
Training Deep Learning Recommendation Model
withQuantized Collective Communications

Jie (Amy) Yang∗
Jongsoo Park

Srinivas Sridharan
Ping Tak Peter Tang

amyyang,jongsoo,ssrinivas,ptpt@fb.com
Facebook Inc.

Menlo Park, California

ABSTRACT
Deep Learning Recommendation Model (DLRM) captures our rep-
resentative model architectures developed for click-through-rate
(CTR) prediction based on high-dimensional sparse categorical data.
Collective communications can account for a significant fraction of
time in synchronous training of DLRM at scale. In this work, we
explore using fine-grain integer quantization to reduce the com-
munication volume of alltoall and allreduce collectives. We
emulate quantized alltoall and allreduce, the latter using ring
or recursive-doubling and each with optional carried-forward error
compensation. We benchmark accuracy loss of quantized alltoall
and allreduce with a representative DLRM model and Kaggle 7D
dataset. We show that alltoall forward and backward passes, and
dense allreduce can be quantized to 4 bits without accuracy loss
compared to full-precision training.

ACM Reference Format:
Jie (Amy) Yang, Jongsoo Park, Srinivas Sridharan, and Ping Tak Peter Tang.
2020. Training Deep Learning Recommendation Model with Quantized
Collective Communications. In Proceedings of DLP-KDD 2020. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Deep Learning Recommendation Model (DLRM) [10] captures the
structure of recommendation models that deliver site content tai-
lored to users’ interests. DLRM architecture is motivated by the
prevalence of high-dimensional categorical features. The categor-
ical features are commonly represented with one- or multi-hot
vectors with dimension equals to the number of items in the cate-
gory, exhibiting a high sparsity. State-of-the-art DLRMs often adopt
the approach of embedding tables, which map high-dimensional
sparse vectors from raw categorical features onto low-dimensional

∗Contact author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DLP-KDD 2020, August 24, 2020, San Diego, California, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

dense vector representations [6, 8, 15]. Such embedding tables of-
ten have dimensions of tens of millions of rows by hundreds of
columns, with sizes up to the order of GBs per table [9].

Figure 1 shows a representative DLRM architecture. Dense fea-
tures are processedwith amulti-layer perceptron (MLP), then joined
with sparse embedding lookups in the feature interaction module
(the green box). The sparse-dense interactions are then fed to the
top MLP which in turn passes its output to a sigmoid function to
generate a click-through-rate (CTR) prediction [10].

Figure 1: Architecture of DLRM [10]

As we continually grow the complexity of models to improve
prediction quality, we investigate synchronous training leveraging
collective communications so that training speed can keep up. Our
synchronous training uses a combined data- and model-parallel
approach for DLRM. We partition the memory intensive sparse em-
bedding tables across nodes with model parallelism, and replicate
the compute intensive MLP layers across all nodes with data paral-
lelism [9]. Each node has a partial copy of the sparse embedding
tables and a full copy of MLP layers.

Such model partitioning leads to the use of collective commu-
nication primitives to synchronize the computation nodes. Parti-
tioning of sparse embedding tables across nodes requires nodes to
aggregate sparse embedding lookups in forward passes, and their
corresponding gradients in backward passes. We thus use alltoall
to synchronize sparse lookups and sparse gradients. Replication of
MLP with data parallelism requires nodes to aggregate MLP gradi-
ents across different parts of the mini-batch to compute the average
gradients. We thus use allreduce to synchronize dense gradients
[9]. Figure 2 illustrates alltoall and allreduce in DLRM training.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DLP-KDD 2020, August 24, 2020, San Diego, California, USA Yang et al.

Figure 2: alltoall and allreduce in DLRM training [9]

Synchronization of aforementioned sparse forward/backward
passes and dense backward passes across all nodes during eachmini-
batch iteration places a significant overhead on training latency.
Empirically, we observed allreduce message sizes around 10 MB
and alltoall message sizes around 100 KB. Large message sizes
in alltoall and allreduce communications stress the network
fabric even with the presence of high-bandwidth interconnect [9].

