
DELF: Safeguarding deletion correctness in Online Social Networks

Katriel Cohn-Gordon
Facebook

Georgios Damaskinos
Facebook, EPFL

Divino Neto
Facebook

Joshi Cordova
Facebook

Benoît Reitz
Facebook

Benjamin Strahs
Facebook

Daniel Obenshain
Facebook

Paul Pearce
Facebook, Georgia Tech

Ioannis Papagiannis
Facebook

Abstract
Deletion is a core facet of Online Social Networks (OSNs).
For users, deletion is a tool to remove what they have shared
and control their data. For OSNs, robust deletion is both an
obligation to their users and a risk when developer mistakes
inevitably occur. While developers are effective at identify-
ing high-level deletion requirements in products (e.g., users
should be able to delete posted photos), they are less effective
at mapping high-level requirements into concrete operations
(e.g., deleting all relevant items in data stores). Without frame-
work support, developer mistakes lead to violations of users’
privacy, such as retaining data that should be deleted, deleting
the wrong data, and exploitable vulnerabilities.

We propose DELF, a deletion framework for modern OSNs.
In DELF, developers specify deletion annotations on data type
definitions, which the framework maps into asynchronous,
reliable and temporarily reversible operations on backing
data stores. DELF validates annotations both statically and
dynamically, proactively flagging errors and suggesting fixes.

We deployed DELF in three distinct OSNs, showing the
feasibility of our approach. DELF detected, surfaced, and
helped developers correct thousands of omissions and dozens
of mistakes, while also enabling timely recovery in tens of
incidents where user data was inadvertently deleted.

1 Introduction

The ability to delete data is a core privacy expectation for
users entrusting Online Social Networks (OSNs) with their
personal information [1, 2]. Users make use of deletion to
retract posts shared with their friends, to avoid future conflicts,
to forget past experiences, to remove content they shared by
accident, to comply with policies of their organization, and
to address perceived privacy or security concerns regarding
providers they do not trust [3–6]. Deletion empowers users
to safeguard their privacy in a straightforward way. It is
increasingly enshrined worldwide as a user privacy right [7,8].

Providing robust deletion infrastructure is important for
service providers. On one hand, bugs in deletion undermine

the integrity of the service when the wrong data is deleted;
and may also manifest as exploitable vulnerabilities that allow
users to delete arbitrary data. On the other hand, failing to
delete user data undermines user trust and can trigger substan-
tial regulatory fines [7, 8]. Both types of issues are common,
affect numerous services, and are reported widely [9–16].

OSNs are particularly challenging applications in regards
to identifying what to delete and when. In traditional commu-
nication services, such as email or messaging, data ownership
is clear and limited to the items in a user’s inbox. Instead, the
data model of OSNs is much more complex and changes fre-
quently to support novel features. Billions of users interact on
shared containers (e.g., profiles, groups, events, live videos,
marketplace items, and stories) where they perform many dif-
ferent actions (e.g., comment, share, retweet, react, link, paint
over, buy, watch, and upvote). Deleting a shared container
(e.g., a group) should delete all of its subcontainers (e.g., all
posts and photos in the group), and recursively delete all ac-
tions for each leaf container (e.g., all reactions, shares and
upvotes of each photo) independently of who created the data.
However, deleting a subcontainer (e.g., a retweet) should not
delete the original container (e.g., the original tweet), in par-
ticular if this would allow malicious users to delete content
they do not control. Identifying what to delete and when is a
challenge [3, 17, 18], and is cited as an important reason not
to trust that services delete data correctly [19, 20].

Our insight is that both developer input and control in the
deletion process can and should be minimized. Rather than
expecting developers to delete data correctly on their own, the
process should be facilitated by a framework which executes
all deletions in an application. Having centralized control
of all deletions enables us to provide at the framework level
three important features to safeguard correctness: (a) we can
enforce that all developers specify how user data should be
deleted before any data is collected, (b) we can validate de-
veloper specifications to surface mistakes early, and (c) when
undetected mistakes inevitably occur we can recover any in-
advertently deleted data with minimal engineering effort.

We demonstrate these ideas in DELF. DELF is a deletion

framework that exposes a simple declarative API to specify
deletion behavior, supporting OSNs’ complex data models
and abstracting away heterogeneous storage infrastructure.
It validates deletion specifications via static and dynamic
analysis, helps developers correct mistakes, and executes all
deletions to completion, despite any transient infrastructure
errors. To our knowledge, DELF is the first framework that
helps developers delete data correctly at scale.

We deploy DELF at FACEBOOK—a large OSN service
provider—and explore its effectiveness. Via a case study of
developer actions, we measure that even when forced to spec-
ify how data should be deleted during product development—
a scenario that occurs about a hundred times every day at this
service provider—developer precision is limited to 97.6%.

DELF detects the majority of the resulting mistakes with
high confidence. DELF independently validates developer
data models for deletion correctness and when it detects mis-
matches it raises these to developers for consideration. In
our deployment we observe that due to DELF static valida-
tion developers change how 62.2% of the object types they
create are deleted, while dynamic validation of edge types
achieves 95.0% precision at 74.8% recall, i.e., DELF discov-
ers how three quarters of all edge types should be deleted, and
is correct 95% of the time, showing that it can independently
pinpoint most developer mistakes when annotating edge types.
In practice, DELF surfaced thousands of historical omissions
and dozens of mistakes which developers corrected. When
undetected mistakes lead to inadvertent data deletion DELF
enables recovery with significantly less engineering effort.

The main contributions of this paper are:

1. We perform a case study of developer actions at FACE-
BOOK, quantifying the rate of mistakes developers intro-
duce when asked to specify how data should be deleted
in OSNs spanning tens of thousands of data types and
hundreds of millions of lines of code.

2. We design DELF, an application-agnostic and robust
framework for controlling deletion with restoration ca-
pabilities. We show how DELF simplifies and unifies
the deletion process on top of distinct data store types,
including a relational database, a graph database, a key-
value store, and a blob store.

3. We demonstrate how DELF detects and helps developers
correct common types of mistakes.

4. We deploy DELF at FACEBOOK. DELF detected thou-
sands of omissions and dozens of mistakes which would
have otherwise undermined deletion correctness result-
ing in privacy violations or vulnerabilities.

The rest of this paper is organized as follows. §2 introduces
common types of data stores used to persist user data and lays
out the deletion policy of one popular OSN service provider.
§3 establishes our baseline in regards to observed frequency

of developer mistakes in a large-scale codebase demanding
complicated data models. §4 introduces the high level techni-
cal design of DELF and §5 discusses topics pertaining to its
implementation. §6 assesses the effectiveness of our system
in production. We close with a discussion of related work in
§7, areas for future work in §8, our conclusions in §9, and we
acknowledge contributions to our work in §10.

2 Background

Modern large-scale OSNs are supported by a variety of scal-
able persistent data stores [21–27]. Data stores expose dif-
ferent data models to optimize for the workloads required
by the specific applications they target. It is common for a
modern OSN to leverage multiple data stores simultaneously.
For example, photos and videos may be persisted in a blob
store, while social interactions, such as like or follow, may be
persisted in a graph database.

We refer to application-level delete operations as subgraph
deletions or just deletions. This is in contrast to row-level or
object-level delete operations permitted by most data store
APIs; we refer to those as point deletes.

2.1 Data Models
Scaling relational databases to handle large numbers of read
and writes is non-trivial [24, 28]. Product workloads in mod-
ern OSNs are read-heavy [21], their scale requires sharding
user data across thousands of servers, and even data a single
user creates is sharded across multiple servers to facilitate
reads. For example, all comments on a post are typically
stored on the same shard as the post for faster loading. In
a sharded deployment multiple database servers follow the
same database schema but each server stores only a subset of
rows from each logical table [21, 29].

Many scalable data stores trade off advanced querying ca-
pabilities, support for transactions, or consistency of the full
relational data model in favor of throughput, availability, and
latency improvements possible with more constrained data
models [23, 24, 26, 27]. Under a key-value model, data is
indexed by arbitrary strings [22, 29]. Keys may be gener-
ated automatically [22] or chosen by the application [22, 29].
Values may be structured [27, 30] or unstructured [22, 25].
Under a graph model, data forms a graph [21,31] whose main
entities are objects and associations.

There are domain-specific data stores that empower spe-
cialized functionality within OSNs. Sets approximated by
Bloom filters [32] or stream processing systems leveraging
HyperLogLog [33, 34] store aggregate hashes of input and
have applications in security, abuse prevention, analytics,
and performance optimization [35, 36]. Data warehouse sys-
tems [37–39] store large amounts of logs and shard based on
time to facilitate daily batch processing for analytics and ma-
chine learning. In such domain-specific data stores, indexes

to enable point queries may be prohibitively demanding—
frequently they are not available at all. Suggested techniques
to address deletion when point deletes are not feasible are
storing all data with short retention, anonymization, and en-
cryption at write time with a key that can be deleted sepa-
rately [40,41]. The rest of this paper focuses on deletion from
relational, key-value, and graph data stores where indexes to
perform point deletes are available.

2.2 Dangling Data

We describe a reference to a deleted object and the correspond-
ing object storing such a reference as dangling. Dangling data
conveys information about deleted objects, e.g., a key-value
entry linking a phone number to a deleted account may retain
how to contact the account and a graph association from an
account to a deleted video may retain who watched the video.
For correct deletion no dangling data should remain.

Relational databases rely on integrity constraints [42, 43]
to achieve referential integrity and identify what should be
deleted once a row is deleted. With foreign key declara-
tions and appropriate indexes in place, a relational database
propagates point deletes for rows on the parent table to cas-
cade and delete dangling rows in child tables. Developers
control this process via referential actions on foreign key
declarations, such as ON DELETE CASCADE and ON DELETE
SET NULL. There is no guarantee that developers define ei-
ther foreign keys or referential actions correctly. There is no
mechanism to detect omissions. Modern popular sharded data
stores such as MongoDB [44], Dynamo [29], and Redis [30]
offload enforcing referential integrity to applications [45].

2.3 Recovery via Backups

Data store backups enable service providers to recover from
hardware failures, system crashes, and application-level bugs.
In a typical configuration a full database snapshot is sched-
uled periodically [46]. The data store is separately configured
to log incremental mutations [47]. To recover the data store
to any point in time a full snapshot is restored and any sub-
sequent incremental mutations are replayed. Reverting only
specific deletions is not practical without additional informa-
tion, since incremental mutations do not store metadata about
application-level actions [48]. We illustrate these challenges
in the context of a data loss incident in our case study (§3).

