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ABSTRACT

Despite rapid advancement in recent years, current speech en-
hancement models often produce speech that differs in perceptual
quality from real clean speech. We propose a learning objective that
formalizes differences in perceptual quality, by using domain knowl-
edge of acoustic-phonetics. We identify temporal acoustic parame-
ters – such as spectral tilt, spectral flux, shimmer, etc. – that are
non-differentiable, and we develop a neural network estimator that
can accurately predict their time-series values across an utterance.
We also model phoneme-specific weights for each feature, as the
acoustic parameters are known to show different behavior in differ-
ent phonemes. We can add this criterion as an auxiliary loss to any
model that produces speech, to optimize speech outputs to match
the values of clean speech in these features. Experimentally we
show that it improves speech enhancement workflows in both time-
domain and time-frequency domain, as measured by standard eval-
uation metrics. We also provide an analysis of phoneme-dependent
improvement on acoustic parameters, demonstrating the additional
interpretability that our method provides. This analysis can suggest
which features are currently the bottleneck for improvement.

Index Terms— Speech Enhancement, Acoustic parameters,
Phonetic alignment, Interpretability

1. INTRODUCTION

Speech enhancement (SE) tries to extract clean speech from signals
that have been degraded mainly by noise. The ability to remove
noise from speech is extremely useful, as noisy environments com-
monly affect applications such as VoIP and phone calls, hearing aids,
and downstream speech processing tasks. Our focus is on the more
ubiquitous single-channel speech enhancement which does not re-
quire multi-microphone speech capture. In the last decade, single-
channel SE has greatly improved by moving from traditional signal
processing techniques to deep neural networks (DNN) [1–5]. Deep
Noise Suppression (DNS) challenges have further stimulated single-
channel SE work by providing a large corpus of audio synthesized
over a wide range of noise types and levels [6, 7]. It also provides a
common test set to measure performance.

Single-channel SE models are usually trained by comparing en-
hanced speech to clean speech using point-wise differences between
waveforms or spectrograms. While this paradigm has been effec-
tive, SE models often still generate unnatural sounding speech [8].
Limitations with these classic losses include failure to capture pitch

†Equal contribution (random order). Code is available at https://
github.com/muqiaoy/PAAP.

[9], and relatively low improvement for low-energy phonemes [10].
Additionally, [11] and [12] describe that ℓ1 or ℓ2 difference at the
signal level is not highly correlated with speech quality.

Other approaches have sought to address these issues, including
optimization of perceptual evaluation metrics. However, these are
non-differentiable, so approximations offer limited improvements
[13, 14], require cumbersome optimization [14, 15] or offer little
to no interpretability through domain knowledge [16]. We aim
to address these problems in this paper, by incorporating domain
knowledge through fundamental speech features which we refer to
as acoustic parameters.

Before the rise of DNNs, features such as pitch, jitter, shim-
mer, and spectral tilt – to name a few – were used as inputs to shal-
low models, such as in speaker and emotion recognition [17]. They
lost popularity as DNNs gained more success operating directly on
waveforms or spectrograms. Their non-differentiable computations
also inhibit straightforward use in optimizing DNNs. Nevertheless,
these parameters provide critical information about frequency con-
tent, energy/amplitude, and other spectral qualities of the speech sig-
nal. Prior perceptual studies have shown important associations of
these features to voice quality [18–20]. [21] introduced a differen-
tiable estimator of utterance-level statistics for these parameters and
improved state-of-the-art SE models through an auxiliary loss aimed
to minimize the differences between parameter values of clean and
enhanced speech. Similarly, we work with 25 acoustic parameters
enumerated in the extended Geneva Minimal Acoustic Parameter Set
[17]. However, unlike prior work which considered these acoustic
parameters at the global (utterance) level through summary statis-
tics, we incorporate the temporal aspects of these acoustic param-
eters [22]. Furthermore, we incorporate the associations between
acoustic parameters and phonemes. For example, plosives typically
have a high amplitude followed by a very low amplitude, as they are
produced by complete closure in the vocal tract followed by a sudden
release of pressure [23]. Nasality in sounds introduces anti-formants
because the nasal cavity introduces resonances that interfere with
the resonances of the vocal tract [24]. Each vowel also has differ-
ent formant structures based on the resonances created by different
locations of constriction in the vocal tract [25].