To address the overhead of collective communication on synchro-
nous training of DLRM, we explore integer quantization to reduce
the message sizes of alltoall and allreduce. Specifically, we
make the following contributions: (1) We developed a light-weight
single-node numerical benchmark that enables exploratory study of
mixed-precision integer quantization of alltoall and allreduce
on DLRM training. (2) We integrated error compensation in quan-
tized alltoall and allreduce algorithms, and showed the efficacy
of error compensation in recovering accuracy loss due to quantized
communication. (3) We showed different allreduce algorithms
have different degrees of impact on accuray loss of integer gradient
quantization. (4) We demonstrated DLRM’s sensitivity to communi-
cation quantization during training, and explored the most effective
quantization precisions for alltoall and allreduce, taking into
account different allreduce algorithms.

The rest of the paper is organized as follows: Section 2 discusses
related works on the subject of reducing communication overhead
with quantization and sparsification. Section 3 explains our method-
ology in developing single-node numerically faithful emulations
of collective communications in multi-node training. Section 4
shows our experiment results on a representative DLRM model and
dataset, evaluated with different precisions and emulation settings.
Section 5 summarizes our observations and directions for future
work.

2 RELATEDWORKS
Many recent works tackle communication latency in deep learning
training by quantization and sparsification.

QSGD [1] quantized gradients to 8 bits and 4 bits in ImageNet152
training without accuracy loss compared to full precision training.
TernGrad [16] quantized gradients to 3 bits without accuracy loss
for AlexNet, with the addition of gradient clipping and per-layer

ternarizing. An earlier work from Seide, et al. [11] quantized gradi-
ents to 1 bit without losing accuracy for a speech DNN model, with
an additional technique of carrying quantization error forward and
compensate error across mini-batches. DoReFa-Net[17] quantized
all of weights, gradients, and activations in training AlexNet, and
achieved accuracy comparable with full precision training with
weights quantized to 1 bit, gradients to 6 bits, and activations to
2 bits. These works achieved varying degrees of speedup against
full precision training, with the measured speedup dependent on
cluster setting and model architecture.

Other works reduce communication of gradients via sparsifica-
tion: gradients are communicated in full precision, except that many
components are dropped [4, 7, 12, 13]. All of them incorporate a
theoretically proven effective error compensation.

Similar to previous works, we aim to reduce communication
overhead during training by quantizing activations and gradients,
with the addition of carried-forward error compensation commonly
applied with gradient sparsification work and [11].

Our work differs from prior efforts in that: (1) Model architec-
ture: prior work focuses on application to convolutional neural
network (CNN) and speech DNN models, while we focus on DLRM,
which has drastically different architectures, computation/memory
characteristics, and more stringent accuracy requirements. (2) We
consider the idiosyncrasies of different collective communication
algorithms, while prior works often assume a parameter server
architecture or a “star" topology. In collective communications,
quantized gradients are partially accumulated through multiple
hops, and new quantization error is incurred with each additional
hop. This difference is consequential as the accuracy impact of
a quantization methodology may be heavily affected by different
collective communication patterns, especially in the case of large
cluster sizes, as we will demonstrate in Section 4.

3 METHOD
As mentioned previously, synchronous training for DLRM uses
alltoall for sparse forward and backward passes, and allreduce
for dense backward passes. For fast exploration of the combined ef-
fect of integer quantization with different collective communication
algorithms, we implemented a lightweight single-node benchmark
that emulates the numerical behavior of quantized collective com-
munications in multi-node training. The following sections discuss
our emulation implementation in details: Section 3.1 explains our
implementation of integer quantization; Section 3.2 explains how
we emulate the numerics of sending and receiving quantized val-
ues over network, and general error-compensated quantization;
Section 3.3 and 3.4 describe our (error-compensated) emulation of
quantized alltoall and allreduce algorithms.