2.4 FACEBOOK

FACEBOOK is a service provider in the space of social net-
working. Its products collectively have approximately 3 bil-
lion monthly active users [49]. FACEBOOK products in-
clude multiple distinct consumer OSNs, such as Facebook
(the OSN), Instagram, and Dating, with a variety of features

1 object_type:
2 name: photo
3 storage:
4 type: TAO
5 deletion: directly
6 id:
7 photo_id: integer_autoincr
8 attributes:
9 created_on: datetime

10 caption: string

11 edge_types:
12 handle:
13 to: photo_blob
14 deletion: deep
15 created_by:
16 to: user
17 deletion: shallow
18 inverse:
19 created_photo:
20 deletion: deep

Figure 1: A Photo object type definition for storing photo
metadata in TAO (line 4) with an edge type to the photo blob
object in Everstore (line 13). DELF object type (line 5) and
edge type (lines 14, 17, 20) annotations specify how data
should be deleted when the data type is defined.

spanning—amongst others—private and public media sharing,
messaging, groups, video streaming, and a marketplace.
Infrastructure. In the backend FACEBOOK products define
tens of thousands of distinct data types to empower external-
facing features across existing products, new products un-
dergoing testing, and internal tools. Major data stores are
TAO [21], Everstore [22], MySQL [50] and ZippyDB [26]; a
graph, blob, relational, and key-value data store, respectively.
None of these data stores enforces referential integrity for
references across shards and across data stores. Objects of
several popular data types, such as photos, videos, and group
posts, may get deleted as a result of dozens of actions.

FACEBOOK infrastructure requires developers across most
products to define their data types before they are used in
a structured format, at minimum exposing object types con-
nected via edge types. Figure 1 presents an example in pseu-
docode of such a definition. The implementation depends
on the backing data store. For example, MySQL maps an
object type to a table and an edge type to a different table
with columns to store the primary keys of the referenced ta-
bles; TAO maps objects and edges to objects and associations
directly. A subsequent code generation step creates imple-
mentation classes with strongly-typed read, write and delete
methods for common languages used to develop applications.
This intermediate abstraction layer for defining and manipulat-
ing data types is similar to object-relational mapping [51]. It
facilitates access control [52] and improves performance [26].
Deletion Policy. FACEBOOK’s deletion policy prescribes that
users can exercise control over content they provide by delet-
ing it. Users may explicitly delete individual pieces of content
or their account. Data types such as ephemeral or draft posts
are automatically deleted after a fixed time period.

Deletions should be fully effected within 90 days, after
which the data can no longer be used in products or services
in the ordinary course of business. Most deletions involve
a relatively small amount of data and should finish quickly,
i.e., within one day. 90 days provides sufficient time to delete
an account despite transient errors. Deleted data may subse-

quently persist in backups for up to 90 days for recovery from
inadvertent deletions or other infrastructure failures.

A few deletions may take more than 90 days to complete.
Typical reasons entail deleting an unusually high number of
pieces of content, e.g., an account which has been creating
content consistently over many years, and persistent infras-
tructure failures. In such cases deletions may run for more
than 90 days but are required to make continuous progress
towards completion. Any failures must be resolved.

2.5 Threat Model
DELF safeguards the deletion process against developer mis-
takes. In our threat model developers are employed by their
organization and aim to uphold its deletion policy, but may
erroneously—not maliciously—fail to do so in practice. We
consider the following types of mistakes.

Developers may altogether omit to specify what to delete
when a user triggers a deletion. For example, developers may
add a new edge type from the photo data type to a user data
type and store which users are tagged in the photo, but omit
to implement deletion of the edge when the photo is deleted.

Developers may specify to retain data that should be
deleted according to the deletion policy. For example, de-
velopers may opt to retain who voted in a poll after a voter
deletes their account to ensure that poll results cannot change
retroactively, overlooking that users should be able to delete
any data they provide including how they voted in polls.

Developers may inadvertently delete the wrong data. For
example, developers may specify that deleting a comment
should entail deleting all its attachments, such as photos. Yet
they may overlook that users can attach third-party photos
to their comments and these will get deleted too. Mistakes
can introduce security vulnerabilities. We consider users to
be potentially malicious. For example, an adversarial user
may try to delete arbitrary photos by attaching a photo to a
comment they create and then deleting the comment.

Developers may fail to execute the specification they have
provided. For example, developers may attempt to delete all
comments when a post is deleted, but they may not anticipate
that the list can include millions of items, that the process
may take days, and that any data store may temporarily or
permanently fail to delete individual comments.

Malicious developers are outside the scope of this work.
In our experience the vast majority of developers faithfully
try to implement their employer’s policy and are subject to
disciplinary action if they systematically fail to do so. As we
demonstrate next, without ongoing detection benign devel-
oper mistakes account for frequent bugs in deletion.

3 Case Study: Unassisted Deletion

We motivate the need for DELF by conducting a case study
within FACEBOOK. We measure (a) how likely developers

are to remember their obligation to delete data (§3.1), (b),
whether they do so correctly (§3.2), and (c), the operational
overhead of recovering from inadvertent deletions without
framework support (§3.3). To our knowledge, this is the first
study to measure such developer actions.

3.1 Developer omissions
We measure developer proactiveness specifying how collected
data should be deleted, i.e., without enforcement from a frame-
work. We look at the deployment phase of DELF in Instagram
starting on April 2019. To facilitate backwards compatibility,
developers were able, for a limited period of time, to define a
certain category of new TAO edge types without specifying
how any collected data should be deleted in advance (§5.4).
When developers omitted to provide deletion specifications
they were reminded to do so retroactively (§4.3).

Between April and July 2019 40 distinct Instagram develop-
ers introduced 70 new edge types without enforcement from
DELF. We inspect each of them, finding that 32 distinct de-
velopers created 56 new edge types and did not remember to
update the corresponding code to handle their deletion when
either of the objects they reference is deleted. In effect with-
out any enforcement developers handled deletion proactively
for only 20% of the edge types they created.

We attribute limited developer proactiveness to the lack of
feedback triggered by development tools while prototyping
new features. The situation has parallels with common types
of security concerns; in particular managing memory without
help from a framework [53,54]. Developers can store data per-
sistently (resp. allocate memory) and—assuming sufficient
storage capacity (resp. memory)—they observe no failures
if they forgo to specify how their application should behave
when deletes occur (resp. when in-memory objects are no
longer referenced). For memory management, common tech-
niques forgo developer education and automate the process
fully [55], or expect developers to specify application behav-
ior ahead of time before memory is allocated [56]. For data
deletion, no similar tools exist (§2.2). Another contributing
factor is deletion seldom being a driving requirement while
prototyping new features. It is common for deletion to only
be introduced as a requirement retroactively and only after
core pieces of functionality have already been implemented.

3.2 Developer mistakes
To prevent dangling data when a new edge type between a
source and a target object type is introduced, developers need
to specify what should happen if the source object is deleted.
Developers may opt to delete or retain the target object and
their choice is subject to peer review. In the next section
we discuss in detail how developers achieve this via DELF
edge type annotations (§4). Here we measure the precision
developers achieve in the task when unassisted.

ANNOTATION TRUE POS. FALSE POS. PRECISION

shallow 239 5 98.0%
deep 87 3 96.7%
refcount 0 0 N/A

OVERALL 326 8 97.6%

Table 1: Precision achieved by FACEBOOK developers when
asked to provide DELF annotations for edge types (see Ta-
ble 2). Specifying shallow designates that referenced data
should not get deleted while deep designates that it should.

We collect all changesets introducing at least one new edge
type annotation submitted between June 24 and June 27 2019,
totaling 327 changesets created by 129 developers, and for
each changeset we request retroactive expert review. The ex-
pert is a tenured privacy engineer with extensive experience
in deletion, FACEBOOK’s deletion policy, products and infras-
tructure. For each annotation the expert considered incorrect
we surfaced the issue with the original changeset authors or
peer reviewers and established ground truth.

Table 1 summarizes our results. Developers misclassified
edge types demonstrating an overall precision of 97.6%, with
mistakes leading to inadvertent retention and mistakes leading
to inadvertent deletion occurring at similar rates. Reasons for
mistakes included (a) a developer confusing the direction of
deletion for a pair of edge types, (b) two developers copying
annotations without confirming correctness, (c) a developer
prototyping a new feature who intended to revisit annotations
at a later stage, and (d), a developer who had not thought
through all scenarios that should trigger deletion. While we
were not able to construct exploits for the 5 edges incorrectly
annotated deep in our sample (Table 1, shallow false posi-
tives), we anticipate that a proportion of such mistakes will
be exploitable externally, i.e., they can be exploited to delete
data without validating necessary permissions.

Using the rate at which edge types are being introduced
in FACEBOOK infrastructure at the time of our case study,
we interpolate that developers incorrectly annotate approxi-
mately 2 edge types every day. In absolute numbers, mistakes
that result in inadvertent deletion are approximately twice as
common than those that result in inadvertent data retention.

3.3 Recovery

We highlight the operational overhead and risk introduced by
inadvertent deletions based on an incident in July 2018 [9],
when Facebook developers discovered a bug causing inadver-
tent deletion of hundreds of millions of videos and performed
restorations from backups without framework support.

The issue involved two object types, one ephemeral and
one permanent, with references to the same video object
type. Deletion logic designated erroneously that shared video

objects should be deleted when either of these object types
is deleted, meaning that the video would always be deleted
when the ephemeral object expired. The bug was triggered by
normal user actions, and was detected by investigating user
reports 100 days after the bug was introduced.

The data recovery process spanned 70 days involving over
10 engineering teams. To recover videos engineers employed
data store backups. A significant difficulty in restoration
was that each application-level video was backed by many
database-level objects: several blobs in Everstore and tens
of objects in TAO without any accessible information to tie
multiple underlying deleted objects together. Moreover, Ev-
erstore and TAO each have their own independent backups.
The final implementation of restoration involved scanning
through TAO backups to identify deleted objects, logging all
references therein to deleted blobs in Everstore, a separate
restoration process in Everstore, and finally, writing new data
in TAO to combine restored items into a viable product experi-
ence. The process resulted in data loss since the bug lingered
for a period longer than backup retention.

We conclude that expecting developers to implement dele-
tion unassisted is not sustainable in complex applications such
as modern OSNs. To achieve correctness, developers need
to be reminded to specify deletion behavior and revisit data
which they failed to delete, while service providers need a
dependable way to mitigate the risk of data loss and reduce
the operational complexity when inadvertent deletions occur.

4 Design

DELF forces developers to specify how data is deleted when
data types are defined. It achieves this by introducing annota-
tions related to deletion to a domain-specific language used
to define data types. DELF then intercepts application-level
deletions and transparently executes them to completion in-
dependently of the underlying data store. DELF offers two
safety mechanisms: the ability to verify correctness of devel-
oper annotations and undo deletions for a short time period.

4.1 Deletion Specification
DELF forces developers to specify deletion annotations for
all new object and edge types they create. The data type
definition step is instrumental to DELF’s design. The edge
type definitions in particular provide a statically-known list
of all potential references between objects. When an object
is deleted, DELF enumerates all potential data stores where
dangling data may reside based on edge types and deletes it all
according to developer annotations. Edge types enable DELF
to perform subgraph deletions and delete dangling data.

