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Abstract

In audio-visual navigation, an agent intelligently travels
through a complex, unmapped 3D environment using both
sights and sounds to find a sound source (e.g., a phone ring-
ing in another room). Existing models learn to act at a fixed
granularity of agent motion and rely on simple recurrent
aggregations of the audio observations. We introduce a rein-
forcement learning approach to audio-visual navigation with
two key novel elements 1) audio-visual waypoints that are dy-
namically set and learned end-to-end within the navigation
policy, and 2) an acoustic memory that provides a structured,
spatially grounded record of what the agent has heard as it
moves. Both new ideas capitalize on the synergy of audio
and visual data for revealing the geometry of an unmapped
space. We demonstrate our approach on the challenging
Replica environments of real-world 3D scenes. Our model
improves the state of the art by a substantial margin, and
our experiments reveal that learning the links between sights,
sounds, and space is essential for audio-visual navigation.

1. Introduction
Intelligent robots must be able to move around efficiently

in the physical world. Whereas traditional approaches rely
on geometric maps and planning [50, 25, 16], recent work
in embodied AI shows the promise of agents that instead
learn to map and navigate. Sensing directly from egocentric
images, they jointly learn a spatial memory and navigation
policy in order to quickly reach target locations in novel,
unmapped 3D environments [24, 23, 44, 35]. High quality
simulators have accelerated this research direction to the
point where policies learned in simulation can (in some
cases) successfully translate to robotic agents deployed in
the real world [23, 36, 7, 48].

Most current work centers around visual navigation by
an agent that has been told where to find the target [23, 45,
35, 33, 7]. However, in the recently introduced AudioGoal
task, the agent must use both visual and auditory sensing
to travel through an unmapped 3D environment to find a

sound-emitting object, without being told where it is [8,
17]. As a learning problem, AudioGoal not only has strong
motivation from cognitive and neuroscience [21, 32, 43],
it also has compelling real-world significance: a phone is
ringing somewhere upstairs; a person is calling for help from
another room; a dog is scratching at the door to go out.

What role should audio-visual inputs play in learning to
navigate? There are two existing strategies. One employs
deep reinforcement learning to learn a navigation policy
that generates step-by-step actions based on both modalities
(TurnRight, MoveForward, etc.) [8]. This has the advantage
of unifying the sensing modalities, but can be inefficient
when learning to make long sequences of individual local
actions. The alternative approach separates the modalities—
treating the audio stream as a beacon that signals the goal
location, then planning a path to that location using a visual
mapper [17]. This strategy has the advantage of modularity,
but the disadvantage of restricting audio’s role to localizing
the target. Furthermore, both existing methods make strong
assumptions about the granularity at which actions should
be predicted, either myopically for each 0.5m step [8] or
globally for the final goal location [17].

We introduce a new approach for AudioGoal navigation
where the agent instead predicts non-myopic actions with
self-adaptive granularity. Our key insight is to learn audio-
visual waypoints: the agent dynamically sets intermediate
goal locations based on its audio-visual observations and
partial map. Intuitively, it is often hard to directly localize a
distant sound source from afar, but it can be easier to identify
the general direction (and hence navigable path) along which
one could move closer to that source. See Figure 1.

Both the audio and visual modalities are critical to identi-
fying waypoints in an unmapped environment. Audio input
suggests the general goal direction; visual input reveals in-
termediate obstacles and free spaces; and their interplay
indicates how the geometry of the 3D environment is warp-
ing the sounds received by the agent, such that it can learn to
trace back to the hidden goal. In contrast, subgoals selected
using only visual input are limited to mapped locations or
clear line-of-sight paths [4, 5].

To realize our idea, our first contribution is a novel deep
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Figure 1: Audio-visual waypoints for navigation: Given egocentric audio-visual sensor inputs (bottom right), the proposed
agent builds up both geometric and acoustic maps (top right) as it moves in the unmapped environment. The agent learns
encodings for the multi-modal inputs together with a modular navigation policy to find the sounding goal (e.g., phone ringing
in top left corner room) via a series of dynamically generated audio-visual waypoints. For example, the agent in the bedroom
hears the phone ringing, identifies that it is in another room, and decides to first exit the bedroom. It then narrows down the
phone location to the dining room, decides to enter it, and subsequently finds it. By intelligently identifying audio-visual
waypoints, the agent efficiently reaches the goal.

reinforcement learning approach for AudioGoal navigation
with audio-visual waypoints. The model is hierarchical, with
an outer policy that generates waypoints and an inner mod-
ule that plans to reach each waypoint. Whereas existing
visual navigation methods employ classic heuristics to de-
fine subgoals (e.g., [48, 4, 5]), the proposed agent learns to
set useful subgoals in an end-to-end fashion for the naviga-
tion task. This is a new idea for 3D navigation subgoals in
general, not specific to audio-visual. As a second technical
contribution, we introduce an acoustic memory to record
what the agent hears as it moves, complementing its visual
spatial memory. Whereas existing models aggregate audio
evidence purely based on an unstructured memory (GRU),
our proposed acoustic map is structured, interpretable, and
integrates audio observations throughout the reinforcement
learning pipeline.