3.1 Integer Quantization
IEEE 32-bit single precision (FP32) is the default datatype for train-
ing most DL models but alternative lower-precision datatype has
been used successfully as well (c.f. [3, 5]). The integer quantization
scheme we adopt here uses 𝑞-bit unsigned integers, 𝑞 = 8, 4, 2 to
quantize (i.e. approximate) each value 𝑥 in a group of FP32 values
contained in a range [𝑥min, 𝑥max] by values on the uniform grid

𝑥 ≈ 𝑥min + 𝑗 (𝑥max − 𝑥min)/(2𝑞 − 1) = 𝑠 (𝑗 − 𝑧), (1)

Training Deep Learning Recommendation Model
withQuantized Collective Communications DLP-KDD 2020, August 24, 2020, San Diego, California, USA

for 𝑗 = 0, 1, . . . , 2𝑞 − 1; 𝑠 = (𝑥max − 𝑥min)/(2𝑞 − 1) and 𝑧 =

−𝑥min/𝑠 . The quantization function Q(x) takes a row of values
x, obtains 𝑥min, 𝑥max, 𝑠 , and 𝑧 in Equation 1 and returns Q(x) =

rndint((𝑥/𝑠) + 𝑧), where rndint rounds values to nearest even.
Collective communications with quantized values work as fol-

lows. Before a message 𝑇 (tensor) is to be transferred over the
network via send, it is quantized 𝑌 := Q(𝑇) row-wise to reduce the
message size. The parameters 𝑠 and 𝑧 are also sent. Upon recv at the
destination node,𝑌 is dequantized back into FP32 datatype byD(𝑌)
using the formula 𝑠 (y − 𝑧) row-wise. Subsequent computations on
the dequantized values are in FP32.

3.2 Communication and Numerics Emulation
We use a single node to emulate the communication of a 𝑁 -node
training system in a way to reflect faithfully the numerical effects
of quantization. Each parameter or gradient tensor 𝑇 to be commu-
nicated is partitioned 𝑁 -ways into𝑇0,𝑇1, . . . ,𝑇𝑁−1 so as to emulate
data local to each of the 𝑁 nodes. Depending on the specific col-
lective communication algorithm in question, each partition 𝑇𝑘 is
further sub-partitioned 𝑃-ways: 𝑇𝑘 = [𝑇(𝑘,0) ,𝑇(𝑘,1) , . . . ,𝑇(𝑘,𝑃−1)].
Sub-partitions such as 𝑇(𝑘,𝑙) are the smallest unit being sent and
received in a collective communication primitive. We emulate the
exchange of parameters/gradients over network in multi-node clus-
ter by manipulating sub-partitions in the single-node tensor. Such
emulation is flexible, easy to implement, and places light overhead
in single-node training to allow fast experimental iterations.

In a nutshell, collective communication algorithms synchronize
a given pool of processes via efficient orchestrations of local compu-
tations and peer-to-peer exchange of information. We now describe
our fundamental primitive functions that allow us to emulate the
collective communication in a numerically faithful way.

• send and recv: Collective communications on quantized
values require these operations to send and receive quan-
tized data over a network via point-to-point connections.
Our single-node emulation has no need for them as all data
reside in the same local tensor. Nevertheless we will state
the key emulation algorithms in the sequel with these two
primitives for clarity even though they are actually noops
in our emulation algorithms.

• In our emulation, we use the sequence of operations quantize-
send-recv-dequantize to replace send-recv to achieve quan-
tized communication. As send and recv are noops in our
emulation, we can emulate the numerics of the sequence
with quantize-dequantize. It therefore suffices to have the
fused functionality DQ(𝑇) = D(Q(𝑇)) in our emulation al-
gorithms, with the DQ output stored in FP32 format but the
values have gone through quantization and dequantization.

As will be shown later, quantization using too few bits can result
in unacceptable precision loss of the model. We incorporate the
error compensation idea in [13] to counter this problem when
necessary. The main idea is that in order to mitigate the loss of
precision after quantization, we calculate the quantization error and
store it locally, and compensate the error in the next iteration. The
DQE function in Algorithm 1 encapsulates this key operation in
our emulation for error compensated collective communications. It
reflects quantizating the reduction of two tensors, incorporating an

existing compensatory error, and recording this newly introduced
quantization error for use in the next mini-batch iteration.