Table 2 summarizes DELF annotations, categorized based
on their applicability and purpose. Edge annotations apply
on edge types while object annotations apply on object types.
The goal of an annotation is to increase deletion coverage, i.e.,

ANNOTATION APPLIES ON GOAL VALIDATION DESCRIPTION

shallow Edge Types Coverage Dynamic When deleting the source object delete only the edge.
deep Edge Types Coverage Dynamic When deleting the source object cascade and delete the target.
refcount Edge Types Coverage Dynamic Cascade only when the last source object gets deleted.
by_any Object Types Coverage Static One or more inbound edge types should be deep.
short_ttl Object Types Coverage Static The object type should specify limited retention.
directly Object Types Coverage Static & Dynamic Objects are deleted via direct user action in product.
by_x_only Object Types Prevention Static Stricter form of by_any; provides a list of edge types.
directly_only Object Types Prevention Static & Dynamic Stricter form of directly; rejects deep edge types.
not_deleted Object Types Prevention Static Prevents objects of this type from being deleted.
custom Object Types Coverage N/A Developers specify arbitrary procedural deletion logic in code.

Table 2: DELF annotations allow developers to control deletion. They apply on either object or edge type definitions and can be
validated via different methods to prevent dangling data and inadvertent deletions (§4.3)

.

not leave dangling data, or to prevent inadvertent deletions,
i.e., to preclude deleting the wrong data. Figure 1 provides
example annotations for the Photo object type from §2.4.
Edge type annotations. These specify what happens to ref-
erenced objects upon deletion. Each edge is unidirectional,
pointing from a source object to a target object. An edge type
annotation prescribes the expected deletion behavior once
the source object gets deleted. Developers choose between
deleting only the source object (shallow), cascading and
deleting the associated object by following the edge (deep)
and cascading only when the last edge to the target object is
deleted (refcount). All edge type annotations result in the
deletion of the edges themselves. Edge annotations improve
deletion coverage because they force developers to declare
how referenced data should be deleted.
Object type annotations. These specify how objects of a
particular type should be deleted. By default DELF assumes
that all object types contain data users create therefore ob-
jects of every type should be deletable in some form. There
are three main object annotations. The default annotation
is by_any. It requires that each object type declares at least
one deep-annotated inbound edge type from another object
type; thus individual objects of this object type are deleted
via traversal of that edge type. Developers may pick instead
short_ttl or directly. The former ensures that all objects
of this type get deleted by virtue of limited retention—the
precise maximum retention allowed should be consistent with
the service provider’s deletion policy. The latter is appropri-
ate for object types that users can delete via direct action in
product, e.g., object types designating user accounts.

DELF exposes three object annotations that help protect ob-
jects against inadvertent deletions trigged by deleting objects
of other types. The by_x_only annotation is a restricted form
of by_any. It is parameterized by a whitelist of edge types that
may trigger deletions of objects of this type. DELF prevents
developers from accidentally declaring deep edges of any
other type not found in the whitelist. The directly_only
annotation is a more restrictive form of directly; DELF

prevents any inbound edge types to be marked deep. The
not_deleted annotation prevents all deletions altogether by
both rejecting all inbound deep edge types and by not gener-
ating code to perform object deletes. To prevent overuse of
not_deleted, DELF requires developers to reference a doc-
umented privacy or legal decision which mandates retaining
the data, e.g., a task in the service provider’s tracking system.

The custom annotation allows developers to provide ar-
bitrary procedural code to execute when objects of a given
type are deleted. Unlike declarative annotations, code in a
custom section can express complicated deletion logic de-
pendent on arbitrary state. For example, code in a custom
section may inspect the object being deleted and delete one
of its edges with either shallow or deep semantics based on
the value of a particular object field. Executing procedural
code at deletion time enables additional expressiveness which
may be necessary for certain data types yet its use is heavily
discouraged. Procedural code in custom sections precludes
correctness validation (§4.3), is hard for developers to keep
up to date (§6.1), and bugs may result in stuck deletions that
do not make progress (§6.4). DELF supports writing proce-
dural code in custom sections for backwards compatibility
with legacy deletion logic and data models while applications
migrate to object and edge type annotations (§5.4).

4.2 Deletion Execution
Figure 2 presents the timeline of a deletion in DELF. Dele-
tions go through the stages of registration (t1–t3), initiation
(t3–t4) and asynchronous execution (t4–t5). Data retained
in restoration logs and backups is deleted once a deletion
finishes after a fixed interval (t5–t6).

t1 marks object creation. Deletions may be registered to
start at an arbitrary point of time in the future. Developers
can achieve this at object creation time by virtue of creating
an object of a type under TTL.

t2 marks explicit actions to schedule objects for deletion in
the future by using a DELF-provided method, e.g., when a

t1

object creation

t2

scheduled deletion request

t3

deletion
starts

t4

top level object deleted

t5

graph traversal
completes

t6

last restoration log
entry deleted

Figure 2: Timeline of a deletion in DELF. The time period
between the start of a deletion (t3), the end of graph traversal
(t5), and restoration logs deletion (t6) should match the service
provider’s deletion policy.

user requests to delete their account.
t3 marks requests to delete an object immediately and the

beginning of deletion initiation. Initiation is a short phase in
which DELF hides the data to delete, registers the deletion
to resume later, and quickly returns control to the caller. Ini-
tiation occurs synchronously within the context of a client
request. By returning control early deletion initiation prevents
blocking the caller for an arbitrary amount of time.

Once initiation completes clients should not be able to
read the data scheduled for deletion. To achieve quick hiding
DELF deletes the top-level object without cascading to delete
any of its edges. Any objects referenced by the edges of the
top-level object may still be visible, e.g., photos of an account
undergoing deletion. DELF mandates that products employ
read-time checks to confirm that parent objects have not been
deleted before returning requested data. For example, the
photo data type from Figure 1 can leverage the created_by
edge type to check if the referenced user account still exists,
similar to authorization policies enforcing who can see con-
tent within an OSN [52, 57]. The initiation phase abstracts
away the complexity of asynchronous execution.

t4 marks the beginning of asynchronous execution. Dele-
tions run continuously until they complete. Each deletion per-
forms a traversal of the graph to delete issuing point deletes
to backing data stores (§4.4).

t5 marks the end of asynchronous execution. Restoration
logs may be used (§4.4) until they expire (t6).

4.3 Deletion Validation
Dangling data and inadvertent deletions may occur for a va-
riety of reasons including missing edge or object type an-
notations, mistakes in annotations, insufficient authorization
checks, and developers storing references to other objects
without declaring edge types. DELF introduces validation
methods and drives mitigation for each of these types of mis-
takes. Every DELF object and edge type annotation is vali-

HEURISTIC DESCRIPTION

to_new_object Edge and target object are created consis-
tently at the same time.

to_leaf_object The target object has no other edges after
this edge gets deleted.

to_owned_object The source object is referenced by the tar-
get object in a field indicating ownership
(e.g., owner_id).

id1_ref_in_id2 Similar to to_owned_object; any field
of the target object references the source.

Table 3: Heuristics used to predict deep.

HEURISTIC DESCRIPTION

to_old_object The target object is created consistently
prior to the edge.

self_reference Source and target object is the same object.
many_to_one Multiple source objects are associated with

the same target.
same_obj_type The edge links objects of the same type.
to_deleted The edge points to target objects that are

previously deleted.

Table 4: Heuristics used to predict shallow.

dated with at least one method, as designated in Table 2.
Static validation. DELF confirms that there is at least one
possible path to delete data of every defined object and edge
type. This is checked statically: (a) DELF rejects any data
types found to lack annotations, and (b), DELF performs
a reachability analysis starting from every object type an-
notated with directly, directly_only, short_ttl, and
not_deleted visiting all their edge types annotated deep.
The analysis must reach all defined object types in the sys-
tem. Any object types not reached are part of a cycle without
at least one declared entry point to delete it. Unreachable
object types are rejected. By including not_deleted types
as starting points the reachability analysis transitively treats
any referenced object types as valid exceptions from deletion.
Unreachable data types annotated with custom are similarly
ignored and their correctness is only verified with peer review.
Dynamic validation. DELF introduces three dynamic valida-
tion methods. The first method confirms that objects of types
annotated with directly and directly_only are observed
to be deleted at runtime. The process inspects logs of all
deletions executed in DELF per object type and confirms that
developers follow up and expose accessible entry points in
product to trigger deletions. Runtime validation of these two
annotations guarantees that all declared paths to delete data
types are triggered by users in production.

The second dynamic validation method is a set of heuris-
tics to retroactively annotate edge types and detect edge types
misclassified by developers. Deep heuristics suggest that

UserA PhotoA ts = 5635
created_photo

ts = 5635

UserB PhotoB ts = 7563
created_photo

ts = 7563

UserC PhotoC ts = 1274
created_photo

ts = 1274

Figure 3: Applying to_new_object on the created_photo
edge type (Figure 1). If the creation timestamps (ts) of all
edges match the creation timestamp of their target object the
edge type should likely be annotated deep.

a particular edge type should be annotated as deep—they
surface dangling data occurring due to edge types misconfig-
ured as shallow or refcount. In contrast to static validation
which ensures there is at least one path to delete objects of
every type, deep heuristics attempt to discover all paths. Shal-
low heuristics instead suggest that an edge type should be
annotated as shallow—they provide a proactive detection
method for edges misconfigured as deep or refcount. DELF
surfaces edge types it detects to be misclassified, notifies de-
velopers, and recommends changes1.

Edge type annotation heuristics leverage features collected
at runtime after data has been collected. In particular, the
heuristics to_new_object and to_old_object inspect the
edge and target object creation timestamps. If all edges of a
particular type are found to consistently be created at the same
time as the target object, this is an indication that the edge
and target are created together and hence should be deleted
together—DELF suggests deep. Similarly, if all edges of a
particular type are found to consistently be written at a later
time compared to the target object, this is an indication that
the target object predates the edge and hence should persist
after the edge gets deleted—DELF suggests shallow.

Tables 3 and 4 list all of the edge type classification
heuristics used by DELF. Figure 3 illustrates an exam-
ple where to_new_object is applicable—DELF predicts
deep. Figure 4 illustrates an example where many_to_one is
applicable—DELF predicts shallow.

The third dynamic validation method is a check for priv-
ilege escalation before writing edges of all types annotated
with deep. A typical exploit of deep edge types involves
two steps: (a) writing an edge from an object under attacker
control to a target object in the system, and (b), deleting the
object under attacker control hence—as a side effect of deep—
deleting the target object. The attack leverages application
endpoints where application authorization checks for writ-

1DELF does not currently offer heuristics to suggest refcount edge types
since these are substantially less common than deep and shallow (§3.2).

UserA

likes

UserB

UserC

PhotoB
likes

likes

Figure 4: Applying many_to_one on a likes edge type. If
multiple different objects all have edges to the same target
object, the edge type should likely be annotated shallow.

ing edges and mutating objects directly are inconsistent [52].
DELF checks every write for edge types annotated deep. If
the user performing the write is able to delete the source
object of the new edge being written then they should also
be able to delete the target object. DELF enforces this as a
precondition for any deep-annotated edge write to succeed.
Data type validation. While DELF safeguards referential
integrity, dangling data is possible still. Two practices that
may result in dangling data are (a) storing identifiers in fields
declared as generic strings or integers and not as edge types,
and (b), deleting data via code in custom sections and omitting
the deletion of associated data. In the former scenario DELF
is unaware of references existing and hence cannot preclude
their creation; in the latter deletions bypass DELF altogether.