We demonstrate our approach on the challenging 3D en-
vironments of Replica [49, 8]. Our approach outperforms
the state of the art for AudioGoal navigation by a substan-
tial margin (10 to 27 points in SPL on heard sounds), and
generalizes much better to the challenging cases of unheard
sounds and noisy audio. We show audio and vision are
together powerful signals for learning to set intermediate
goals, while the proposed acoustic memory helps the agent
set goals and decide when to stop.

2. Related Work
Learning to navigate in 3D environments Traditionally,
robots would navigate complex real-world environments
by mapping the space with 3D reconstruction algorithms

(i.e., SLAM) and then planning their movements [50, 16].
However, recent work shows the promise of learning map
encodings and navigation policies directly from egocentric
RGB-(D) observations [23, 24, 44, 35]. Current methods
focus on the so-called PointGoal task: the agent is given a 2D
displacement vector pointing to the goal location and must
navigate through free space to get there; the agent relies on
visual input and (typically) GPS odometry [23, 35, 33, 45, 7].

In contrast, the recently introduced AudioGoal task re-
quires the agent to navigate to a sound source goal using
vision and audio [8, 17]. Importantly, unlike PointGoal, Au-
dioGoal does not provide a displacement vector indicating
the goal. Existing AudioGoal methods either learn a policy
to select the best immediate next action using the multi-
modal inputs [8], or predict the final goal location from the
audio input and then follow a planned path to it based on
visual inputs [17]. Our ideas for audio-visual waypoints
and an acoustic map are entirely novel, and have significant
impact on results.

Navigation with intermediate goals The norm in the cur-
rent literature is to learn policies that reward moving to the
final goal location using a step-by-step action space (e.g.,
TurnRight, MoveForward, Stop) [23, 34, 35, 33]. Recent
work explores ways to incorporate subgoals or waypoints
for PointGoal navigation [48, 7, 4]. Taking inspiration from
hierarchical learning [3, 53, 37, 14], the general idea is to
select a subgoal, use planning (or a local policy) to navigate
to the current subgoal, and repeat [48, 4, 7, 39, 55, 5]. For
example, one approach applies a CNN to the RGB input to
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infer the next waypoint, then applies model-based planning
to find a collision-free path [4]. Active Neural SLAM plans
a path to the point goal using a partial map of the environ-
ment and navigates to intermediate goals on that path using
a local policy [7]. Outside of navigation, related modular
approaches are also explored for agents that answer natural
language questions [12, 20].

The modular nature of these methods resonates with the
proposed model. However, there are several important dif-
ferences. First, we tackle AudioGoal, not PointGoal, which
means our top-level module is not given the goal location
and must instead learn how to direct the agent based on the
audio inputs. Second, we introduce audio-visual subgoals;
whereas visual subgoals focus on visible obstacle avoidance,
audio-visual waypoints benefit from the wide reach of audio.
For example, a visual subgoal may consider either of two
exit doors as equally good, whereas an audio-visual sub-
goal prefers the one from which greater sound appears to
be emerging. Third, a key element of our approach is to
learn to generate navigation subgoals in an end-to-end fash-
ion. In contrast, prior work relies on heuristics like selecting
frontiers [5, 48] or points along the shortest path [4, 7] to
define subgoals. This is an important technical contribu-
tion independent of the audio-visual setting, as it frees the
agent to dynamically identify subgoals driven by the ultimate
navigation goal.

Visual semantic memory and mapping Learning-based
visual mapping algorithms [27, 44, 24, 23] show exciting
promise to overcome the limits of purely geometric maps
(e.g., SLAM). A learned map can encode semantic infor-
mation beyond 3D points while being trained with the
agent’s ultimate task (like navigation). Recent work ex-
plores memories that spatially index learned RGB-D fea-
tures [52, 27, 23], build a topological memory with visually
distinct nodes [44, 38, 6], or use attention models over stored
visual embeddings [15]. Expanding this line of work, we
introduce the first multi-modal spatial memory. It encodes
both visual and acoustic observations registered with the
agent’s movement along the ground plane. We show that
the multi-modal memory is essential for the agent to capture
links between sounds, sights, and space, in order to produce
good action sequences.

Sound localization Robotics systems localize sound
sources with microphone arrays [41, 42], and active con-
trol can improve localization [40, 54]. The geometry of
a room can be in part sensed by audio, as explored with
ideas for echolocation [13, 10, 18]. In 2D video frames,
methods learn to localize sounds based on their consistent
audio-visual association [28, 51, 47, 2]. Unlike any of the
above, we investigate the audio-visual navigation problem,
where an agent learns to move efficiently towards a sound

source in a 3D environment based on both audio and visual
cues.

3. Approach
We consider the task of AudioGoal navigation [8, 17].

In this task the agent moves within a 3D environment and
receives a sensor observation Ot at each time step t from
its camera (RGB/depth) and binaural microphones. The en-
vironment is unmapped at the beginning of the navigation
episode; the agent has to accumulate observations to un-
derstand the scene geometry while navigating. Unlike the
common PointGoal task [1, 33, 19, 56, 31, 7], for Audio-
Goal the agent does not know the location of the goal (i.e.
no GPS signal or displacement vector pointing to the goal
is available). The agent must use the sound emitted by the
audio source to locate and navigate successfully to the goal.

We introduce a novel navigation approach that predicts
intermediate waypoints to reach the goal efficiently.