In this paper, we introduce a phonetic-aligned acoustic param-
eter (PAAP) loss to improve speech outputs from SE systems. We
accomplish this by minimizing the difference between phonetically-
aligned acoustic parameters in enhanced speech and clean speech.
This is done with a two-step approach. First, we introduce a dif-
ferentiable estimator of temporal acoustic parameters, to obtain the
time series of each parameter across an utterance. Second, we cal-
culate differentiable phoneme-specific weights for each acoustic pa-
rameter based on their ability to predict phoneme logits. This allows
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us to put different emphases on acoustic parameters at one time step,
depending on the predicted phoneme at the same time step. These
two components allow us to optimize the original model end-to-end
to match clean speech with phonetic-aligned acoustic parameters.
Our approach leads to improvements over competitive SE models.
We also show the interpretability of our method, by analyzing the
phoneme-dependent improvement on acoustic parameters.

2. RELATED WORK

Various works have introduced losses aimed at improving perceptual
quality. Some techniques include optimization of non-differentiable
perceptual metrics through generative adversarial networks (GAN)
[15], reinforcement learning [14], and convex approximations of
metrics [13]. However, as shown in [21], current methods fail to
capture the aforementioned acoustic parameters, and explicit super-
vision of these parameters improved model outputs.

Other methods have attempted to use phonetic information in en-
hancing perceptual quality, such as [16]. However, their loss func-
tion did not explicitly use domain knowledge of phonetics, as the
phonetic information was only implicitly captured in wav2vec em-
beddings. Recently, [26] performed a study of phonetic-aware tech-
niques for speech enhancement but relies on uninterpretable Hu-
BERT features [27]. Both techniques are evaluated on the Valentini
dataset, which is much smaller and less varied than in our experi-
ments. Moreover, our method allows interpretability through both
acoustic parameters and phonemes, as illustrated in the experiments
section. Lastly, [21] also used the acoustic parameters for optimiza-
tion of perceptual quality. However, it did not factor in temporal or
phonetic information. As these acoustic parameters vary greatly over
an utterance, and between phonemes, modeling this phoneme and
temporal dependencies can be helpful for improved performance.

3. METHOD

We propose a phonetic-aligned acoustic parameter loss to fine-tune
SE models. Although we use SE as a concrete example, we note that
this objective function can be applied to any architecture, and even
any task that involves speech outputs. Significantly, it only requires
a waveform as input and is end-to-end differentiable.

The overall learning paradigm is summarized in Algorithm 1.
We will present the temporal acoustic parameter estimation in Sub-
section 3.1, the phonetic-alignment and weighting in Subsection 3.2,
and the overall fine-tuning process with the proposed PAAP Loss in
Subsection 3.3.

3.1. Temporal Acoustic Parameter Estimation

First, we take the pre-trained SE model as our seed model Φ, and
pass in the noisy audio XN to obtain the enhanced waveform XE

(line 3). On top of the seed models, we use a pre-trained estimator
network Ψ to predict the acoustic parameters given a raw waveform.
We refer to Section 4.2 for architecture and training details. The
acoustic parameters include a set of 25 low-level descriptors, cov-
ering prosodic, excitation, vocal tract, and spectral descriptors that
are found to be the most expressive of the acoustic characteristics as
standardized feature set. Ground-truth acoustic parameters are cal-
culated with the openSMILE package, using the eGeMAPSv02 set
[17].

Unlike prior work which models these acoustic parameters at the
utterance level through summary statistics, we incorporate the tem-
poral feature of these acoustic parameters in the modeling. We pass
the enhanced and clean waveforms to the model to predict temporal

Algorithm 1: Overall workflow of applying PAAP Loss
in one iteration of our SE paradigm.

1 Input: Noisy waveform XN , clean waveform XC , seed
model Φ, pre-trained acoustic low-level descriptor
estimator Ψ, estimated acoustic-phonetic weights w.