DELF discovers dangling references with periodic data
scans and content classification. Recurring jobs collect sam-
pled data from each data type; DELF subsequently pinpoints
common types of identifiers such as 64-bit integers; and it
detects dangling references by loading referenced objects and
confirming that they do not exist. DELF flags any data types
found to store dangling references as inconsistent.
Mitigation. DELF surfaces all issues it discovers. Issues de-
tected with static validation can be fixed while a data model is
defined. Runtime and data type validation techniques involve
surfacing the issue to product developers, suggesting improve-
ments in their data type definitions, and running database
scans to delete dangling data retroactively.

4.4 Restoration Logs

Every deletion in DELF generates a write-ahead log we refer
to as its restoration log. Restoration logs are used to recover
from application bugs that trigger the deletion of the wrong
top-level object and from mistakes in edge type annotations
that declare deep or refcount rather than shallow.

The restoration log of a single deletion is a serialized ver-
sion of the deleted graph. The log consists of individual
restoration log entries, with each storing the logical order of

uuuser nnnumber

ppphoto hhhandle

deep
shallow

deep
shallow

deep

restoration log uuu,nnn,nnnuuu,uuunnn, ppp,hhh, ppphhh, pppuuu,uuuppp
deletion

restoration

Figure 5: Deletion and restoration ordering in DELF when ob-
ject uuu is deleted. Two-letter log entries denote edges from/to
the corresponding objects. Objects are deleted before and
restored after their outbound edges.

the log entry within the deletion. DELF indexes log entries of
each deletion in the underlying data store for quick retrieval.

Once a deletion completes DELF restoration logs and data
store backups contain separate copies of the same data and
may be used independently. This configuration maximizes
the available recovery window due to bugs in applications
and data stores, respectively. Both should be retained for the
maximum period permitted by the deletion policy.

Restorations may be unsafe to perform. They often run
weeks after the initial deletion and in the meantime the state
of the underlying data stores may have changed. For example,
restoring a user account which was deleted should no longer
be feasible if another user subsequently claims the phone num-
ber the deleted account used to log in. Restorations should
also not surface partially restored data to users.

DELF makes restorations safer via a staged restoration
process. DELF traverses the serialized restoration log in
reverse creation order. Figure 5 illustrates both the deletion
and the restoration graph traversals. The deletion traversal is
depth-first with deletion of objects pre-order and outbound
edges post-order. Restorations traverse log entries in reverse.
The restoration traversal ensures outbound edges and target
objects are restored before source objects. Restorations fail
early if that is impossible, e.g., a user object will only be
restored if the restoration of the phone number succeeds.

The deletion and restoration traversals collectively ensure
that outbound edges are consistent between the time an ob-
ject is deleted and the time the object is restored, i.e., any
outbound edges can be fetched and referenced objects are
available. Consequently, the same read-time checks used to
achieve quick hiding during deletion execution (§4.2) ensure
that partially restored subgraphs are not visible to users.

DELF retries restorations indefinitely until they complete.
Any failing restorations, e.g., if certain objects cannot be
restored, are surfaced to an engineer. Some manual effort is
justified since restorations are used only for disaster recovery.

4.5 Discussion
DELF requires developers to annotate every object and edge
type they create; an additional step during product develop-
ment which can be perceived as superfluous or error-prone.
However, assuming correct deletion is a core product require-
ment, DELF offers a robust implementation approach.

DELF highlights deletion as a core requirement to develop-
ers early while developing new product features. Static vali-
dation in particular surfaces omissions and mistakes within
regular development tools. Developers undergo ongoing ed-
ucation by virtue of understanding and resolving surfaced
errors. No separate education process is necessary.

Developers are only expected to provide annotations when
data types change. These events are typically much less
frequent than subsequent changes in product behavior. At
FACEBOOK, for example, we observe that changesets altering
data types (§3.2) are an order of magnitude less frequent than
changesets altering product behavior [58].

DELF annotations simplify deletion correctness validation
for both human developers at code review time and—as we
demonstrated in §4.3— for automated methods. To validate
correctness developers and automated methods can inspect
DELF annotations only, avoiding the laborious, error-prone
alternative of having to infer deletion semantics by inspecting
the product implementation directly. DELF simplifies peer
review and complements it with automated validation.

DELF overall reduces product complexity and speeds up
product development by eliminating the need to write an
maintain procedural, custom deletion code. In §6.1 we show
that in a scenario where developers have the ability to bypass
DELF and implement deletion as they wish, most do not,
suggesting that DELF is the preferred, straightforward choice.

5 Implementation

DELF’s deployment at FACEBOOK supports user-facing dele-
tion functionality in Facebook, Instagram, and Dating, in-
cluding account deletion and the deletion of individual items
such as posts. In this section we provide implementation
information, pertaining to how the system achieves reliable
execution of all deletions, maximizes throughput, and limits
retention of restoration logs. We cover last the development
and deployment sequencing of DELF at FACEBOOK.

5.1 Redundant Deletion Tracking
All deletions should complete despite intermittent failures in
underlying infrastructure. There are three important reliabil-
ity concerns: (a) all deletions start on time, (b) no deletion
remains idle, and (c) deletions make progress when they run.
Typical issues include service outages, transient overload of
data stores or the asynchronous execution tier, bugs in cus-
tom sections, and corrupt data. Failures should be noticed

even if they affect a small number of deletions and are within
expected failure rates of the underlying systems.

DELF performs redundant tracking of all deletions using
the analytics infrastructure at FACEBOOK. The tracking is
orthogonal to the state kept by the underlying batch processing
system and data stores which are responsible for scheduling
and executing deletion jobs. DELF logs all events relevant to
deletion lifecycle including the scheduled start time, initiation,
subsequent reruns, all exceptions, and eventual completion
alongside timestamps. Event logging occurs via Scribe [59],
and a Hive [39] pipeline inspects all events logged per deletion
to identify anomalous deletions in regards to timely initiation,
idleness, continuous progress, and completion. Any deletions
found not to make progress are reported for engineers to
investigate and resume automatically once fixes are deployed.

5.2 Throughput

DELF aims to minimize the end-to-end execution time for
each deletion, which is the main system performance consid-
eration (§2.4). Consequently, DELF executes deletions for
different top-level objects in parallel and batches point deletes
within each deletion. DELF maximizes throughput, i.e., the
rate of point deletes against data store APIs.

The upper bound for aggregate throughout is imposed by
shard utilization. The same shards DELF deletes data from
serve production traffic and their performance should not
degrade due to asynchronous deletion execution. DELF mon-
itors replication lag and CPU utilization to detect highly uti-
lized shards and applies exponential back off on spikes. An-
other limiting factor can be the number of available machines
to execute deletion jobs; DELF shifts deletion execution to
run off-peak when necessary.

Deletions triggered by users are executed immediately and
in parallel with other existing deletions in the system. The
average deletion at FACEBOOK involves few objects, e.g.,
deleting a rejected friend request. DELF favors such dele-
tions because they are executed without any coordination with
existing deletions beyond an initial check to confirm no two
deletions operate on the same top-level object during the same
time. The resulting point deletes are spread across shards.

DELF batches writes within each deletion, i.e., point
deletes and writes to restoration logs. Batching amortizes
write latency and increases throughput. Writes entail cross-
regional latency due to either a roundtrip to the master region
or to achieve consistency across replicas. To amortize this,
each deletion reads items to delete from local replicas, collects
those in memory, and once the batch reaches a pre-configured
size all deletes are flushed concurrently. Each batch of point
deletes entails a single write for a batch of restoration log en-
tries. DELF also batches reads to increase throughput further.

5.3 Restoration Logs Retention

Long-running deletions which remain in asynchronous exe-
cution for more than 90 days are required to make continuous
progress (§2.4). To satisfy this requirement DELF’s deploy-
ment at FACEBOOK does not apply a single retention period
for the entire restoration log of each deletion, e.g., 90 days
from the last log entry. Instead each log entry is retained
for 90 days after its creation. Deletions running for more
than 90 days may therefore not get restored fully since log
entries persisted more than 90 days in the past will have been
deleted. Data store backup retention matches restoration log
entry retention with each snapshot being retained for 90 days.
The setup guarantees that data stored in restoration logs and
backups is deleted 90 days after each point delete.

Restoration logs should not be retained beyond 90 days.
Persisting log entires in a data store which itself maintains
backups must be avoided to not extend retention. DELF uses
Everstore and ZippyDB to handle the desired throughput. Yet
both data stores mandate backups for all use cases to safe-
guard against bugs in the data store itself. DELF, instead,
relies on encryption to enforce precisely 90 days of log entry
retention. Restoration log entries are encrypted using AES-
256-CBC with HMAC-SHA-256 for authentication. The en-
cryption key is stored in memory for 90 days, protected from
inadvertent logging, and rotated daily.

5.4 Deployment sequencing

DELF was iteratively developed at FACEBOOK over several
years; progressively gaining its key design properties and
coverage across data stores. We discuss major phases in its
deployment alongside improvements delivered in each phase.

In Phase 1, DELF replaced product code performing deletes
to data store APIs directly, mandating the use of a DELF-
provided procedural API which performed the same deletes
while transparently maintaining restoration logs. This phase
mitigated developer mistakes leading to inadvertent deletion.

In Phase 2, DELF introduced dynamic validation tech-
niques (§4.3). This phase enabled detection of developer
omissions and mistakes leading to inadvertent data retention.
DELF heuristics enabled remediation when detecting omis-
sions by pinpointing mishandled edge types to developers.

In Phase 3, DELF introduced its declarative API based
on object and edge annotations (§4.1). Applications hosted
in FACEBOOK infrastructure rely on two distinct proprietary
data definition languages to create data types across TAO,
Everstore, MySQL, and ZippyDB in line with DELF’s re-
quirements. We extended both to support DELF annotations.
Developers were able to use—optionally—the declarative
API rather than the procedural API introduced in Phase 1.
This phase helped speed up the development of new products
by eliminating the need for writing procedural deletion code.

In Phase 4, DELF introduced static and data type validation

techniques (§4.3); while the use of the declarative API became
mandatory. This phase helped developers catch mistakes early
in the product development process when data models are
defined and improved correctness validation capabilities. It
also reduced the operational overhead of DELF by making
stuck deletions which do not make progress less likely (§6.4).

6 Evaluation

Our goal in this section is to quantify DELF’s ability to mit-
igate the privacy and security concerns raised in our threat
model. For each concern we discuss identified issues flagged
by DELF during its deployment and we then quantify the sys-
tem’s ongoing prevention capabilities. All identified issues
have been fixed and any retained data deleted.

Experiments in this section involve instrumenting the dele-
tion process at FACEBOOK to assess the effectiveness of DELF
under real system operation. We design all our experiments
to avoid incurring any adverse effect in FACEBOOK’s ability
to enforce its deletion policy across its products.

6.1 Developer Omissions
We start by assessing DELF’s impact in helping developers
remember their obligation to delete user data. This assessment
draws upon data collected between May 2018 and April 2019.
Identified issues. During the course of our assessment DELF
via data type validation (§4.3) detected 3266 instances where
developers omitted handling deletion of an edge type. All
identified cases result in inadvertent data retention indepen-
dently of the eventual edge type annotation—a retained edge
itself stores data about deleted objects. We routed all identi-
fied omissions to developers for retroactive annotation.