Our approach is composed of three main modules (Fig. 2).
Given visual and audio inputs, our model 1) encodes these
cues using a perception and mapping module, then 2) pre-
dicts a waypoint, and finally 3) plans and executes a sequence
of actions that bring the agent to the predicted waypoint. The
agent repeats this process until it predicts the goal has been
reached and executes the Stop action.

3.1. 3D Environments and Audio-Visual Simulator

To explore our idea in a reproducible evaluation setting,
we use the AI-Habitat simulator [33] with the publicly avail-
able Replica environments [49] together with the audio sim-
ulations and audio-visual (AV) navigation benchmark in-
troduced by Chen and Jain et al. [8]. The Replica envi-
ronments are meshes constructed from real-world scans of
18 apartments, offices, hotels, and rooms.1 The agent can
travel through the spaces while receiving real-time egocen-
tric visual and audio observations. Using the room impulse
responses (RIR) introduced by [8], we can place an audio
source in the 3D environment, then simulate realistic audio
renderings at each location in the scene at a spatial resolu-
tion of 0.5m. These state-of-the-art renderings capture how
sound propagates and interacts with the surrounding geome-
try and surface materials, modeling all of the major features
of the RIR: direct sound, early specular/diffuse reflections,
reverberation, binaural spatialization, and frequency depen-
dent effects from materials and air absorption (see [8] for
details).

The simulator maintains a navigability graph of the envi-
ronment (unknown to the agent). The agent can only move
from one node to another if there is an edge connecting them
and the agent is facing that direction. The action space A

1The AI2-THOR simulation from [17] is not yet available, and it con-
tains synthetic computer graphics imagery (vs. Replica’s real-world scans).
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Figure 2: Model architecture. Our audio-visual navigation model uses the egocentric stream of depth images and binaural
audio (Bt) to learn geometric (Gt) and acoustic (At) maps for the 3D environment. The multi-modal cues and partial maps
(left) inform the RL policy’s prediction of intermediate waypoints (center). For each waypoint, the agent plans the shortest
navigable path (right). From this sequence of waypoints, the agent reaches the final AudioGoal efficiently.

has four actions: MoveForward, TurnLeft, TurnRight and
Stop.

3.2. Perception and Mapping

Visual perception At each time step t, we extract visual
cues from the agent’s first-person depth view, which is more
effective for map construction than RGB [7, 9]. First, we
backproject the depth image into the world coordinates us-
ing the camera’s intrinsic parameters to compute the local
scene’s 3D point cloud. Then, we project these points to
a 2D top-down egocentric local occupancy map Lt of size
3× 3 meters in front of the agent, corresponding to the typi-
cal distance at which the real-world sensor is reliable. The
map has two channels, one for the occupied/free space and
one for explored/unexplored areas. A map cell is deemed
occupied if a 3D point is higher than 0.2m and lower than
1.5m, and it is deemed explored if any 3D point is projected
into that cell. (Results are tolerant to noisy depth; see Supp.)
We update an allocentric geometric map Gt by transform-
ing Lt with respect to the agent’s last pose change and then
averaging it with the corresponding values of Gt−1.

Cells with a value above 0.5 are considered occupied or
explored. See top branch in Figure 2.
Acoustic perception At each time step the agent receives
binaural sound Bt represented by spectrograms for the right
and left ear, a matrix representation of frequencies of audio
signals as a function of time (second branch in Figure 2; see
Supp for spectrogram details). Beyond encoding the current
sounds, we also introduce an acoustic memory. The acoustic
memory is a map At indexed on the ground plane like Gt

that aggregates the audio intensity over time in a structured
manner. It records a moving average of direct sound intensity
solely at positions visited by the agent. See the third branch

in Figure 2. The acoustic map and Bt provide spatially
grounded information about both the environment and the
goal: the walls and other major surfaces influence the sound
received by the agent at any given location, while the sound
source at the goal gives a coarse sense of direction when
the agent is far away. This directional cue gets increasingly
precise as the agent approaches the goal.

3.3. Audio-Visual Waypoint Predictor

Both the audio and visual inputs carry complementary
information to set good waypoints en route to the audio goal.
While the audio signalsBt (binaural inputs) andAt (acoustic
memory) inform the agent of the general direction of the
goal and hint at the room geometry, the visual signal in the
form of the occupancy map Gt allows spatial localization of
the waypoint and helps to avoid obstacles. Recall Figure 1,
where the agent in the bedroom needs to reach a phone
ringing in another room.

We learn three encoders to represent the inputs: gt =
fg(Gt), bt = fb(Bt) and at = fa(At). Functions fg and fa
first transform the geometric and acoustic maps (Gt and At)
such that the agent is located at the center of the map facing
upwards and then crop them to size sg × sg and sa × sa,
respectively. Each function has a deep convolutional neural
network (CNN) in the end to extract features (architecture
details in Supp). We concatenate the three vectors gt, bt and
at to obtain the full audio-visual feature, and pass it into a
gated recurrent neural network (GRU) [11]. See Figure 2.

Our reinforcement learning waypoint predictor has an
actor-critic architecture. It takes the hidden state ht of the
GRU and predicts a probability distribution π(Wt|ht) over
possible waypoints. Wt is the action map of size sw × sw
and represents the candidate waypoints in the area centered
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around the agent.2 We mask the output of the policy with
the local occupancy map to ensure that the model selects
waypoints that are in free spaces. We sample a waypoint
wt = (∆x,∆y) from Wt according to the policy’s pre-
dicted probability distribution. The waypoint is relative to
the agent’s current position and is passed to the planner (see
Sec. 3.4).