Algorithm 1: Error-Compensated Quantization
Function DQE(𝑇,𝑌, 𝐸):

𝑍 := 𝑇 + 𝑌 + 𝐸 // in FP32
𝑇𝑎𝑐𝑐 := DQ(𝑍)
𝐸 := 𝑍 −𝑇𝑎𝑐𝑐
return (𝑇𝑎𝑐𝑐 , 𝐸)

End Function

We now describe the emulation for each variant of collective
communication we need.

3.3 Quantized All-To-All
In an alltoall collective communication algorithm, the same val-
ues are relayed over the network multiple times until all nodes have
the same copy of all values. A quantized alltoall is one that quan-
tizes the values before sending and dequantizes values upon receipt.
Numerically, it tantamounts to 𝑃final := D(Q(· · ·D(Q(x)) · · ·)),
which is equivalent to 𝑃final := DQ(x). Consequently, we emulate
alltoall by applying the fused quantized function DQ once to the
full-precision tensor x.

3.4 Quantized All-Reduce
An allreduce primitive can be implemented with different algo-
rithms to best fit a particular interconnect network [14]. These algo-
rithms differ in sub-partition splitting and node-to-node exchange
patterns. From a numerical point of view, for an N-node cluster,
each index of an allreduce tensor has a value at each node. During
allreduce, for each index, 𝑁 numbers are summed in different or-
der depending on the specific allreduce algorithm, thus can lead to
different accuracy characteristics. We implemented numerical emu-
latation of two allreduce algorithms: ring and recursive-doubling.
For convenience and without loss of generality, we emulate com-
munication of 𝑁 nodes where 𝑁 is a power of 2.

3.4.1 Quantized Ring All-Reduce. The 𝑁 processes communicate
as if they’re aligned on a ring. The allreduce algorithm partitions
data of each node 𝑁 -way. In each iteration every node receives a
partition from its left neighbor, accumulates with a local partition
and sends the result to its right. After 𝑁 -1 steps, each node pos-
sesses the complete sum of a partition; these partitions are passed
around once more in a round-robin fashion until all nodes have the
complete sum of all partitions.

Algorithm 2 shows the details of the error compensated ring
allreduce. A node 𝑝 has local data tensor 𝑇𝑝 and error tensor
𝐸𝑝 partitioned 𝑁 -ways: 𝑋𝑝 = (𝑋 (𝑝,0) , 𝑋 (𝑝,1) , . . . , 𝑋 (𝑝,𝑁−1)), where
𝑋 = 𝑇 or 𝐸. For the version without error compensation, simply
replace DQE(𝑇,𝑌, 𝐸) with DQ(𝑇 + 𝑌) and consider all error terms
E to be 0 or non-existent.

3.4.2 Quantized Recursive-Doubling All-Reduce. Recursive dou-
bling builds from the base case of reducing two nodes, labeled
as Node 0 and Node 1. Each node splits its local data into two
partitions. Node 0 send Node 1 Partition 1, and Node 1 to Node

DLP-KDD 2020, August 24, 2020, San Diego, California, USA Yang et al.

Algorithm 2: Error Compensated Ring allreduce
for 𝑖 = 0, 1, 2, . . . , 𝑁 − 2 do

for 𝑝 = 0, 1, 2, . . . , 𝑁 − 1 do
𝑝𝑙 , 𝑝𝑟 := 𝑝 − 1, 𝑝 + 1 mod 𝑁

𝑘 := 𝑝 − 𝑖 mod 𝑁

𝑚 := 𝑘 + 1 mod 𝑁

send DQ(𝑇(𝑝,𝑚)) to Node 𝑝𝑟
recv DQ(𝑇(𝑝𝑙 ,𝑘)) from Node 𝑝𝑙
(𝑇(𝑝,𝑘) , 𝐸 (𝑝,𝑘)) := DQE(𝑇(𝑝,𝑘) ,DQ(𝑇(𝑝𝑙 ,𝑘)), 𝐸 (𝑝,𝑘))

end
end
Now 𝑇(𝑝,𝑝+2) of each node 𝑝 has the reduced sum
Share DQ(reduced sum) round robin