DELF identified one broad category of developer omissions
responsible for the majority of issues in our results. The
prevailing scenario involves deletions being driven via by
procedural code in custom sections which developers failed to
keep up to date when the applications or data models change;
resulting in dangling data. At the time of this assessment the
transition to DELF was ongoing (§5.4) and procedural code
in custom sections handling deletion was common. To better
understand identified omissions we discuss two examples.

In June 2018 DELF flagged that an edge type indicating the
existence of a mailbox is being left dangling when a Dating
user is deleted. The edge type was created in April 2015 and
was initially only used for Facebook users. Yet in November
2017 developers introduced a new user object type to repre-
sent users of the upcoming Dating product and reused the
same mailbox edge type to implement its messaging function-
ality. DELF detected the edge type reuse and highlighted the
missing edge type annotation for the new user object type.
The resulting investigation uncovered that: (a) the process of
mailbox deletion relied on custom procedural deletion code
invoked when Facebook user object types are deleted, and

(b), developers omitted to update this logic to handle cases
where a Dating user is deleted. The bug was identified during
the internal beta testing period for Dating prior to launch. If
it remained undetected it would have resulted in retaining
all private messages Dating users exchanged post account
deletion for people who delete their account. An important
followup was the removal of the procedural deletion code
controlling the invocation of mailbox deletion on account
deletion and replacing it with a deep-annotated edge type
between any user type and its mailbox. In subsequent months
DELF seamlessly handled mailbox deletion for an additional
4 new user account types introduced in FACEBOOK.

In October 2018 DELF flagged an edge type storing the
most recent pages a user views is being left dangling. The
edge type was created in November 2013 and data was used
ever since to generate recommendations to users for pages
to like. Developers initially ensured that edges of this type
are deleted when a Facebook user deletes their account via
updating the custom procedural deletion logic used at the
time. In October 2018 DELF detected that the same edge
type was erroneously reused to log page views for a different
type of user accounts in Facebook, i.e., page admins. De-
velopers confirmed that when page admin deletion occurs
the list of most recent viewed pages may persist and page
admin deletion—which relied on procedural code in a custom
section—did not delete these edges. DELF detected the edge
type reuse and highlighted the missing edge type annotation
shortly after discovering the first dangling edge.
Prevention. DELF enforces that all new data types are cre-
ated alongside deletion annotations. In doing so it eliminates
developer omissions as a correctness concern. The protec-
tion DELF entails, however, is only effective assuming avail-
able annotations can express sufficiently-complicated deletion
logic. Developers would otherwise bypass DELF and con-
tinue to rely on custom procedural code to perform deletions.
DELF permits this via the custom object type annotation
(§4.1). To better assess the system’s ability to prevent omis-
sions, we study how developers bypass DELF by using the
custom object type annotation in new applications.

We retroactively inspect 408 changesets introduced in
FACEBOOK infrastructure throughout October 2019 by 279
distinct developers. Each changeset in our sample creates or
modifies at least one object type annotation. Only 7 change-
sets designate the custom annotation. We observe no new
legitimate instances where DELF annotations are lacking ex-
pressiveness. 6 changesets use custom to maintain backwards
compatibility with legacy procedural deletion logic introduced
before DELF was available, i.e., in one instance data to be
deleted was stored in a TAO edge using a legacy serializa-
tion format and required special handling. We also notice
one changeset misusing custom to approximate reference
counting, i.e., developers were oblivious to native support of
refcount. We conclude that DELF annotations can express
deletion logic necessary in modern OSNs and the system is

effective in safeguarding deletion from developer omissions.

6.2 Inadvertent data retention
We continue by assessing how effective DELF is in identifying
instances of dangling data engineers actively misclassified.
Identified issues. We start with examples where DELF pin-
pointed developer mistakes which would have otherwise re-
sulted in dangling data. We inspect 91 reports generated by
DELF deep heuristics during January 2020, of cases where
developers annotated edges as shallow or refcount while
DELF suggests deep. We submitted these reports to FACE-
BOOK’s privacy team for expert review to establish ground
truth. The assessment established that developers incorrectly
annotated 66 of these edges as shallow. Most of the remain-
ing edges were ambiguous; we discuss those later.

We look closely at one representative example of inadver-
tent data retention in these reports which DELF identified
and then developers remediated successfully. DELF surfaced
that 23 distinct edge types used to represent different types of
major life events for Facebook users, such as weddings, house
moves, and changes to their citizenship, were mislabeled. The
23 edge types associated the user account object with objects
of a separate type storing detailed information about the life
event, e.g., the date the user got married. All were annotated
shallow rather than deep, indicating erroneously that life
event data should be retained post account deletion.

The report investigation confirmed the developer mistakes.
The affected edge types were introduced at different times
dating back to the introduction of the product feature in 2011.
Legacy procedural deletion logic historically ensured correct
deletion of associated life event data. Yet as part of DELF’s
deployment two different developers—unaware of the histori-
cal deletion logic—annotated the edges in 2017 and 2018 as
shallow instead. The DELF report highlighted the mistake
prior to disabling the legacy procedural deletion logic, and
hence no inadvertent data retention of life event data occurred.
Prevention. DELF helps developers annotate edges as deep
via static and dynamic validation. We measure the impact of
static validation in the the developer workflow, and we then
assess how comprehensive deep heuristics are as a safety net.

1) Static validation. We conduct an experiment to measure
how often static validation leads to developers changing their
annotations during product development. DELF enforces
statically that all object types must define at least one deep
inbound edge type by virtue of treating by_any as the default
annotation (§4.1). We inspect (a) a sample of changesets suc-
cessfully creating 151 new object types in production during
January 2020, and (b), logs of DELF static validation fail-
ures triggered during development starting from December
2019. We find that 62.2% of the new object types introduced
failed static validation at some point during their development,
e.g., developers did not define deep-annotated edge types to
delete data stored therein. Developers subsequently corrected

HEURISTIC PREDICTS PREC. (%) RECALL (%)

to_new_object deep 86.9 4.7
to_leaf_object deep 86.3 12.6
to_owned_object deep 91.9 19.3
id1_ref_in_id2 deep 88.9 29.7
to_old_object shallow 94.5 80.2
self_reference shallow 100.0 12.0
many_to_one shallow 96.4 54.5
same_obj_type shallow 90.8 13.9
to_deleted shallow 91.7 0.6

OVERALL deep 89.7 60.7
shallow 93.0 89.5

either 95.0 74.8

Table 5: Precision and recall achieved by DELF heuristics on
our sample of 4000 edge types. DELF discovers the correct
annotation for the majority of edge types in our sample, which
provides for an important discovery mechanism of developer
mistakes. The overall precision is higher than both deep
and shallow individually because we discard conflicting pre-
dictions; deep or shallow false positives with conflicting
predictions are not considered valid predictions.

these mistakes and all 94 new object types were subsequently
created while satisfying the chosen object type annotation.

2) Dynamic validation. We report on the precision and re-
call achieved by DELF heuristics on a sample of edge types
already annotated by developers, treating developer annota-
tions as ground truth2. We sample approximately 2.4 trillion
individual edges deleted in production in January 2020. Of
these, we pick at random 2000 shallow and 2000 deep edge
types to ensure equal representation in our assessment. We
ignore edge types with fewer than 20 samples since some
heuristics require at least 20 items to classify an edge type.

We run DELF heuristics on all edges in our sample. For
each heuristic, we count a true positive when the heuristic
type matches the edge annotation and the heuristic triggers, a
false positive when the heuristic type does not match the edge
annotation but the heuristic triggers, a true negative when the
heuristic type does not match and it does not trigger, and a
false negative when the heuristic type matches but it does
not trigger. We define the aggregate deep (resp. shallow)
heuristic to trigger if any deep (resp. shallow) heuristic trig-
gers, and the overall heuristic to trigger if exactly one of the
deep or shallow aggregate heuristics trigger. In particular,
if both deep and shallow heuristics trigger on an edge type,
we consider the overall heuristic not to trigger.

Table 5 summarizes our results. DELF deep heuristics
demonstrate precision of 89.7% at 60.7% recall, and DELF
accurately discovers the majority of deep types in our sample.

DELF heuristics prioritize precision. In our experience

2This assumption conservatively penalizes DELF heuristics when mis-
matches occur. Obtaining ground truth data at this scale is impractical.

developers are likely to ignore all predictions altogether when
precision drops. One obstacle to further increasing deep
heuristics recall without sacrificing precision are ambiguous
edge types. Consider the photo object type example from Fig-
ure 1. The created_photo edge type pinpoints all photos a
user creates and is annotated deep. Assume this photo object
type is extended with an additional, optional edge type from a
user to a photo to mark the user’s current profile photo. Such
an edge type should be annotated deep; yet a shallow annota-
tion does not result in inadvertent data retention. The original
deep edge type triggers the deletion of all photos—including
the current profile photo—when a user object is deleted. We
observe that developers prefer to annotate ambiguous edge
types as shallow to avoid inadvertent data deletion.

We conclude that DELF static and dynamic verification
methods, when used as a safety net to validate developer
annotations, provide an important privacy protection against
mistakes leading to inadvertent data retention. While DELF
cannot detect all instances of inadvertent retention, it detects
most. Hence it makes mistakes significantly less common.

6.3 Inadvertent data deletion

We cover next DELF’s impact avoiding data loss in situations
where mistakes leading to inadvertent deletions occur.
Identified issues. We start with inadvertent deletion vulner-
abilities where DELF altogether avoided exploitation. We
sample all reports generated during one week of November
2019 by DELF privilege escalation checks while blocking
suspicious writes of edge types annotated with deep (§4.3).
Our sample contains 38 distinct edge types, which we for-
warded to FACEBOOK’s security team for inspection. The
team considered the 38 edge types in the list to be potentially
exploitable, modulo the DELF privilege escalation checks and
the existence of public API methods to perform writes. To
the best of our knowledge inadvertent deletion never occurred
despite the underlying insufficient authorization checks.

We look next at incidents where inadvertent deletions oc-
curred, detection required separate logging or user reports,
and DELF restoration logs were used for recovery. We in-
spect all 21 such incidents between February and December
2019. For effective mitigation inadvertent deletions must be
detected before restoration logs expire and the restoration
process must be operationally simple.

A notable incident of an exploited deletion vulnerability
involved deletion of popular photos in Instagram. In October
2019 developers changed how photos were handled. The
incident involved an edge type initially used to associate a dis-
cussion thread with the photo object posted therein. The edge
type annotation was deep—deleting the thread necessitated
deleting the associated photo. Developers later reused the
same edge type when implementing photo sharing; an edge of
the same type now associated a new share discussion thread
with the original photo object. In doing so users who shared

a photo in a new share thread obtained the ability to delete it
by virtue of deleting the new share thread they created.

Instagram users triggered the vulnerability—knowingly or
not—to delete approximately 17,000 photos, including multi-
ple popular public photos with tens of millions of interactions
such as likes and comments. Exploitation was possible be-
cause DELF privilege escalation checks were not enforced in
Instagram when the bug occurred. The issue was surfaced by
user reports within 10 days. The recovery process involved
one product engineer and the DELF oncall; the former pro-
vided the list of objects to restore and the latter monitored
progress. Restorations ran for approximately 10 days.