2 Output: calculated PAAP Loss ℓPAAP

3 XE ← Φ(XN ) ; // Enhanced waveform from current model

4 DC ← Ψ(XC) ; // Estimated clean acoustic parameters

5 DE ← Ψ(XE) ; // Estimated enhanced acoustic parameters
6 ℓPAAP ← 0

7 N ← len(XC) ; // the total number of frames
8 for i← 1 to N do
9 j ← Index of phoneme at XC

i

10 ℓPAAP ← ℓPAAP + (DE
i −DC

i )
2 ·wj

11 ℓPAAP ← 1
N
· ℓPAAP

12 return ℓPAAP

acoustic parameter matrices, DE and DC respectively (lines 4-5).
The estimator network first performs short-time Fourier Transform
(STFT) on the raw waveform, and then passes the spectrogram to a
recurrent neural network to obtain the predicted temporal acoustic
parameters. We note that using the estimated clean acoustic parame-
ters in PAAP Loss rather than ground-truth allows much greater ease
of use by eliminating the need for external toolkits used in [21].

3.2. Phonetic Alignment

The next component of the PAAP Loss is the set of acoustic-phonetic
weights w, as we would like to weigh the acoustic parameters differ-
ently based on their importance in predicting phoneme logits. These
acoustic-phonetic weights are estimated using clean speech, through
linear regression between the acoustic parameters and their corre-
sponding segmented phoneme logits:

w = ((DC)⊤DC))−1((DC)⊤PC) (1)

where PC indicates the phoneme logits of the clean waveform.
Each column wi is the vector of weights from the 25 acoustic param-
eters to phoneme i, plus a bias term. Each weight wij corresponds
to how much a unit change in acoustic parameter i changes the log-
probability of phoneme j. The weights reflect how much informa-
tion each feature contains about each phoneme, so we can use it to
emphasize optimization on differences between clean and enhanced
parameter values that are more significant for the current phoneme.

We obtain PC using an unsupervised phonetic aligner with a
vocabulary of 40 phonemes, and one index for silence. We retain the
silence index as we want to explicitly model the relationship between
acoustic parameters and phonemes over non-speech regions of the
utterance. The unsupervised phonetic aligner also allows flexibility
to apply our method on datasets without ground-truth transcriptions.

3.3. Fine-tuning with PAAP Loss

During fine-tuning, we first predict the phoneme index j for each
frame across time, using the argmax of predicted phoneme logits
from clean audio. We then use wj , the acoustic-phonetic weight for
phoneme j. We calculate the squared difference between the clean
and enhanced acoustic parameters at the current time step, and per-
form dot-product with wj (line 8-10). Note that these weights are
used to incorporate phonetic information in the acoustic parameter



Metrics Noisy
FullSubNet Demucs

Baseline PAAP
Loss Baseline PAAP

Loss

PESQ (↑) 1.58 2.89 3.00 2.65 2.99
STOI (↑) 91.52 96.41 96.70 96.54 97.12

DNSMOS (↑) 2.48 3.21 3.27 3.31 3.34
NORESQA (↑) 2.92 4.08 4.13 3.93 3.99

WER (↓) 19.0 12.6 12.1 15.0 13.2

Table 1: Evaluation results of using the PAAP Loss compared with
noisy audios and baseline models on the synthetic test set.

differences, not to directly predict phoneme logits. In this way, the
PAAP Loss calculates the weighted difference between acoustic pa-
rameters for each time step.

In our implementation, we use STFT with hop length of 160 and
window length of 512 to determine the total number of frames N .
Both the phoneme logits and acoustic parameters have N vectors of
values. We iterate the above process over all frames in the utterance,
and average the PAAP Loss by the total number of frames. The
PAAP Loss is used as an auxiliary loss alongside the original loss of
the SE model to fine-tune the network. We follow the optimal setting
of [21] by keeping all weights frozen except the speech enhancement
model. In our work, this applies to both acoustic-phonetic weights
w and the weights of the temporal acoustic estimator network Ψ.