0 Partition 0. After local reduction, each node has half of the re-
duced data. Then one node sends its half of the reduced sum to
the other node to complete the pairwise reduction. Algorithm 3
is the error compensated version of this base case reduction of 2
nodes 𝑝 and 𝑞. Assume each node 𝑛 has two partitions for data
tensor 𝑇𝑛=(𝑇(𝑛,0) ,𝑇(𝑛,1)), and two partitions for error tensor 𝐸𝑛
= (𝐸 (𝑛,0) , 𝐸 (𝑛,1)). For base case pairwise reduction without error
compensation, replace DQE(𝑇,𝑌, 𝐸) with DQ(𝑇 + 𝑌) and set the 𝐸
to 0 or consider them non-existent.

In general recursive doubling reduction, we first split nodes into
pairs of two. For each pair of nodes, we apply base case reduction to
the nodes, and take the nodes that possesses both reduced partitions
in each pair into a new group of nodes. We then apply the above
steps recursively to this new gorup of nodes, until there is only
one node left which has the partitions reduced from all nodes.
Algorithm 4 describes general recursive doubling allreduce . For
convenience and without loss of generality in demonstrating error
compensation, we assume the number of nodes is a power of 2 in
the following algorithm.

Algorithm 3: Error Compensated RD Base
Function RD_BASE(Node_p, Node_q):

Node 𝑝:
send DQ(𝑇(𝑝,1)) to Node 𝑞
recv DQ(𝑇(𝑞,0)) from Node 𝑞
(𝑇(𝑝,0) , 𝐸 (𝑝,0)) := DQE(𝑇(𝑝,0) ,DQ(𝑇(𝑞,0)), 𝐸 (𝑝,0))

Node 𝑞:
send DQ(𝑇(𝑞,0)) to Node 𝑝
recv DQ(𝑇(𝑝,1)) from Node 𝑝
(𝑇(𝑞,1) , 𝐸 (𝑞,1)) := DQE(𝑇(𝑞,1) ,DQ(𝑇(𝑝,1)), 𝐸 (𝑞,1))

Gather at Node 𝑞:
recv DQ(𝑇(𝑝,0)) from Node 𝑝
return Node 𝑞

End Function
Now Node 𝑞 has both reduced partitions

To model popular training systems where each node has 8 GPUs
fully-connected with NVSwitch, our emulation for recursive dou-
bling allreduce assumes a hierarchical system where each group

Algorithm 4: Error Compensated RD allreduce

N := {𝑛0, 𝑛1, 𝑛2, . . . }
Function RD(nodes):

while N.size() != 1 do
groups := {(N[0], N[1]), (N[2], N[3]), . . . }
new_nodes := {}
for pair : groups do

new_nodes.append(RD_BASE(pair))
end
N := new_nodes

end
End Function

of 8 processes are fully connected. Thus our recursive doubling
allreduce first starts with an “intra-group” reduction within these
groups of 8, as demonstrated by Algorithm 5. Assume each node
𝑛 has data tensor 𝑇𝑛 , error tensor 𝐸𝑛 , each partitioned 8-way into
(𝑇(𝑛,0) , . . . ,𝑇(𝑛,7)), (𝐸 (𝑛,0) , . . . , 𝐸 (𝑛,7)), respectively. Each node 𝑛 re-
duces the 𝑛-th partition across the group, and then performs re-
cursive doubling reduction with the n-th nodes in other groups by
applying Algorithm 4.