Many incidents in our sample did not require exploitation
by a third party. Inadvertent deletions were triggered by
internal maintenance processes or as a result of user action
and affected only the user who performed the action.

A representative example occurred in April 2019. An Face-
book developer triggered a cleanup data migration to delete
objects representing invalid user devices, i.e., objects created
erroneously. The developer ran a database scan over all ex-
isting device objects and scheduled deletions via DELF. Yet
a bug in the object selection logic of the scan triggered the
deletion of a batch of devices every time one object in the
batch was deemed invalid. The process inadvertently deleted
approximately 100 million devices and adversely affected the
ability of users to login as well as service integrity protections.
Product-specific alerts surfaced the mistake to the team on
the same day. The recovery process spanned 12 hours and
involved 2 engineers. One provided a list of deleted objects
for DELF to restore; the other monitored the process.
Prevention. Assuming timely detection restoration logs re-
duce the issue of data loss to temporary data unavailability. To
quantify DELF’s ability to detect data loss independently, i.e.,
without any user reports or application-specific logging, we
measure the effectiveness of shallow edge type annotation
heuristics. Table 5 summarizes our results in the scenario
from §6.2. DELF shallow heuristics demonstrate precision
of 93.0% at 89.5% recall. DELF shallow heuristics indepen-
dently pinpoint the majority of mistakes leading to inadvertent
deletion when annotating edge types.

Data loss remains possible. Most notably, shallow heuris-
tics cannot flag cases where application logic requests the
deletion of the wrong object. During our investigation period
significant data loss occurred in a single incident. The bug in-
volved application logic requesting the deletion of the wrong
video objects, was surfaced by user reports, and remained un-
detected for 2 years, i.e., significantly longer than the deletion
policy allowed DELF restoration logs to persist.

We conclude that DELF restoration logs offer practical
data loss prevention capabilities for most scenarios where
inadvertent deletions occur. While some data loss risk re-
mains, usable restoration logs combined with a sufficiently-
long backup retention period provide a practical protection
mechanism even when automated detection mechanisms fail.

10−6 10−5 10−4 10−3 10−2 10−1 1 101 1020.00

0.25

0.50

0.75

1.00

P1 = 35.0-th percentile

P2 = 86.0-th percentile

P3 = 99.999998-th percentile

0.0 0.2 0.4 0.6 0.8 1.0

End-to-end completion wall time (days)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

de
le

ti
on

s

Figure 6: Cumulative distribution of completion time.

6.4 Execution
We continue with an assessment of the system’s impact ex-
ecuting all deletions to completion. Our analysis is based
on observed deletion end-to-end wall time in a production
workload. Our sample includes approximately 12 billion dele-
tions that finished execution at FACEBOOK on July 31, 2019,
illustrated in Figure 6. Deletions execute in a shared pool of
servers in FACEBOOK’s multi-tenant execution tier.
Identified issues. We observe transient and persistent errors
delaying the execution of deletions in our sample. DELF
drives deletions to completion despite such errors by retrying
deletions persistently and surfacing detected issues for engi-
neers to fix (§5.1). We discuss in detail one representative
deletion facing transient and one facing persistent errors.

The longest-running deletion in our sample involved delet-
ing a photo and performed 30,134 restoration log writes. The
deletion suffered from at least three distinct types of transient
infrastructure failures. The first type involves inadvertent
drops of jobs from FACEBOOK’s asynchronous execution tier.
DELF detected and rescheduled the dropped job in a num-
ber of occasions after a timeout. The second type involves
exponential backoff and rate limits DELF enforces to avoid
overloading underlying data stores (§5.2). The shards in-
volved in this deletion were frequently under heavy load and
DELF postponed the deletion multiple times to prevent further
issues. The third type involves transient write errors frequent
when operating on overloaded shards; those occurred at times
despite rate limiting. Overall, the deletion ran for more than
90 days while making consistent progress.

A deletion affected by persistent errors involved deleting a
user account and performed 1,770 restoration log writes. The
deletion was stuck for 45 days due to two distinct issues, both
requiring engineering intervention. The first issue involved
procedural code in a custom section which contained a data
serialization bug. The second issue was triggered by changes
in the semantics of the point-delete operation in an underlying
data store. DELF flagged both issues for engineers to fix and
the deletion completed within 52 days.
Prevention. To quantify how many deletions benefit from
DELF we look at the distribution of end-to-end wall time

1 101 102

End-to-end completion wall time (days)

1

101

102

103

104

105

106

R
es

to
ra

ti
on

lo
g

w
ri

te
s

100

101

102

103

104

105

#
deletions

Figure 7: Deletion size with respect to completion time.

of all deletions in our sample. We observe three important
points in Figure 6: P1, P2 and P3, respectively 31 seconds
(35th percentile), 45 seconds (86th percentile) and 90 days
(99.99999th percentile). P1 captures deletions of a single ob-
ject. DELF executes those within the triggering web request
without using the asynchronous execution tier. Shortly after
30 seconds, i.e., a configuration parameter of DELF’s deploy-
ment at FACEBOOK, the first run in the asynchronous tier
starts. P2 indicates that a single run within the asynchronous
execution tier is enough to complete the majority of deletions,
i.e., most deletions involve few objects and complete without
issues. P3 illustrates that 99.99999% of deletions complete
within 90 days since they started.

In absence of infrastructure reliability and capacity issues,
deletions would execute to completion without monitoring
from DELF, and completion time would demonstrate a strong
positive correlation with deletion size. To validate their preva-
lence we look into the long tail of deletions running for more
than one day. Figure 7 plots end-to-end wall time required to
complete deletions with respect to the number of restoration
log writes each deletion performed. The number of writes to
restoration logs approximates the size of each deletion.

We observe the correlation between wall time and deletion
size exists yet it is weak for the tail of long-running deletions.
Some deletions consistently leverage additional wall time to
delete more data. In our sample a large deletion running for
30 days performed around 4.8 million restoration log writes
while the largest deletion running for one day was limited to
0.5 million restoration log writes. However, the majority of
deletions running for more than one day are moderately-sized.

We conclude that in the long tail reliability and capacity lim-
itations are the root cause for long-running deletions. DELF
therefore contributes to completing a significant proportion
of all deletions. Any deletions that require at least two runs
in the asynchronous execution tier—approximately 14% of
all deletions—benefit. This includes deletions that require
additional execution time because they entail deleting a lot of
data and deletions that run into capacity and reliability issues.
If developers were left to implement deletion unassisted up to
14% of all deletions triggered would potentially not complete.

stack
management

reads point
deletes

restoration
log writes

processing
100

101

102

103

104

105
W

al
l

ti
m

e
(s

ec
)

C1: read batch = 100 write batch = 100

C2: read batch = 1 write batch = 100

C3: read batch = 100 write batch = 1

C4: read batch = 1 write batch = 1

Figure 8: Time spent in different operations during deletion.

6.5 Overhead

We close with an assessment of system overhead. We profile
deletions and break down how time is spent in different op-
erations within each deletion. We measure throughput while
deleting a tree-structured graph with unit height stored in TAO
which requires 104 point deletes. The tree contains 100 edges
from types annotated deep with the remaining types anno-
tated shallow. We execute each deletion 10 times on distinct
machines in FACEBOOK’s asynchronous execution tier. We
measure throughput under 4 distinct batching configurations,
varying the size of the read and write batching windows. We
report the 10th, 50th, and 90th percentiles we observe.

Figure 8 shows our results. We notice four major operations
within each deletion: reads, point deletes, stack management,
and restoration log writes. The latter two entail synchronous
writes for each batch of point deletes: in ZippyDB where
DELF maintains a stack to implement depth-first graph traver-
sal, and (b), in LogDevice [60] where DELF persists restora-
tion logs temporarily, respectively. The remaining wall time,
i.e., processing, involves periods of CPU-intensive operations,
such as data serialization. We consider any wall time spent on
operations beyond reads and point deletes as DELF overhead.

We observe that batching reads and writes reduces overall
system overhead from 336% down to 29% (C1 over C4).
Noteworthy, the most time consuming operations are the
write-intensive ones, i.e., point deletes and restoration log
writes. Batching writes with a batch size of 100 (C2 over C4)
has substantial impact on both, reducing time spent in restora-
tion log writes by a factor of approximately 100× and in point
deletes by a factor of approximately 5×. The speedup high-
lights that write batching directly controls the frequency of
writing to restoration logs since only one roundtrip is required
per batch compared to a roundtrip per point delete. Instead,
point deletes entail latency that is not amortized linearly while
batching. Read batching reduces time spent on reads by a
factor of 5× and has limited impact on the rest (C3 over C4).

We conclude that DELF introduces limited overhead during
deletion, in line with systems offering similar guarantees [48].

7 Related Work

There is little prior work on the problem of deletion correct-
ness. Garg et al. [61] formalize deletion to mandate deletion
of dangling data yet their work does not suggest technical
solutions developers may leverage to achieve the goal. A
presentation from Doshi and Shah outlines Uber’s deletion
service [62] focusing on reliability of user account deletions
specifically. The system shares design traits with DELF yet
does not offer any capabilities to safeguard correctness [63].
Ritzdorf et al. [64] study deletion correctness motivated by
the problem of helping users delete related data from their
local file system. They leverage data loss prevention tech-
niques [65] to detect files storing similar content. Similar
to DELF the authors suggest heuristics to identify what to
delete, e.g., files accessed together or found to contain dupli-
cate information should be deleted together. To the best of our
knowledge, DELF is the first system to apply such techniques
within complex web applications built on top of distributed
data stores. Our work quantifies their effectiveness.

DELF restoration logs are an example of checkpointing,
a technique for recovering from exploited security vulner-
abilities that lead to unauthorized mutation of application
state [48,66–68]. WARP [48]—similar to DELF—targets web
applications, uses a browser extension for intercepting user
actions, and is assessed in a single-node deployment. DELF
demonstrates the applicability of checkpointing in modern,
large-scale, distributed OSNs as a safety net for preventing
inadvertent data deletion while attempting to delete user data.

Recent user research on deletion explores how users of
modern web applications perceive the deletion process and
highlight a pervasive lack of understanding. Murillo et al. [69]
interview users of Gmail and Facebook, report widespread
misconceptions and mistrust, and suggest greater transparency
in products. Ramokapaneet al. [4] document the coping strate-
gies users employ when they cannot figure out how to delete
data in web applications. Another line of user research studies
the different motives people have to delete data [2, 5].

A well-studied privacy concern regarding deletion is the
effectiveness of individual point deletes [3,70,71]. Prior work
explores the ability to delete data from physical media in a
way that renders the data irrecoverable; suggesting special
file systems [3] and scrubbing tools [72]. Sarkar et al. [73]
introduce techniques to improve the ability of modern data
stores to propagate point delete operations to physical media
within a bounded time frame. The underlying assumption
in this line of work is that users or developers know what
to delete and when in their applications. We demonstrate
that this assumption is not valid in complex web applications
and we suggest techniques to safeguard deletion correctness.
Minai et al. [74] highlight a conceptually-similar problem of
ineffective deletion for public content in OSNs introduced by
adversarial data mirroring services and suggest mitigations.