This waypoint policy is an important element in our
method design. It allows the agent to dynamically adjust
its intermediate goals according to what it currently sees
and hears. Unlike existing audio-visual navigation methods,
our waypoints guide the agent at a variable granularity, as
opposed to fixing its actions to myopic next steps [8] or a
final goal prediction [17]. Unlike existing visual subgoal
approaches, which rely on frontier-based heuristics or points
along the shortest path [7, 48, 4, 5], our waypoints are in-
ferred in tight integration with the navigation task.

3.4. Path Planner

Given the generated waypoint wt, a shortest-path planner
tries to generate a sequence of low-level actuation commands
chosen fromA to move the agent to that waypoint. The plan-
ner maintains a graph of the scene based on the geometric
map Gt and estimates a path from the agent’s current loca-
tion to wt using Dijkstra’s algorithm. Based on the shortest
path, a low-level actuation command is analytically com-
puted. The agent executes the action, gets a new observation
Ot, updates bothGt andAt, and repeats the above procedure
until it exits the planning loop.

The planning loop breaks under three conditions: 1) the
agent reaches the waypoint, 2) the planner could not find
a path to the waypoint, or 3) the agent reaches a planning
step limit. The planning step limit is set to prevent bad
waypoint prediction (due to noisy occupancy estimates) or
hard-to-reach waypoints (like behind the wall of another
room) from derailing the agent from the goal. If the model
selects wt = (0, 0) (i.e. the agent’s current location), this
means that the agent believes it has reached the final goal;
the Stop action is then executed and the episode terminates.

3.5. Reward and Training

Following typical navigation rewards [33, 8], we reward
the agent with +10 if it succeeds in reaching the goal and
executing the Stop action there, plus an additional reward of
+0.25 for reducing the geodesic distance to the goal and an
equivalent penalty for increasing it. Finally, we issue a time
penalty of−0.01 per executed action to encourage efficiency.
For each waypoint prediction step, the agent is rewarded with
the cumulative reward value collected during the last round
of planner execution. Altogether, the reward encourages the

2Note that the Replica environment graphs have nodes only where the
audio RIRs are available, and hence both actions and candidate waypoints
are discrete sets. This disallows testing noisy actuation for any method.

model to select waypoints that are reachable, far from the
current agent position, and on the route to the goal, or to
choose the goal itself if it is within reach. We train the model
end-to-end with Proximal Policy Optimization (PPO) [46].

4. Experiments

Environment We test with the Replica [49] environments in
the Habitat simulator (Sec. 3.1). We follow the standard eval-
uation protocol [8] with train/val/test splits of 9/4/5 scenes.
We stress that the test environments are disjoint from the
train/val environments, requiring the agent to learn gener-
alizable behaviors. Furthermore, for the same scene splits,
we experiment with training and testing on disjoint sounds,
requiring the agent to generalize to unheard sounds. Except
where specified, the telephone ringing is the sound source.
We follow the protocol of the benchmark [8], except we
double the number of episodes tested for all models in order
to reduce the variance in performance.
Implementation details We train our model with
Adam [30] with a learning rate of 2.5× 10−4. The out-
put of the three encoders gt, bt and at are all of dimension
512. We use a one-layer bidirectional GRU [11] with 512
hidden units that takes [gt, bt, at] as input. The geometric
map size sg is 200 at a resolution of 0.1m, and the acoustic
map size sa is 20 at a resolution of 0.5m. The action map
size sw is 9 at a resolution of 0.5m, chosen based on valida-
tion, which corresponds to a physical size of 4.5×4.5m. We
use an entropy loss on the policy distribution with coefficient
0.02. We train for 7.5 million policy prediction steps, and
we set the upper limit of planning steps to 10.
Metrics We evaluate the following navigation metrics: 1)
success rate (SR), the fraction of successful episodes; 2) suc-
cess weighted by path length (SPL), the standard metric [1]
that weighs successes by their adherence to the shortest path;
3) normalized distance to goal (NDG), the distance to the
goal at the episode’s conclusion relative to the shortest path,
even for failure cases; 4) number of actions (NA), the aver-
age number of actions per episode, which penalizes rotation
in place actions, which do not lead to path changes; 5) suc-
cess weighted by number of actions (SNA). Please see Supp
for more details on these comprehensive metrics and the
baseline implementations.

Existing methods and baselines We compare the follow-
ing methods (detailed in Supp):

– Random: a naive agent that randomly selects each action
and signals Stop when it reaches the goal.

– Audio Direction Follower: predicts the audio direction of
arrival (DoA), navigates in that direction for four steps,
then repeats. We train a separate classifier based on audio
input to predict when this agent should stop.
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Table 1: AudioGoal navigation results. Our audio-visual waypoints navigation model (AV-WaN) reaches the goal faster (higher
SPL) and it is more efficient (lower NA and higher SNA) compared to the state-of-the-art. SPL, SR, NDG and SNA are shown
as percentages. The arrow direction shows whether higher ↑ or lower ↓ is better for each metric.