Algorithm 5: Error Compensated RD Intra-Group Sum
for each node 𝑝 do

for i = 0,1,. . . , 7 do
send DQ(𝑇(𝑝,𝑖)) to all Node 𝑖 ≠ 𝑝

end
for each node 𝑞 ≠ 𝑝 do

recv DQ((𝑞, 𝑝)) from Node 𝑞
𝑇(𝑝,𝑝) := 𝑇(𝑝,𝑝) + DQ(𝑇(𝑞,𝑝))

end
end
Each Node 𝑝 now has reduced p-th partition

4 EXPERIMENT RESULTS
We benchmark using the Kaggle 7D dataset [2] with the default
DLRM model that consists of 26 sparse features with embedding
dimensions 16, 13 dense features, a 4-layer bottom MLP and a 4-
layer top MLP. Sparse-dense feature interactions are implemented
with pairwise dot product, with concatenation of raw dense features.
MLP weight dimensions are listed in Table 1. Furthermore, in a 𝑁 -
node cluster, we apply allreduce emulation only to the MLP layers
whose first weight dimensions are divisible by 𝑁 . For example, in
the 32-node case, we exclude the MLP layers with dims (16, 64) and
(1, 256) from the allreduce emulation.

Table 1: Benchmark Model MLP Dimensions

Top MLP 367-512-256-1
Bottom MLP 13-512-256-64-16

We implemented following single-node numerical emulations in
Pytorch DLRM:

Training Deep Learning Recommendation Model
withQuantized Collective Communications DLP-KDD 2020, August 24, 2020, San Diego, California, USA

• quantized alltoall for forward and backward passes of
sparse embeddings.

• quantized ring and RD allreduce for dense weights gradi-
ents with optional error correction.

All DLRM training experiments are ran on a single node deter-
ministically and sequentially, with a batch size of 1024 and learning
rate of 1.0. Quantization is applied from the first iteration. Exper-
iments are configured with varying integer quantization widths
of uint 8, 4 and 2 bits and cluster sizes of 32, 64 and 128. Each
configuration is ran with 4 different random seeds. We report the
percentage change in test accuracy against full-precision training,
averaged across the random seeds:

𝛿𝑞 = Avgseed ((Acc𝑞 − Accbase)/Accbase ∗ 100) (2)

We set 𝛿𝑞 > −0.02, that is an accuracy drop less than 0.02%, as an
acceptable accuracy threshold based on empirical experience.

4.1 Quantized All-to-All
We experimented with different combinations of alltoall forward
and backward precision while allreduce is done with full FP32
precision. Table 2 reports the averaged accuracy change 𝛿𝑞 as de-
fined in Equation 2.We highlighted the combinationwith the lowest
bit requirements while maintaining our 𝛿𝑞 > −0.02 threshold. Our
hypothesis is that sparse forward pass needs more bit width than
backward pass due to a wider range of value distribution in raw em-
bedding weights than their gradients and that latter also decrease
in magnitude as training progresses.

Table 2: Quantized alltoall Full Precision allreduce

Forward Backward 𝛿𝑞

uint8 uint8 0.00096
uint8 uint4 -0.00380

uint4 uint8 0.00571
uint4 uint4 -0.00222
uint4 uint2 0.01651

uint2 uint4 -0.05674
uint2 uint2 -0.06339

4.2 Quantized All-Reduce
Next, we configure alltoall to use full FP32 precisionwhile setting
allreduce to use 8, 4 or 2 bits in quantization for ring as well as
RD algorithms. In addition, whenever 𝛿𝑞 ≤ −0.02, we repeat the
experiments with error compensation, labeled as EC in Table 3
which reports the average accuracy change 𝛿𝑞 .

Note that one can quantize RD allreduce down to 4 bits with-
out EC and maintain 𝛿𝑞 > −0.02 on cluster sizes up to 128. Ring
allreduce can be quantized to 8 bits; while quantization to 4 bits
shows unacceptable accuracy drops, accuracy is fully recovered
with error compensation. RD algorithm yields better accuracy than
ring because (1) intra-group one-shot summation in each group of
8 nodes (2) recursive summation incurs 𝑂 (𝑙𝑜𝑔2𝑁) quantizations
while ring incurs 𝑂 (𝑁). At the 2 bit level, all configurations result
in unacceptable accuracy loss. We observe an apparent anomaly

with EC on the ring reduction in 2 bits where error compensation
worsen the situation and will investigate further.