8 Future Work

Exploring the applicability of DELF outside OSNs requires
further research. We anticipate deletion frameworks based on
declarative annotations similar to DELF to be widely applica-
ble across application domains and data stores. Some DELF
validation techniques can be adapted to discover mistakes in
existing applications without necessitating changes, facilitat-
ing correctness studies. We expect that in any domain with
complex applications handling user data, deletion correctness
validation will surface mistakes on an ongoing basis.

DELF’s ability to validate data type annotations can be ex-
tended further. A straightforward approach involves replacing
edge type classification heuristics with machine-learned mod-
els trained on prior developer annotations. We expect such
approaches to significantly improve the precision and recall
of our current system, perhaps even surpassing developers.

Developers may create objects that do not get deleted even
when all type-level annotations are correct. One way involves
creating individual objects and omitting writing the corre-
sponding edges necessary for deletion, e.g., creating a photo
without a deep-annotated edge from its creator. DELF can
enforce annotations at the data item level in addition to the
data type level to preclude the creation of undeletable objects.

DELF annotations can be extended to be tied to tooling
used for Privacy Impact Assessments [75]. When a particular
deletion product behavior is mandated by an assessment, one
could tie that decision to product implementation via DELF.

We anticipate further improvements in deletion trans-
parency, accountability, and external correctness verification.
Systems such as DELF can expose a transparency interface
to indicate what data items get deleted from data stores and
when; security researchers could use such interfaces to con-
struct reproducible scenarios where dangling data remains;
and bug bounty programs could reward their discovery.

9 Conclusion

We presented DELF, a system to safeguard deletion correct-
ness in large-scale OSNs in presence of developer mistakes
and complex data models. DELF’s main novelty lies in forc-
ing developers to annotate all their data types for deletion
before they are used and then detecting mistakes resulting into
inadvertent retention or inadvertent deletion. DELF entails
overhead during deletion yet the system enables developers
to delete data safely despite mistakes which invariably occur.
We showed how DELF prevented or minimized disruption at
FACEBOOK due to multiple bugs in deletion.

10 Acknowledgements

Many engineers contributed to DELF during its development.
We would like to acknowledge Ben Mathews and Scott Ren-

fro for bootstrapping DELF; and Adarsh Koyya, Akin Il-
erle, Amitsing Chandele, Andrei Bajenov, Anurag Sharma,
Boris Grubic, Gerard Goossen, Cristina Grigoruta, Gustavo
Pacianotto Gouveia, Gustavo Pereira De Castro, Huseyin Ol-
gac, Jordan Webster, Mahdy Nasr, Maria Mateescu, Masha
Kereb, Merna Rezk, Nikita Efanov, Ohad Almagor, Oleksandr
Manzyuk, Prakash Verma, Shradha Budhiraja, Shubhanshu
Agrawal, Sneha Padgalwar, Tudor Tiplea, and Vasil Vasilev
for contributing significant components. Our paper builds
upon the work of FACEBOOK developers who annotated their
data models and investigated discrepancies DELF reported.

We would like to thank our shepherd, Sarah Meiklejohn,
the anonymous reviewers, and members of FACEBOOK’s le-
gal team including Bathilde Waquet, Sumit Shah and Scott
Mellon, for their invaluable feedback on prior paper drafts.

References
[1] M. Mondal, J. Messias, S. Ghosh, K. P. Gummadi, and A. Kate, “For-

getting in Social Media: Understanding and Controlling Longitudinal
Exposure of Socially Shared Data,” in Symposium On Usable Privacy
and Security (SOUPS). Denver, CO: USENIX, 2016.

[2] Y. Wang, G. Norcie, S. Komanduri, A. Acquisti, P. G. Leon, and
L. F. Cranor, “"I regretted the minute I pressed share": A Qualitative
Study of Regrets on Facebook,” in Symposium On Usable Privacy and
Security (SOUPS). Pittsburgh, PA: USENIX, 2011.

[3] J. Reardon, D. Basin, and S. Capkun, “SoK: Secure Data Deletion,” in
Symposium on Security and Privacy. Oakland, CA: IEEE, 2013.

[4] K. M. Ramokapane, A. Rashid, and J. M. Such, “"I feel stupid I can’t
delete... " : A Study of Users’ Cloud Deletion Practices and Coping
Strategies,” in Symposium On Usable Privacy and Security (SOUPS).
Santa Clara, CA: USENIX, 2017.

[5] M. Sleeper, J. Cranshaw, P. G. Kelley, B. Ur, A. Acquisti, L. F. Cranor,
and N. Sadeh, “"I read my Twitter the next morning and was aston-
ished": A Conversational Perspective on Twitter Regrets,” in Human
Factors in Computing Systems. Paris, France: ACM, 2013.

[6] L. Bauer, L. F. Cranor, S. Komanduri, M. L. Mazurek, M. K. Reiter,
M. Sleeper, and B. Ur, “The Post Anachronism: The Temporal Dimen-
sion of Facebook Privacy,” in Workshop on Privacy in the Electronic
Society (WPES). Berlin, Germany: ACM, 2013.

[7] “Regulation 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (GDPR).” [Online].
Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:32016R0679

[8] “California Consumer Privacy Act of 2018.” [Online]. Avail-
able: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?
bill{_}id=201720180AB375

[9] “Facebook mistakenly deleted some people’s Live
videos.” [Online]. Available: https://techcrunch.com/2018/10/11/
facebook-deleted-live-videos/

[10] “Even years later, Twitter doesn’t delete your direct mes-
sages.” [Online]. Available: https://techcrunch.com/2019/02/15/
twitter-direct-messages/

[11] “Myspace loses all content uploaded before 2016.” [Online].
Available: https://www.theguardian.com/technology/2019/mar/18/
myspace-loses-all-content-uploaded-before-2016

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill{_}id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill{_}id=201720180AB375
https://techcrunch.com/2018/10/11/facebook-deleted-live-videos/
https://techcrunch.com/2018/10/11/facebook-deleted-live-videos/
https://techcrunch.com/2019/02/15/twitter-direct-messages/
https://techcrunch.com/2019/02/15/twitter-direct-messages/
https://www.theguardian.com/technology/2019/mar/18/myspace-loses-all-content-uploaded-before-2016
https://www.theguardian.com/technology/2019/mar/18/myspace-loses-all-content-uploaded-before-2016

[12] “TikTok users over 13 are having their accounts
deleted after putting in the wrong birthdays.” [On-
line]. Available: https://www.theverge.com/2019/2/28/18245011/
tiktok-age-coppa-child-privacy-accounts-deleted-ftc-requirement

[13] “Amazon Alexa transcripts live on, even after you delete voice records.”
[Online]. Available: https://cnet.co/2HdQkxk

[14] “Instead of deleting account, New York Times appends ‘1000’
to username and email address.” [Online]. Available: https:
//news.ycombinator.com/item?id=23005060

[15] “Dropbox bug sends years-old deleted files back to user ac-
counts.” [Online]. Available: https://www.techrepublic.com/article/
dropbox-bug-sends-years-old-deleted-files-back-to-user-accounts/

[16] “Facebook blames a bug for not deleting your deleted
videos.” [Online]. Available: https://newyork.cbslocal.com/2018/
04/03/facebook-deleted-videos-bug/

[17] P. Stahlberg, G. Miklau, and B. N. Levine, “Threats to Privacy in the
Forensic Analysis of Database Systems,” in SIGMOD. Beijing, China:
ACM, 2007.

[18] “Should we ever delete data in a database?” [Online].
Available: https://softwareengineering.stackexchange.com/questions/
159232/should-we-ever-delete-data-in-a-database

[19] Daniel Terdiman, “Why Deleting Personal Information On The Internet
Is A Fool’s Errand.” [Online]. Available: https://bit.ly/2JQDlEm

[20] “You just deleted Facebook. Can you trust Facebook to delete your
data?” [Online]. Available: https://bit.ly/2YoL4Ss

[21] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “TAO: Facebook’ s
Distributed Data Store for the Social Graph,” in Annual Technical
Conference (ATC). San Jose, CA: USENIX, 2013.

[22] D. Beaver, S. Kumar, H. Li, J. Sobel, and P. Vajgel, “Finding a needle
in Haystack: Facebook’s photo storage,” in Operating Systems Design
and Implementation (OSDI). Vancouver, Canada: USENIX, 2010.

[23] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson,
L. Jean-Michel, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore -
Providing Scalable, Highly Available Storage for Interactive Services,”
in Conference on Innovative Data Systems Research (CIDR), Asilomar,
California, 2011.

[24] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and
D. Woodford, “Spanner: Google’s Globally Distributed Database,”
Transactions on Computer Systems, vol. 31, no. 8, 2013.

[25] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. D. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
Distributed Storage System for Structured Data,” in Operating Systems
Design and Implementation (OSDI). Seattle, WA: USENIX, 2006.

[26] M. Annamalai, K. Ravichandran, H. Srinivas, I. Zinkovsky, L. Pan,
T. Savor, D. Nagle, M. Stumm, and I. Osdi, “Sharding the Shards :
Managing Datastore Locality at Scale with Akkio,” in Symposium on
Operating Systems Principles (SOSP). USENIX, 2018.

[27] A. Lakshman and M. Prashant, “Cassandra-A Decentralized Structured
Storage System,” in Large Scale Distributed Systems and Middleware
(2009). Big Sky, MT: ACM, 2009.

[28] A. Khurana and J. Le Dem, “The Modern Data Architecture The
Deconstructed Database,” USENIX ;login:, 2018.

[29] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Symposium on Oper-
ating Systems Principles (SOSP). Stevenson, WA: ACM, 2007.

[30] J. L. Carlson, Redis in action. Manning, 2013.

[31] “Neo4j Decreases Development Time-to-Market for LinkedIn’s
Chitu App.” [Online]. Available: https://neo4j.com/case-studies/
linkedin-china/?ref=solutions

[32] B. H. Bloom and B. H., “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7, pp.
422–426, 1970.

[33] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog:
the analysis of a near-optimal cardinality estimation algorithm,” in
Discrete Mathematics and Theoretical Computer Science (DMTCS),
Nancy, France, 2001.

[34] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in Practice: Al-
gorithmic Engineering of a State of The Art Cardinality Estimation
Algorithm,” in Intgernational Conference on Extending Database Tech-
nology / Database Theory (EDBT/ICDT). Genoa, Italy: ACM, 2013.

[35] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson, “CRLite: A Scalable System for Pushing All TLS Revoca-
tions to All Browsers,” in Symposium on Security and Privacy. San
Jose, CA: IEEE, 2017.

[36] M. Honarkhah and A. Talebzadeh, “HyperLogLog in Presto:
Faster cardinality estimation,” 2018. [Online]. Available: https:
//code.fb.com/data-infrastructure/hyperloglog/

[37] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Operating Systems Design and Implementation
(OSDI). USENIX, 2004.