Heard sound Unheard sounds
Model SPL ↑ SR ↑ NDG ↓ NA ↓ SNA↑ SPL ↑ SR ↑ NDG ↓ NA ↓ SNA↑
Random Agent 4.7 18.5 89.7 448.9 1.7 4.7 18.5 89.7 448.9 1.7
Audio Direction Follower 54.7 72.0 19.5 173.0 41.1 11.1 17.2 55.4 415.2 8.4
Frontier Waypoints 44.0 63.9 47.5 218.5 35.2 6.5 14.8 96.3 434.2 5.1
Gan et al. [17] 57.6 83.1 17.6 130.5 47.9 7.5 15.7 76.3 336.6 5.7
Chen and Jain et al. [8] 75.0 95.7 1.3 84.4 43.4 28.6 41.2 16.0 223.1 14.9
AV-WaN (Ours) 85.3 98.0 0.6 38.8 70.0 54.4 71.2 12.3 173.6 43.8

Table 2: Ablation study for AV-WaN.

Model SPL ↑ SR ↑ NDG ↓ NA ↓ SNA↑
AV-WaN w/o At and Gt 77.0 93.1 1.6 52.7 61.3
AV-WaN w/o Gt 82.0 97.2 0.7 41.2 66.1
AV-WaN w/o At 81.4 94.9 1.1 43.8 66.8
AV-WaN 85.3 98.0 0.6 38.8 70.0

– Frontier Waypoints: intersects the predicted DoA with
the frontiers of the explored area and selects that point
as the next waypoint. Frontier waypoints are commonly
used in the visual navigation literature (e.g., [5, 48, 9, 7]),
making this a broadly representative baseline for standard
practice.

– Chen and Jain et al. [8]: a state-of-the-art end-to-end RL
agent that selects actions using both visual and acoustic
observations. It lacks any geometric or acoustic maps. We
run the authors’ code.

– Gan et al. [17]: a state-of-the-art agent that predicts the
audio goal location from binaural spectrograms alone and
then navigates with an analytical path planner on an oc-
cupancy map it progressively builds by projecting depth
images. It uses a separate audio classifier to stop. We
adapt the model to improve its performance on the Replica
data, since the authors originally tested on a game engine
simulator.

Navigation results We consider two settings: 1) heard
sound—train and test on the telephone sound, follow-
ing [8, 17], and 2) unheard sounds—train and test with
disjoint sounds, following [8].3 In both cases, the test en-
vironment is always unseen, hence both settings require
generalization.

Table 1 shows the results. We refer to our model as AV-
WaN (Audio-Visual Waypoint Navigation). Random does

3Train on {telephone, fan, horn, engine 1, radio 1, music 1} and test on
{engine 3, radio 3, music 3} from [8].

poorly due to the challenging nature of the AudioGoal task
and the complex 3D environments. For the heard sound, AV-
WaN strongly outperforms all the baselines and both existing
methods—with 10.3% and 27.7% gains in SPL compared
to [8] and [17], respectively. This result shows the advantage
of our dynamic audio-visual waypoints and structured acous-
tic map, compared to the myopic action selection in [8] and
the final-goal prediction in [17]. We find that the RL model
of [8] fails when it oscillates around an obstacle. Meanwhile,
we find that predicting the final audio goal location, as done
by [17], is prone to errors and leads the agent to backtrack or
change course often to redirect itself towards the goal. See
Figure 3. The baselines that rely only on audio or frontiers
to select waypoints significantly underperform our model,
which demonstrates that learning to use both acoustic and
visual cues is crucial to select good waypoints. Further, it
highlights the value of directly learning waypoints, versus
current heuristics. Additionally, our model increases the
agent’s efficiency substantially, as seen in the 22.1% gain in
SNA compared to the best baseline; AV-WaN makes signifi-
cantly fewer unnecessary actions (e.g. turning in place) and
collisions.

In the unheard sounds setting (Table 1, right), our method
again strongly outperforms all existing methods. Absolute
performance declines for all methods, though, due to the
unfamiliar audio spectrogram patterns. The acoustic memory
is critical for this important setting; it successfully abstracts
away the specific content of the training sounds to better
generalize.
Ablations Table 2 shows ablations of the main components
of our model. 4 Removing both the geometric and acoustic
maps causes a big reduction in performance. This is expected
since without At and Gt, the model has only the current au-
dio observation Bt to predict the next waypoint. Notably,
even this heavily ablated version of our model outperforms
the best existing model [8] (see Table 1). This shows that
our waypoint-based navigation framework itself is more ef-

4We remove the masking operation when Gt is removed to ensure no
geometric information is used.
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(a) Gan et al. [17] (b) Chen et al.[8] (c) AV-WaN

Shortest path

Agent pathGoal Occupied areaAgent

Start Seen/Unseen area

Agent Start Goal Shortest path Agent path Seen/Unseen area Occupied area

Agent Start Waypoint Shortest path Agent path Seen/Unseen area Occupied area

Figure 3: Navigation trajectories on top-down maps. Agent path fades from dark blue to light blue as time goes by. Green is
the shortest geodesic path in continuous space. All agents have reached the goal. Our waypoint model navigates to the goal
more efficiently. Recall that the agent’s inputs are egocentric views of the scanned real-world environment (Fig. 1); figures
show the top-down view for ease of viewing the full trajectories.

