones from the new system
{φnew, φnew}, and vice versa. We finally replace (9) with
(11) for training the reverse transformation module. Com-
pared to (10), additional heterogeneous negative terms in
the denominator of (11) play a role as a regularizer to make
the distances from one model directly comparable to those
from other one, which is desirable for our rank merge strat-
egy.

5.2. Training New Feature Embedding

Until now, we do not jointly train the reverse transfor-
mation module ψ(·) and the new feature extraction module
φnew(·) as illustrated in Figure 3. This hampers the compat-
ibility between the backward and new retrieval systems be-
cause the backward retrieval system {φrev, φold} is the only
part to be optimized while the new system {φnew, φnew} is
fixed. To provide more flexibility, we add another transfor-
mation module ρ(·) on top of the new model as shown in
Figure 6, where ρnew = ρ(φnew) and ρrev = ψ(ρ(φnew)). In
this setting, we use ρnew as the final new model instead of
φnew, and our rank merge process employs {ρrev, φold} and

Figure 6. Compatible training with learnable new embedding.
Compared to Figure 3, another transformation module ρ(·) is in-
corporated on top of the new model to learn new embedding fa-
vorable to our rank merging. The retrieval results are now merged
from {ρrev, φold} and {ρnew, ρnew}.

{ρnew, ρnew} eventually. This strategy helps to achieve a bet-
ter compatibility by allowing both systems to be trainable.

The final loss function to train the reverse transformation
module has the identical form to LCMCL in (11) except for
the definitions of snew

ij and sold
ij , which are given by

snew
ij = exp (−dist (ρnew(xi), ρ

new(xj))) (12)

sold
ij = exp

(
−dist

(
ρrev(xi), φ

old(xj)
))
. (13)

Note that this extension does not result in computational
overhead at inference stage but yet improves the perfor-
mance even further.

6. Experiments
We present our experiment setting, the performance of

the proposed approach, and results from the analysis of al-
gorithm characteristics.

6.1. Dataset and Evaluation Protocol

We employ four standard benchmarks, which includes
ImageNet-1K [18], CIFAR-100 [9], Places-365 [28],
Market-1501 [27]. As in previous works [17, 19], we adopt
the extended-class setting in model upgrade; the old model
is trained with examples from a half of all classes while the
new model is trained with all samples. For example, on the
ImageNet-1K dataset, the old model is trained with the first
500 classes and the new model is trained with the whole
1,000 classes.

Following the previous works [17, 20, 25], we measure
mean average precision (mAP) and cumulative matching
characteristics (CMC)3. We also report our comprehensive
results in terms of AUCmAP and AUCCMC at 10 backfill time
slices, i.e., t ∈ {0.0, 0.1, ..., 1.0} in (5).

6.2. Implementation Details

We employ ResNet-18 [6], ResNet-50 [6], and ViT-
B/32 [3] as our backbone architectures for either old or new

3CMC corresponds to top-k accuracy, and we report top-1 accuracy in
all tables and graphs.



Table 1. Comparison with existing compatible learning methods on four standard benchmarks in homogeneous model upgrades. Gain
denotes relative gain that each method achieves from old model in terms of AUCmAP, compared to the gain of new model. The proposed
framework, dubbed as RM, consistently outperforms all other models with significantly large margins for all datasets. Note that RMnaı̈ve

indicates the basic version of distance rank merge described in Sec. 3.2 and that Old and New denote embedding models of gallery images.

ImageNet-1K CIFAR-100 Places-365 Market-1501
AUCmAP AUCCMC Gain AUCmAP AUCCMC Gain AUCmAP AUCCMC Gain AUCmAP AUCCMC Gain

Old 31.2 49.7 0% 21.6 34.3 0% 16.5 30.7 0% 62.7 82.7 0%
New 51.3 70.3 100% 47.4 62.6 100% 23.4 39.1 100% 77.3 90.9 100%

RMnaı̈ve (Ours) 40.0 63.9 44% 30.8 49.1 36% 19.5 35.8 43% 69.2 87.0 45%
BCT [19] 32.0 46.3 4% 26.4 43.5 19% 17.5 37.0 14% 66.6 84.3 27%
FCT [17] 36.9 58.7 28% 27.1 49.4 21% 22.5 37.3 87% 66.4 84.2 25%

FCT (w/ side-info) [17] 43.6 65.0 62% 37.0 53.9 60% 23.7 38.3 104% 66.4 84.4 25%
BiCT [20] 35.1 59.7 19% 29.0 48.3 29% 19.0 34.9 36% 65.0 82.4 16%

RM (Ours) 53.4 68.1 110% 41.4 60.7 78% 28.2 41.7 170% 70.7 87.6 55%
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Figure 7. mAP and CMC (Top-1 Acc.) results of our full framework in comparison to existing approaches. The numbers in the legend
indicate either AUCmAP or AUCCMC scores.

models. All transformation modules, ψ(·) and ρ(·), con-
sist of 1 to 5 linear layer blocks, where each block is com-
posed of a sequence of operations, (Linear → BatchNorm
→ ReLU), except for the last block that only has a Lin-
ear layer. Our algorithm does not use any side-information.
Our modules are trained with the Adam optimizer [8] for 50
epoch, where the learning rate is 1× 10−4 at the beginning
and decayed using cosine annealing [12]. Our frameworks
are implemented with the Pytorch [16] library and we plan
to release the source codes of our work.