4. EXPERIMENTS
4.1. Data

We used data from the Deep Noise Suppression (DNS) Challenge
from InterSpeech 2020 [6] to synthesize 50,000 pairs of 30-second
(s) noisy and clean audio for training. We further synthesized
another 10,000 audio pairs for validation set. The synthesis is per-
formed under the default setting, where noise audios from DNS
noise set are added to the clean utterance at Signal to Noise Ratio
(SNR) sampled uniformly between 0 and 40 decibels (dB).

Our baseline models pre-process their input data slightly before
training, and we follow each model’s respective configuration during
its fine-tuning. Demucs splits 30s audios into 10s segments with a
2s stride, and FullSubNet randomly samples a 3.072s segment from
the 30s audio during each iteration.

For the final evaluation of the models, we use the DNS 2020
synthetic test set with no reverberation. This set consists of 150 ut-
terances from Graz University’s clean speech dataset [28], combined
with noise categories randomly sampled from more than 100 noise
classes. The SNR levels of the test set were uniformly sampled be-
tween 0 and 25 dB.

4.2. Experimental Results

To demonstrate that our proposed method is robust at improving
various architectures, we select state-of-the-art Demucs [29] and
FullSubNet [30] representing time domain and time-frequency do-
main models, respectively. These models are also open-sourced,
so we use their pre-trained checkpoints to allow the reproducibility
of the results of our work. For our unsupervised phonetic aligner,
we use a wav2vec2-based method [31]. We train our estimator on
the DNS waveforms paired with ground-truth openSMILE LLD’s
for 200 epochs using MSE loss, and Adam optimizer with learning
rate 0.0001. The architecture is a 3-layer 512-hidden size LSTM
[32]. We found that no additional complexity was required to reach
train and validation MSE of 0.15. In our experiments, we weigh the
PAAP Loss by a factor of 0.1 before adding to the original loss to

Fig. 1: Acoustic improvement (in %) for FullSubNet (upper) and
Demucs (lower) by using the proposed PAAP Loss, where acoustic
improvement is reduction in MAE as defined in Section 4.3.1.

fine-tune the seed SE model. Table 1 shows the evaluation results
for fine-tuning FullSubNet and Demucs with the additional PAAP
Loss. We also note that fine-tuning without the PAAP Loss does not
increase PESQ or STOI after 40 epochs.

We first look at Perceptual Evaluation of Speech Quality (PESQ)
and Short-Time Objective Intelligibility (STOI) as they are canonical
evaluations for speech enhancement. We see significant improve-
ments in these metrics using our PAAP loss. Note that these are
strong state-of-the-art models and hence improvements are hard to
achieve. PESQ in particular improves by almost 4% and 13% for
FullSubNet and Demucs respectively.

Since our goal is to improve perceptual quality, the gold stan-
dard evaluation is mean opinion score from humans. This is calcu-
lated as the average of ratings on a 1-5 scale. Conducting a Mean
Opinion Score (MOS) study is costly so we include two of the cur-
rent state-of-the-art estimation approaches to estimate MOS, DNS-
MOS [33], and NORESQA-MOS (Non-matching Reference based
Speech Quality Assessment) [34]. We observe that our PAAP loss
once again shows improvements in these metrics for both models.

Finally, we also calculate word error rate (WER) to evaluate our
enhancement for downstream speech processing applications. Since
we do not have ground-truth transcriptions, we use WavLM [35] base
model transcriptions on clean speech as reference. We apply the
same model to baseline and our enhanced speech to compare. We
see improvements in WER as well, demonstrating that our method
benefits both human perceptual quality and the ability to interface
with speech technologies.