(a) Waypoint distance distribution (b) Audio noise (c) Waypoint placement distribution

Figure 4: Analysis of selected waypoints (a,c) and accuracy vs. noise (b). See text.

fective than the simpler RL model [8]. We also see that the
impact ofAt is higher than that ofGt. This demonstrates the
importance of the proposed structured acoustic memory for
efficient navigation. We find that At is especially helpful in
selecting Stop when the agent has reached the goal and facili-
tates waypoint prediction (reduction in NDG > improvement
in SR). However, both At and Gt are complementary and
critical for our model to reach its best performance.
Dynamic waypoint selection To analyze the behavior of
dynamic waypoint selection, Fig. 4a plots the distribution
of euclidean distances to waypoints as a function of the
agent’s geodesic distance to the goal collected from all pre-
diction steps across all episodes. The existing methods do
not set waypoints. For Chen et al. [8], we say the “way-
point" distance is 0m if the agent chooses to stop and 0.5m
otherwise. For Gan et al. [17], we say “waypoints“ are the
intersection of the predicted vector to the final goal and the
explored area. We see that our agent selects waypoints that
are further away when it is far from the goal, then predicts
closer ones when converging on the goal. In contrast, the
step-by-step model [8] effectively has a fixed radius way-
point, while the final-goal model [17] has a high variance

even when close to the goal, indicative of the redirection and
backtracking behavior described above. The large waypoint
distances for [17] are a symptom of its backtracking due to
misprediction and lack of temporal modeling; since depth
projections are limited to 3m, an ideal agent should always
pick a waypoint up to 3m away and push forward to the goal.
Noisy audio perception Fig. 4b shows the results of adding
increasing Gaussian noise to the received audio waveforms,
representing increasing audio noise, e.g., from the micro-
phones. We see AV-WaN is quite robust to audio noise
especially with At, while the existing methods suffer signifi-
cantly.
Placement of waypoints To examine how waypoints are
selected based on surrounding geometry, Fig. 4c plots the
distribution of waypoints on a top-down map for a test envi-
ronment. The waypoints are accumulated over trajectories
with start or end points in room a or room c, and goal loca-
tions are excluded. We see waypoints are mostly selected
around obstacles and doors, which enables the agent to tra-
verse the space efficiently to the goal. The most frequent
waypoints are usually 2-3m apart, which is near the maxi-
mum distance the agent can choose.
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Time-varying sounds Finally, we consider a setting where
the sound source (music) varies over time as the agent moves.
Our method maintains its advantage in this challenging set-
ting. See Supp.

5. Conclusion
We introduced a reinforcement learning framework for

audio-visual navigation with waypoints and an acoustic
memory. Our method improves the state of the art on this
challenging problem, and our analysis shows the direct im-
pact of the new technical contributions. In future work we
plan to consider AV-navigation tasks of increasing complex-
ity, such as distracting sound sources, moving sound sources,
and real-world transfer.
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6. Supplementary Material
In this supplementary material we provide additional de-

tails about:

• Video (with audio) for qualitative assessment of our
agent’s performance.

• Noisy depth experiment (Sec. 6.2), as noted in Sec. 3.2 of
the main paper.

• Time-varying sound as audio goal experiment (Sec. 6.3),
as referenced in Sec. 4 of the main paper.

• Effect of the masking operation (Sec. 6.4).

• Binaural spectrogram calculation details (Sec. 6.5).

• Details of the CNN encoders from the perception and
mapping component of our AV-WaN (Sec. 6.6).

• Details on the navigation metric definitions (Sec. 6.7).

• Baselines’ implementation details (Sec. 6.8).

6.1. Qualitative Video

The supplementary video demonstrates the audio sim-
ulation platform that we use and shows the compari-
son between our proposed model and the baselines as
well as qualitative results from the unheard and time-
varying sound experiments. Please listen with head-
phones to hear the binaural audio correctly. The video
is available at http://vision.cs.utexas.edu/
projects/audio_visual_waypoints.

6.2. Noisy Depth Perception

Similar to our experiments on the model robustness
against noisy audio perception, we test here the impact of
noise on depth, the other input modality used by the agents.
We use the standard Redwood depth noise model from AI-
Habitat [33]. To imitate a Sim2Real scenario, we do not
retrain the models with the noisy depth sensor; we use noisy
depth at inference time only. We find that all models are
robust to this type of noise, with SPL performance varying
by less than 1% and SR by less than 0.5%. These mild reduc-
tions for all methods are smaller than the margins separating
the different baselines, meaning the conclusions from the
main results hold with noisy depth at test time.

6.3. Time-varying Sound

Next we give details for the time-varying sound exper-
iment summarized in Sec. 4 of the main paper. Here we
consider a variant of the evaluation setting where the audio
goal is a time-varying sound (e.g. people talking, music).
While periodic sounds (e.g. phone ringing, baby crying, dog
barking, alarm sounding) are also challenging and common

in real-world settings, time-varying sounds present added
technical challenges for the learning agent. In this setting,
there are variations in the audio properties (like intensity)
that are not only a function of distance to the goal and spatial
configuration, but also time.

To study this case, we use a music clip (a piano playing)
as the target audio goal instead of a ringing telephone (see
the heard sound experiment in main paper). In this new
setup, whenever the agent is spawned at a random location
in the environment in the beginning of an episode t = 0
we also select a random starting temporal point of the audio
source ta. Then, at each time step t the agent hears a new 1
second clip of the audio source at ta + t. We loop from the
beginning if the end of the audio source is reached.