6.3. Results

Homogeneous model upgrade We present the quantita-
tive results in the homogeneous model upgrade scenario,
where old and new models have the same architecture. We
employ ResNet-50 for ImageNet and ResNet-18 for other
datasets. Table 1 and Figure 7 compare the proposed frame-
work, referred to as RM (Rank Merge), with existing com-
patible learning approaches, including BCT [19], FCT [17],
and BiCT [20]. As shown in the table, RM consistently out-
performs all the existing compatible learning methods by
remarkably significant margins in all datasets. BCT [19]
learns backward compatible feature representations, which
is backfill-free, but its performance gain is not impressive.



FCT [17] achieves meaningful performance improvement
by transforming old gallery features, but most of the gains
come from side-information [2]. For example, if side-
information is not available, the performance gain of FCT
drops from 62% to 28% on the ImageNet dataset. Also,
such side-information is not useful for the re-identification
dataset, Market-1501, mainly because the model for the
side-information is trained for image classification using the
ImageNet dataset, which shows its limited generalizability.
On the other hand, although BiCT [20] takes advantage of
online backfilling with less backfilling cost, it suffers from
degraded final performance and negative flips in the mid-
dle of backfilling. Note that RMnaı̈ve, our naı̈ve rank merg-
ing between old and new models, is already competitive to
other approaches.

Heterogeneous model upgrade We evaluate our frame-
work in more challenging scenarios and present the results
in Figure 8, where the old and new models have different
architectures, e.g., ResNet-18 → ResNet-50 or ResNet-18
→ ViT-B/32. In this figure, RMRQT (green line) denotes
our ablative model trained with (9). Even in this setting,
where both embedding spaces are more incompatible, our
rank merge results from the old and new models still man-
age to achieve a monotonous performance growth curve and
RM improves the overall performance significantly further,
which validates the robustness of our frameworks.

Ablation study We analyze the results from the abla-
tions of models for our cross-model contrastive learning.
For compatible training, CL-S employs contrastive learn-
ing within the backward system only as in (10) while our
CMCL considers distance metrics from both backward and
new retrieval systems simultaneously as in (11). For a more
thorough ablation study, we also design and test another
metric learning objective, called CL-M, which is given by

LCL-M(xi, yi) =− log

∑
yk=yi

sold
ik∑

yk=yi
sold
ik +

∑
yk 6=yi

sold
ik

− log

∑
yk=yi

snew
ik∑

yk=yi
snew
ik +

∑
yk 6=yi

snew
ik

, (14)

which conducts contrastive learning for both backward and
new retrieval systems separately. Figure 9 visualizes the re-
sults from the ablation studies, where CMCL consistently
outperforms both CL-S and CL-M in various datasets and
architectures. CL-M generally gives better merge results
than CL-S because it calibrates the distances of new re-
trieval system additionally. However, CL-M still suffers
from negative flips because the distance metrics of both re-
trieval systems are calibrated independently and not learned
to be directly comparable to each other. On the other
hand, CMCL improves overall performance curves con-
sistently without negative flips. This validates that con-
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Figure 8. Experimental results with heterogeneous model up-
grades. Our naı̈ve rank merge between different architectures still
achieves promising performance curves in various settings, and
our full algorithm exhibits significantly better results.

sidering the distance metrics of both systems simultane-
ously helps to achieve better metric compatibility and con-
sequently stronger merge results.

7. Conclusion

We presented a novel compatible training framework for
effective and efficient online backfilling. We first addressed
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Figure 9. Ablation study of the cross-model contrastive learning
loss on several datasets. CMCL outperforms other ablative mod-
els, CL-M and CL-S, which validates that the distance calibration
plays a crucial role for effective rank merging.

the inherent trade-off between compatibility and discrim-
inability, and proposed a practical alternative, online back-
filling, to handle this dilemma. Our distance rank merge
framework elegantly sidesteps this issue by bridging the gap
between old and new models, and our metric-compatible
learning further enhances the merge results with distance
calibration. Our framework was validated via extensive ex-
periments with significant improvement. We believe our
work will provide a fundamental and practical foundation
for promoting new directions in this line of research.
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