4.3. Analysis

4.3.1. Acoustic improvement

Fig. 1 provides a visualization of the percentage improvement of the
25 acoustic parameters after using the PAAP Loss to fine-tune the
model. The acoustic improvement is measured by the reduction in
mean absolute error (MAE) between the acoustic parameters of the
enhanced and clean speech. Formally, if DE ,DC ∈ RN×25 are the
enhanced and clean estimated acoustics, for each acoustic parameter



j we compute

MAE(DE
j ,D

C
j ) =

1

N

N∑
i=1

|DE
ij −DC

ij | (2)

and then average over all acoustic parameters to get MAE(DE ,DC).
Formally, the acoustic improvement as reduction in MAE is

MAE(DE ,DC)−MAE(DB ,DC)

MAE(DB ,DC)
· 100% (3)

where DB stands for the acoustic parameters from the baseline
enhancement model. For FullSubNet, we can observe that the PAAP
Loss has the most improvement on MFCC features and loudness.
Demucs shows most of the acoustic improvement at the similar level
with FullSubNet, except that the loudness and the F0 on a semitone
frequency scale have a larger boost of about 30%. Among all the
acoustic features, the acoustic improvements are relatively small for
formant frequencies and formant bandwidths for both models. Over-
all, we obtain improvements on all of the acoustic low-level descrip-
tors across different categories of SE models..

4.3.2. Phoneme-dependent acoustic improvement

In the previous section, we looked at overall improvements for each
acoustic parameter. Now we break down the analysis further by
showing the improvement in each acoustic parameter segmented by
phoneme. The acoustic improvement is calculated by first creating
phoneme alignments with the phonetic aligner on the clean speech.
Then for each frame, we take the difference in acoustic parameters
for clean and enhanced speech, and add this difference to the running
total of the corresponding aligned phoneme. At the end, we average
the differences per phoneme by the number of frames. We connect
this analysis with the acoustic-phonetic properties mentioned in the
introduction. Recall that plosives have very characteristic behavior
with amplitude features. Moreover, vowels and nasals have specific
formant characteristics. We include plots of per-phoneme acoustic
parameter improvement for loudness and F1 frequency to represent
the amplitude and formant characteristics, respectively.

We plot the phoneme-dependent improvement for loudness and
formant-1 (F1) frequency in Fig. 2. Each phoneme represents one
point, where the colors/shapes indicate the phoneme category. We
separate out vowels, and then use the place of articulation as the
classification standard of consonants. This includes dorsals, labials
and coronals, which correspond to consonants where the articulation
is performed with tongue dorsum, lips, and tongue front respectively.
We also separate /HH/ as the only consonant in English with the
place of articulation in the larynx. Therefore, we use five different
colors/shapes in total to represent phoneme categories in the figure.

With this knowledge, we can see that our phonetically-aligned
acoustic parameter loss results in the expected improvements given
the above domain knowledge. The highest improvements in loud-
ness are in plosives such as /B/, /P/, /K/, /G/, /D/, and /DH/, where
the average improvement is around 90%. The goal of the PAAP
Loss was to learn the relations between phonemes and acoustic pa-
rameters over time, and fine-tune enhancement models to account
for this. Now we observe models fine-tuned with PAAP Loss pro-
duce speech with more improvement in acoustic parameters for the
specific phonemes that are relevant for that particular parameter.

We also see the expected clustering of improvement for F1 fre-
quency. Nearly all the highest improvements are seen with vow-
els, as formant structure is more important for vowels than conso-
nants. The overall acoustic improvement of vowels is around 45%,

Fig. 2: Reduction in error of loudness / F1 frequency vs. average
value of acoustic parameter for each phoneme.

higher than any group of consonants. The nasals /N/ and /M/, also
mentioned in the introduction for their formant structure, showed
similar improvements to many vowels. The other consonants that
showed high improvement, /L/ and /R/ are liquid consonants, which
are known to be more similar to vowels than other consonants.

5. CONCLUSION

In this work, we propose a novel auxiliary objective for speech en-
hancement, the phonetic-aligned acoustic parameter (PAAP) loss,
which minimizes the differences between important temporal acous-
tic parameters that are weighted by phoneme types. We fine-tune
competitive speech enhancement models with the addition of PAAP
Loss, and experiments show that performance increases across all
evaluation metrics, including measures of perceptual quality, and
WER from competitive ASR models. We provide a detailed analysis
of the phoneme-dependent acoustic improvement to show that the
acoustic parameters improve most in expected phoneme categories.
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