Table 3: Quantized allreduce Full Precision alltoall

32 nodes 64 nodes 128 nodes

uint8 ring 0.00222 -0.01332 -0.01997

uint4 ring -0.30503 -0.87948 -1.78011
uint4 ring EC -0.00603 -0.00571 -0.00380

uint4 RD -0.00031 0.00191 -0.01585

uint2 ring -0.93560 -1.37794 -4.91551
uint2 ring EC -2.92281 -6.32555 -6.32555

uint2 RD -0.23143 -0.44602 -0.48192
uint2 RD EC -0.20638 -0.27524 -0.29675

4.3 Quantized All-Reduce All-to-All Combined
Our previous experiments benchmarked accuracy change of quan-
tizing alltoall and allreduce independently. Table 4 reports the
accuracy changes 𝛿𝑞 when both collective communications are
quantized. We use (f𝑥, b𝑦) to denote the alltoall forward and
backward quantization bit widths 𝑥 and 𝑦, respectively. EC denotes
error compensation as before. Thus far, the most performant config-
urations that pass our accuracy requirement is 4-bit ring allreduce
with EC, with alltoall forward/backward passes in 4 bits. Interest-
ingly, we observe that 4-bit RD with error compensation performs
worse than 4-bit ring with error compensation, while previous re-
sults in Table 3 shows RD performs better than ring for both 2-bit
and 4-bit in the standalone allreduce experiments.

Table 4: Quantized alltoall and allreduce Combined

32 nodes 64 nodes 128 nodes

uint8 ring; (f4, b4) 0.00031 -0.01395 -0.02631

uint4 ring EC; (f4, b4) -0.01109 -0.00444 -0.00190
uint4 ring EC; (f4, b2) 0.01902 -1.58532 -0.01553

uint4 RD; (f4, b4) -0.01458 -0.01226 -0.03678
uint4 RD EC; (f4, b4) -0.00950 -0.00666 -0.02473
uint4 RD EC; (f4, b2) -0.02409 -0.03170 -0.02874

5 CONCLUSION AND FUTUREWORK
We constructed a single-node numerically faithful emulation of
quantized alltoall and allreduce on top of which we can train
DLRM. We investigated thoroughly the accuracy implications un-
der different quantization bitwidths and specific communication
algorithms using a default DLRM model with Kaggle 7D dataset.

When alltoall alone is quantized, forward and backward passes
can be quantized to 4 and 2 bits, respectively, while maintaining
accuracy on par with full-precision models – thus achieving up to

DLP-KDD 2020, August 24, 2020, San Diego, California, USA Yang et al.

8x and 16x bandwidth savings for sparse forward pass and back-
ward pass, respectively. When allreduce alone is quantized, that
is, quantizing the dense gradients during backward passes, we are
able to quantize ring and RD allreduce to 4 bits while maintain-
ing on par accuracy compared to full-precision training. We thus
can expect up to 8x bandwidth saving with quantized allreduce.
When allreduce and alltoall are both quantized, allreduce-
alltoall combination shows neutral accuracy with allreduce
quantized to 4 bits, and alltoall forward/backward pass quan-
tized to 4 bits, which would result in overall 8x bandwidth reduction
for allreduce and alltoall combined. We also demonstrated that
error compensation is generally a powerful technique as it signifi-
cantly improves accuracy when bitwidth reaches down to 4 or 2
bits.

As part of future work, we will continue to analyse the numeri-
cal subtleties of quantization applied to collective communication
training. For example, in one situation we observed that error com-
pensation worsened the accuracy loss rather than recovering it. We
would like to implement quantized versions of collective commu-
nication libraries, and measure the accuracy impact of quantized
communication as well as error compensation on training clusters
leveraging collective communications.