In Table 3, we see that AV-WaN outperforms all the base-
lines and existing methods by a substantial margin— 12.8%
and 35.4% gains in SPL compared to [8] and [17], respec-
tively. Whereas our model shows robustness and maintains
a similar level of performance as observed with periodic
sounds, both [17] and [8] struggle to adapt to this new type
of audio goal (compare to the heard sound results in Table
1 in the main paper). Furthermore, an ablation study of
our model (Table 3 bottom) shows again that our idea of
the structured acoustic memory (At) plays an essential role
in our model’s ability to navigate fast and to handle audio
variations efficiently.

6.4. Effect of the Masking Operation

To understand the effect of the masking operation
(Sec. 3.3 in main paper), Table 4 shows an ablation exper-
iment in the heard sound setting. We remove the masking
operation for our AV-WaN model at test time (row 1). Doing
so harms SPL by 0.7% compared to our full model because
of some invalid predictions, i.e. waypoints that are predicted
in an occupied area.

6.5. Spectrogram Details

We resample the audio to 22.05 kHZ, and obtain the audio
spectrograms for both binaural channels using the Short-
Time Fourier Transform (STFT) [22] with a Hann window
of length 2048 and hop length of 512. We downsample the
computed spectrogram frequencies by a factor of 25 and
concatenate the left and right audio spectrograms as two
channels in a tensor Bt of size 41 × 40 × 2, following [8].
A room impulse response (RIR) is characterized by three
stages: direct sound, early reflections, and reverberation.
Direct sound is a strong signal of agent’s distance to goal.
We compute the intensity of the direct sound part of the
audio signal by taking the root-mean-square (RMS) value
of the first 3ms non-zero audio waveform averaged between
the left and right channels.
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Table 3: AudioGoal navigation results with a time-varying sound.

Model SPL ↑ SR ↑ NDG ↓ NA ↓ SNA ↑
Random Agent 4.7 18.5 89.7 448.9 1.7
Audio Direction Follower 56.2 76.7 11.3 141.2 42.1
Frontier Waypoints 43.6 63.2 46.4 210.7 35.1
Gan et al. [17] 49.6 79.5 13.2 123.2 40.6
Chen et al. [8] 72.2 91.6 2.3 90.7 40.6

AV-WaN w/o At and Gt 74.8 97.1 0.3 45.5 59.3
AV-WaN w/o Gt 83.5 98.4 0.3 38.7 68.2
AV-WaN w/o At 77.2 95.3 1.3 43.6 61.9
AV-WaN 85.0 98.8 0.2 36.4 69.2

Table 4: Ablation experiments on the masking operation.

Model SPL ↑ SR ↑ NDG ↓ NA ↓ SNA ↑
AV-WaN w/o masking operation 84.6 98.1 0.2 36.2 68.8
AV-WaN 85.3 98.0 0.6 38.8 70.0

6.6. CNN Architecture Details

The CNN component of the fg and fb encoders has three
convolution layers each, with kernel sizes of [8, 4, 3] and
strides of [4, 2, 1] respectively. Similarly, the CNN compo-
nent of fa has three convolution layers with kernel sizes of
[5, 3, 3] and strides of [2, 1, 1]. For all CNNs, the channel
size doubles after each convolution layer starting from 32
and each convolution layer is followed by a ReLU activation
function. We use a fully connected layer at the end of each
CNN to transform the CNN features into an embedding of
size 512.

6.7. Metric Definitions

Next we elaborate on the navigation metrics defined in
Sec. 4 of the main paper.

1. Success Rate (SR): the fraction of successfully completed
episodes, i.e. the agent reaches the goal within the time
limit of 500 steps and selects the stop action exactly at
the goal location.

2. Success weighted by path length (SPL) [1]: weighs the
successful episodes with the ratio of the shortest path li
to the executed path pi, SPL = 1

N

∑N
i=1 Si

li
max(pi,li)

.

3. Normalized distance to goal (NDG): the distance of the
agent to the goal di at the end of the episode relative to
the shortest path length li, NDG = 1

N

∑N
i=1

di

li
. While

SR and SPL measure only the performance for successful
episodes, NDG shows us how close the agent came to the
goal for failure cases as well.

4. Number of actions (NA): the average number of actions
executed by the agent across all episodes. This metric
more stringently captures the agent’s efficiency in nav-
igating to the goal. Two agents my have different NA
but the same SPL score for an episode since NA also
penalizes actions that do not lead to path changes, like
rotation in place.

5. Success weighted by number of actions (SNA): weighs
the successful episodes by the ratio of the number
of actions taken for the shortest path lai to the num-
ber of executed actions by the agent’s pai , SNA =
1
N

∑N
i=1 Si

lai
max(pa

i ,l
a
i )

.

6.8. Baseline Implementation Details

6.8.1 Gan et al. [17]

Since code for [17] was not available at the time of our
submission, we implemented this method ourselves. We
followed instructions given by the authors, and also imple-
mented our own enhancements to improve its performance
on the Replica dataset.