[38] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Mass Storage Systems and Technologies
(MSST). Incline Village, NV: IEEE, 2010.

[39] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy, “Hive - A Petabyte Scale Data
Warehouse Using Hadoop,” in International Conference on Data Engi-
neering (ICDE). Long Beach, CA: IEEE, 2010.

[40] Information Commisioners Office, “Anonymisation: managing data
protection risk code of practice,” 2012. [Online]. Available:
https://ico.org.uk/media/1061/anonymisation-code.pdf

[41] Lea Kissner, “Deidentification versus anonymization,” 2019. [Online].
Available: https://iapp.org/news/a/de-identification-vs-anonymization/

[42] ISO/IEC, “9075-2,” ISO, Tech. Rep., 2016. [Online]. Available:
www.iso.org

[43] MySQL Reference Manual, “Using FOREIGN KEY Con-
straints.” [Online]. Available: https://dev.mysql.com/doc/refman/
5.6/en/create-table-foreign-keys.html

[44] MongoDB Manual, “Database References.” [Online]. Available:
https://docs.mongodb.com/manual/reference/database-references/

[45] T. Schraml, “The Referential Integrity Workaround,” in
Database Trends And Applications (DBTA), 2017. [Online].
Available: http://www.dbta.com/Columns/Database-Elaborations/
The-Referential-Integrity-Workaround-117422.aspx

[46] MySQL 8.0 Reference Manual, “Backup Strategy Sum-
mary.” [Online]. Available: https://dev.mysql.com/doc/refman/8.
0/en/backup-strategy-summary.html

[47] MySQL Reference Manual, “The Binary Log.” [Online]. Available:
https://dev.mysql.com/doc/internals/en/binary-log.html

[48] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich, “Intrusion
recovery for database-backed web applications,” in Symposium on
Operating Systems Principles (SOSP). ACM, 2011, pp. 101–114.

[49] “Facebook Reports First Quarter Results,” 2020. [Online]. Avail-
able: https://investor.fb.com/investor-news/press-release-details/2020/
Facebook-Reports-First-Quarter-2020-Results/default.aspx

[50] “MySQL.” [Online]. Available: https://www.mysql.com/

https://www.theverge.com/2019/2/28/18245011/tiktok-age-coppa-child-privacy-accounts-deleted-ftc-requirement
https://www.theverge.com/2019/2/28/18245011/tiktok-age-coppa-child-privacy-accounts-deleted-ftc-requirement
https://cnet.co/2HdQkxk
https://news.ycombinator.com/item?id=23005060
https://news.ycombinator.com/item?id=23005060
https://www.techrepublic.com/article/dropbox-bug-sends-years-old-deleted-files-back-to-user-accounts/
https://www.techrepublic.com/article/dropbox-bug-sends-years-old-deleted-files-back-to-user-accounts/
https://newyork.cbslocal.com/2018/04/03/facebook-deleted-videos-bug/
https://newyork.cbslocal.com/2018/04/03/facebook-deleted-videos-bug/
https://softwareengineering.stackexchange.com/questions/159232/should-we-ever-delete-data-in-a-database
https://softwareengineering.stackexchange.com/questions/159232/should-we-ever-delete-data-in-a-database
https://bit.ly/2JQDlEm
https://bit.ly/2YoL4Ss
https://neo4j.com/case-studies/linkedin-china/?ref=solutions
https://neo4j.com/case-studies/linkedin-china/?ref=solutions
https://code.fb.com/data-infrastructure/hyperloglog/
https://code.fb.com/data-infrastructure/hyperloglog/
https://ico.org.uk/media/1061/anonymisation-code.pdf
https://iapp.org/news/a/de-identification-vs-anonymization/
www.iso.org
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://docs.mongodb.com/manual/reference/database-references/
http://www.dbta.com/Columns/Database-Elaborations/The-Referential-Integrity-Workaround-117422.aspx
http://www.dbta.com/Columns/Database-Elaborations/The-Referential-Integrity-Workaround-117422.aspx
https://dev.mysql.com/doc/refman/8.0/en/backup-strategy-summary.html
https://dev.mysql.com/doc/refman/8.0/en/backup-strategy-summary.html
https://dev.mysql.com/doc/internals/en/binary-log.html
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-First-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-First-Quarter-2020-Results/default.aspx
https://www.mysql.com/

[51] A. Torres, R. Galante, M. S. Pimenta, and A. J. B. Martins, “Twenty
years of object-relational mapping: A survey on patterns, solutions, and
their implications on application design,” Information and Software
Technology, vol. 82, feb 2017.

[52] P. Marinescu, C. Parry, M. Pomarole, Y. Tian, P. Tague, and I. Papa-
giannis, “IVD: Automatic Learning and Enforcement of Authorization
Rules in Online Social Networks,” in Symposium on Security and
Privacy. San Jose, CA: IEEE, 2017.

[53] L. Szekeres, M. Payer, L. T. Wei, and R. Sekar, “Eternal war in
memory,” in Symposium on Security and Privacy, IEEE, Ed., Oakland,
CA, 2014.

[54] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “SoK: Sanitizing for security,” in Symposium on Security
and Privacy, San Francisco, CA, 2019.

[55] P. Wilson, “Uniprocessor garbage collection techniques,” in Interna-
tional Workshop on Memory Management (IWMM), St.Malo, France,
1992.

[56] “C++ Dynamic memory management.” [Online]. Available: https:
//en.cppreference.com/w/cpp/memory

[57] R. Pang, R. Cáceres, M. Burrows, Z. Chen, P. Dave, N. Germer,
A. Golynski, K. Graney, N. Kang, L. Kissner, J. L. Korn, A. Par-
mar, C. D. Richards, M. Wang, and L. . Google, “Zanzibar: Google’s
Consistent, Global Authorization System,” in Annual Technical Con-
ference (ATC). Renton, WA: IEEE, 2019.

[58] F. Logozzo, M. Fahndrich, I. Mosaad, and P. Hooimeijer, “Zoncolan:
Using static analysis to prevent security issues - Facebook
Engineering,” 2019. [Online]. Available: https://engineering.fb.com/
security/zoncolan/

[59] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha,
W. Wang, K. Wilfong, T. Williamson, and S. Yilmaz, “Realtime Data
Processing at Facebook,” in SIGMOD. San Francisco, CA: ACM,
2016.

[60] M. Marchukov, “LogDevice: a distributed data store for
logs,” 2017. [Online]. Available: https://code.fb.com/core-data/
logdevice-a-distributed-data-store-for-logs/

[61] S. Garg, S. Goldwasser, and P. N. Vasudevan, “Formalizing Data
Deletion in the Context of the Right to Be Forgotten,” in EUROCRYPT.
International Association for Cryptologic Research, 2020. [Online].
Available: http://link.springer.com/10.1007/978-3-030-45724-2{_}13

[62] Y. Doshi and H. Shah, “Now You See It, Now You Don’t: Uber’s
Data Deletion Service,” in Privacy Engineering Practice and Respect
(PEPR). Santa Clara, CA: USENIX, 2019.

[63] Lea Kissner, “Now You See It, Now You Don’t: Uber’s Data
Deletion Service talk presentation notes.” [Online]. Available:
https://twitter.com/LeaKissner/status/1161020063182249984

[64] H. Ritzdorf and N. Karapanos, “Assisted Deletion of Related Content,”
in Annual Computer Security Applications Conference (ACSAC), New
Orleans, LA, 2014.

[65] M. Hart, P. Manadhata, and R. Johnson, “Text classification for data
loss prevention,” in Privacy Enhancing Technologies (PETS), Waterloo,
Canada, 2011.

[66] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim,
A. Orso, and W. Lee, “Rain: Refinable attack investigation with
on-demand inter-process information flow tracking,” in Computer
and Communications Security (CCS). ACM, 2017, pp. 377–390.
[Online]. Available: https://doi.org/10.1145/3133956.3134045

[67] T. Kim, X. Wang, N. Zeldovich, and M. Kaashoek, “Intrusion Recovery
Using Selective Reexecution,” in Symposium on Operating Systems
Design and Implementation (OSDI). Vancouver, Canada: USENIX,
2010.

[68] R. Chandra, T. Kim, and N. Zeldovich, “Asynchronous intrusion
recovery for interconnected web services,” in Symposium on Operating
Systems Principles (SOSP). ACM, 2013, pp. 213–227. [Online].
Available: http://dx.doi.org/10.1145/2517349.2522725

[69] A. Murillo, A. Kramm, S. Schnorf, and A. De Luca, “"If I press
delete, it’s gone" - User Understanding of Online Data Deletion and
Expiration,” in Symposium On Usable Privacy and Security (SOUPS).
Baltimore, MD: USENIX, 2018.

[70] C. Cachin, K. Haralambiev, H.-C. Hsiao, and A. Sorniotti, “Policy-
based Secure Deletion,” in Computer and Communications Security
(CCS). Berlin, Germany: ACM, 2013.

[71] A. Gutmann and M. Warner, “Fight to be Forgotten: Exploring
the Efficacy of Data Erasure in Popular Operating Systems,” in
Annual Privacy Conference, Rome, Italy, 2019. [Online]. Available:
https://en.oxforddictionaries.com/thesaurus/delete

[72] J. Reardon, H. Ritzdorf, D. Basin, and S. Capkun, “Secure Data Dele-
tion from Persistent Media,” in Computer and Communications Secu-
rity (CCS). Berlin, Germany: ACM, 2013.

[73] S. Sarkar, T. I. Papon, D. Staratzis, and M. Athanassoulis, “Lethe: A
Tunable Delete-Aware LSM Engine,” in SIGMOD. Portland, OR:
ACM, 2020.

[74] M. Minaei, M. Mondal, P. Loiseau, K. Gummadi, and A. Kate, “Lethe:
Conceal Content Deletion from Persistent Observers,” in Proceed-
ings on Privacy Enhancing Technologies (PETS), Stockholm, Sweden,
2019.

[75] D. Wright and P. De Hert, Privacy Impact Assessment. Springer
Netherlands, 2012.

https://en.cppreference.com/w/cpp/memory
https://en.cppreference.com/w/cpp/memory
https://engineering.fb.com/security/zoncolan/
https://engineering.fb.com/security/zoncolan/
https://code.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/
https://code.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/
http://link.springer.com/10.1007/978-3-030-45724-2{_}13
https://twitter.com/LeaKissner/status/1161020063182249984
https://doi.org/10.1145/3133956.3134045
http://dx.doi.org/10.1145/2517349.2522725
https://en.oxforddictionaries.com/thesaurus/delete

	Introduction
	Background
	Data Models
	Dangling Data
	Recovery via Backups
	Facebook
	Threat Model

	Case Study: Unassisted Deletion
	Developer omissions
	Developer mistakes
	Recovery

	Design
	Deletion Specification
	Deletion Execution
	Deletion Validation
	Restoration Logs
	Discussion

	Implementation
	Redundant Deletion Tracking
	Throughput
	Restoration Logs Retention
	Deployment sequencing

	Evaluation
	Developer Omissions
	Inadvertent data retention
	Inadvertent data deletion
	Execution
	Overhead

	Related Work
	Future Work
	Conclusion
	Acknowledgements