REFERENCES
[1] Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. [n.d.]. Qsgd: Ran-

domized quantization for communication-optimal stochastic gradient descent. In
NIPS’17: Proceedings of the 31st International Conference on Neural Information
Processing Systems.

[2] Criteo AI Lab. 2014. Display Advertising Challenge. https://www.kaggle.com/c/
criteo-display-ad-challenge/overview. Accessed: 2020-03-25.

[3] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar,
Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan,
Bharat Kaul, Evangelos Georganas, Alexander Heinecke, Pradeep Dubey, Jesus
Corbal, Nikita Shustrov, Roma Dubtsov, Evarist Fomenko, and Vadim Pirogov.
2018. Mixed precision training of convolutional neural networks using integer
operations. In International Conference on Learning Representations (ICLR 2018).

[4] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Sotica, and R. Arora. 2020.
Communication-efficient distributed SGD with sketching. arXiv preprint
arXiv:1903.04488 (2020).

[5] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, D. Das, K. Banerjee,
S. Avancha1, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen, Jiyan Yang,
J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu, M. Smelyanskiy, B.
Kaul, and P. Dubey. 2019. A Study of BFLOAT16 for Deep Learning Training.
arXiv preprint arXiv:1905.12322 (2019).

[6] Shangsong Liang, Xiangliang Zhang, Zhaochun Ren, and Evangelos Kanoulas.
2018. Dynamic embeddings for user profiling in twitter. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1764–1773.

[7] Y. Lin, S. Han, H. Mao, Y. Wang, and W. Dally. 2018. Deep gradient compression:
Reducing the communication bandwidth for distributed training. In International
Conference on Learning Representations (ICLR 2018).

[8] Maxim Naumov. 2019. On the dimensionality of embeddings for sparse features
and data. arXiv preprint arXiv:1901.02103 (2019).

[9] M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao, S. Yilmaz, C.
Kim, H. Yuen, M. Ozdal, K. Nair, I. Gao, B. Su, J. Yang, and M. Smelyanskiy. 2020.
Deep learning training in Facebook data centers: design of scale-up and scale-out
systems. arXiv preprint arXiv:1504.00941 (2020).

[10] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang,
U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii, Y.
Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko, S. Pereira, X. Chen, W. Chen, V.
Rao, B. Jia, L. Xiong, and M. Smelyanskiy. 2019. Deep learning recommendation
model for personalization and recommendation systems. CoRR, vol. 1906.00091
(2019).

[11] F. Seide, H. Fu, J. Droppo, G. Li, , and D. Yu. 2014. 1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech DNNs.
In Proceedings of the Fifteenth Annual Conference of the International Speech
Communication Association. 1058–1062.

[12] R. Spring, A. Kyrillidis, V. Mohan, and A. Shrivastava. 2019. Compressing Gradient
Optimizers via Count-Sketches. In Proceedings of the 36th International Conference

on Machine Learning (ICML 2019).
[13] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. 2018. Sparsified sgd with memory. In

Advances in Neural Information Processing Systems 2018. 4452–4463.
[14] R. Thakur, R. Rabenseifner, and W. Gropp. 2015. Optimization of Collective

Communication Operations in MPICH. International Journal of High Performance
Computing Applications (February 2015).

[15] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in Alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 839–848.

[16] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. 2017. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In
Advances in Neural Information Processing Systems.

[17] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. 2016. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160 (2016).

https://www.kaggle.com/c/criteo-display-ad-challenge/overview
https://www.kaggle.com/c/criteo-display-ad-challenge/overview

	Abstract
	1 Introduction
	2 Related Works
	3 Method
	3.1 Integer Quantization
	3.2 Communication and Numerics Emulation
	3.3 Quantized All-To-All
	3.4 Quantized All-Reduce

	4 Experiment Results
	4.1 Quantized All-to-All
	4.2 Quantized All-Reduce
	4.3 Quantized All-Reduce All-to-All Combined

	5 Conclusion and Future Work
	References