We use a VGG-like CNN to predict the relative location
(∆x,∆y) of the audio goal given the binaural audio spec-
trograms as input. The CNN has 5 convolutional (conv.)
layers interleaved with 5 max pooling layers and followed
by 3 fully-connected (FC) layers. Each of the conv. and FC
layers has a batch-normalization [29] of 10−5 and a ReLU
activation function except for the last FC layer which out-
puts the prediction. The conv. layers have the following
configuration - a square kernel of size 3, a stride of 1 in both
directions, and a symmetric zero-padding of 1. The number
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of output channels of the 5 conv. layers are {64, 128, 256,
512, 512} in order. The max pooling layers have a square
kernel of size 2 with a stride of 2 in each direction. The FC
layers have sizes {128, 128, 2} in order. We train the net-
work until convergence to lower the minimum squared error
(MSE) loss using Adam [30] with an initial learning rate of
3× 10−3 and a batch size of 128. The model from [17] has
a separate audio classifier for stopping. This classifier has
the same architecture as the goal prediction model except
for last FC layer which just has 1 output unit and a sigmoid
activation. The stopping classifier is trained to minimize the
binary cross entropy (BCE) loss with an initial learning rate
of 3× 10−5.

During navigation, the agent predicts the AudioGoal lo-
cation after every N time steps if the predicted location is
not reached before that. The agent stops if the episode times
out after 500 time steps or the stopping classifier predicts the
stop action. The original paper sets N = 1 but we found that
1-step predictions are very reactive in nature, i.e. the agent
keeps going back and forth or keeps turning while standing
at the same location. This leads to a very low performance
in the realistic Replica test environments [8]. We improve
the prediction stability and the navigation performance by
predicting after every N = 30 steps for the periodic heard
and unheard sound experiments and N = 20 steps for the
time-varying sound experiment, where N is chosen through
a hyperparameter search on the validation split.

6.8.2 Audio Direction Follower

For this baseline, we train a CNN model to predict the direc-
tion of arrival (DoA) of the sound with the binaural spectro-
grams as input. We collect the ground truth DoAs by using
the ambisonic room impulse responses (RIR) sampled at
44.1 kHz from [8]. The first sound samples from the RIRs
that correspond to the direct sound are used to build a circu-
lar intensity map around the agent at the height of the agent’s
ears. The circular map is discretized into 36 bins where each
bin is equal to 360◦/36 = 10◦. We select the bin with the
maximum intensity in this map to approximate the DoA of
the direct sound.

Our CNN for classifying the DoAs from binaural spectro-
grams has an architecture similar to that of ResNet-18 [26].
The feature extractor of the CNN has 2 convolutional (conv.)
layers at the start, each with a square kernel of size 3, a
symmetric zero-padding of 1 and a symmetric stride value
of 1 and 2 respectively. These starting conv. layers are
followed by 4 residual blocks each of which downsamples
its input by a factor of 2. The residual blocks use the con-
figuration from [26] but makes the first 2 convolutions in
the block strided with a symmetric stride value of 2. Ev-
ery conv. layer in the network has a batch-normalization
of 10−5 and a ReLU activation function. The number of
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Figure 5: The DoA model predicts the audio direction based
on binaural audio spectrograms with an error of less than 10
degrees for 65% of the samples.

output channels of the first 2 conv. layers and the 4 residual
blocks are {64, 64, 64, 64, 128, 256} in order. The CNN
ends with a single fully-connected layer with 36 output units
for classifying a binaural spectogram pair into one of the 36
classes where each class corresponds to a 10◦ DoA bin. The
network is trained until convergence to lower the negative
log-likelihood (NLL) loss with Adam [30], a batch size of
128 and an initial learning rate of 3× 10−3 for the periodic
heard sound experiments and 3× 10−4 for the unheard and
the time-varying sounds experiments.

On a test split, the DoA model achieves a classification
accuracy of 63.37% on the heard sound, 54.64% on the un-
heard sounds and 61.23% on the time-varying sound setting.
Figure 5 shows a histogram of the percentage of samples
for different angular errors between the predicted DoAs and
the ground truth in the heard sound setting. We see that
for around 65% of the samples the model has an absolute
angular error lower than 10◦.

During navigation, the agent predicts the DoA using the
previous model and moves to an intermediate goal that is 4
steps away (2 meters) in that direction. The intermediate goal
is recomputed after every 4 time steps as long as the agent has
not reached the audio goal. If the predicted intermediate goal
does not lie at a navigable location in the agent’s geometric
map (Gt), it executes a random action. The agent uses
the same audio classifier as the Gan et al. [17] baseline for
stopping.

6.8.3 Frontier Waypoints

Similar to the Audio Direction Follower baseline, this agent
also predicts the DoA of the direct sound but moves to the
nearest frontier [5, 48] in that direction instead of an interme-
diate goal that is four steps away. To improve this baseline,
we enforce an additional constraint so that the frontier point
is always at least 3 steps (1.5 meters) away to ensure that
the agent does not make reactive predictions and keep going
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back and forth between the same two points in the environ-
ment. If there is no frontier point along the predicted DoA
(a common case when the agent starts off), then the agent
simply moves 3 steps in that direction. If the agent finds the
next frontier to be N steps away, then the agent does not
predict another frontier waypoint until it reaches the current
one or 2N time steps have passed. For stopping, the agent
uses the same stopping classifier as the previous baselines.
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