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Abstract

Video description is one of the most challenging prob-
lems in vision and language understanding due to the large
variability both on the video and language side. Models,
hence, typically shortcut the difficulty in recognition and
generate plausible sentences that are based on priors but
are not necessarily grounded in the video. In this work, we
explicitly link the sentence to the evidence in the video by
annotating each noun phrase in a sentence with the cor-
responding bounding box in one of the frames of a video.
Our dataset, ActivityNet-Entities, augments the challeng-
ing ActivityNet Captions dataset with 158k bounding box
annotations, each grounding a noun phrase. This allows
training video description models with this data, and im-
portantly, evaluate how grounded or “true” such model are
to the video they describe. To generate grounded captions,
we propose a novel video description model which is able
to exploit these bounding box annotations. We demonstrate
the effectiveness of our model on our dataset, but also show
how it can be applied to image description on the Flickr30k
Entities dataset. We achieve state-of-the-art performance
on video description, video paragraph description, and im-
age description and demonstrate our generated sentences
are better grounded in the video.

1. Introduction
Image and video description models are frequently not

well grounded [15] which can increase their bias [9] and
lead to hallucination of objects [25], i.e. the model men-
tions objects which are not in the image or video e.g. be-
cause they might have appeared in similar contexts during
training. This makes models less accountable and trustwor-
thy, which is important if we hope such models will even-
tually assist people in need [2, 28]. Additionally, grounded
models can help to explain the model’s decisions to humans
and allow humans to diagnose them [21]. While researchers
have started to discover and study these problems for image
description [15, 9, 25, 21],1 they are even more pronounced

1We use description instead of captioning as captioning is often used
to refer to transcribing the speech in the video, not describing the content.

A  man  is seen standing in a  room  speaking to the camera while holding a  bike .

A group of  people  are in a  raft  down a  river .

w/o grounding supervision: A man is standing in a gym .
[42]: A man is seen speaking to the camera while holding a piece of exercise equipment.
GT: A man in a room holds a bike and talks to the camera.

w/o grounding supervision: A group of people are in a river.
[42]: A large group of people are seen riding down a river and looking off into the distance.
GT: Several people are on a raft in the water.

Figure 1: Word-level grounded video descriptions gener-
ated by our model on two segments from our ActivityNet-
Entities dataset. We also provide the descriptions generated
by our model without explicit bounding box supervision,
the descriptions generated by [43] and the ground-truth de-
scriptions (GT) for comparison.

for video description due to the increased difficulty and di-
versity, both on the visual and the language side.

Fig. 1 illustrates this problem. A video description ap-
proach (without grounding supervision) generated the sen-
tence “A man standing in a gym” which correctly mentions
“a man” but hallucinates “gym” which is not visible in the
video. Although a man is in the video it is not clear if the
model looked at the bounding box of the man to say this
word [9, 25]. For the sentence “A man [...] is playing the
piano” in Fig. 2, it is important to understand that which
“man” in the image “A man” is referring to, to determine if
a model is correctly grounded. Such understanding is cru-
cial for many applications when trying to build accountable
systems or when generating the next sentence or responding
to a follow up question of a blind person: e.g. answering “Is
he looking at me?” requires an understanding which of the
people in the image the model talked about.

The goal of our research is to build such grounded sys-
tems. As one important step in this direction, we col-
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lect ActivityNet-Entities (short as ANet-Entities) which
grounds or links noun phrases in sentences with bounding
boxes in the video frames. It is based on ActivityNet Cap-
tions [11], one of the largest benchmarks in video descrip-
tion. When annotating objects or noun phrases we specif-
ically annotate the bounding box which corresponds to the
instance referred to in the sentence rather than all instances
of the same object category, e.g. in Fig. 2, for the noun
phrase “the man” in the video description, we only anno-
tate the sitting man and not the standing man or the woman,
although they are all from the object category “person”. We
note that annotations are sparse, in the sense that we only
annotate a single frame of the video for each noun phrase.
ANet-Entities has a total number of 51.8k annotated video
segments/sentences with 157.8k labeled bounding boxes,
more details can be found in Sec. 3.

Our new dataset allows us to introduce a novel
grounding-based video description model that learns to
jointly generate words and refine the grounding of the ob-
jects generated in the description. We explore how this
explicit supervision can benefit the description generation
compared to unsupervised methods that might also utilize
region features but do not penalize grounding.

Our contributions are three-fold. First, we collect
our large-scale ActivityNet-Entities dataset, which grounds
video descriptions to bounding boxes on the level of noun
phrases. Our dataset allows both, teaching models to explic-
itly rely on the corresponding evidence in the video frame
when generating words and evaluating how well models
are doing in grounding individual words or phrases they
generated. Second, we propose a grounded video descrip-
tion framework which is able to learn from the bounding
box supervision in ActivityNet-Entities and we demonstrate
its superiority over baselines and prior work in generating
grounded video descriptions. Third, we show the appli-
cability of the proposed model to image captioning, again
showing improvements in the generated captions and the
quality of grounding on the Flickr30k Entities [23] dataset.

2. Related Work

Video & Image Description. Early work on automatic
caption generation mainly includes template-based ap-
proaches [5, 13, 19], where predefined templates with slots
are first generated and then filled in with detected visual evi-
dences. Although these works tend to lead to well-grounded
methods, they are restricted by their template-based na-
ture. More recently, neural network and attention-based
methods have started to dominate major captioning bench-
marks. Visual attention usually comes in the form of tem-
poral attention [35] (or spatial-attention [33] in the image
domain), semantic attention [14, 36, 37, 42] or both [20].
The recent unprecedented success in object detection [24, 7]
has regained the community’s interests on detecting fine-

grained visual clues while incorporating them into end-to-
end networks [17, 27, 1, 16]. Description methods which
are based on object detectors [17, 39, 1, 16, 5, 13] tackle
the captioning problem in two stages. They first use off-
the-shelf or fine-tuned object detectors to propose object
proposals/detections as for the visual recognition heavy-
lifting. Then, in the second stage, they either attend to the
object regions dynamically [17, 39, 1] or classify the re-
gions into labels and fill into pre-defined/generated sentence
templates [16, 5, 13]. However, directly generating propos-
als from off-the-shelf detectors causes the proposals to bias
towards classes in the source dataset (i.e. for object detec-
tion) v.s. contents in the target dataset (i.e. for description).
One solution is to fine-tune the detector specifically for a
dataset [16] but this requires exhaustive object annotations
that are difficult to obtain, especially for videos. Instead of
fine-tuning a general detector, we transfer the object clas-
sification knowledge from off-the-shelf object detectors to
our model and then fine-tune this representation as part of
our generation model with sparse box annotations. With
a focus on co-reference resolution and identifying people,
[27] proposes a framework that can refer to particular char-
acter instances and do visual co-reference resolution be-
tween video clips. However, their method is restricted to
identifying human characters whereas we study more gen-
eral the grounding of objects.
Attention Supervision. As fine-grained grounding be-
comes a potential incentive for next-generation vision-
language systems, to what degree it can benefit remains an
open question. On one hand, for VQA [4, 40] the authors
point out that the attention model does not attend to same
regions as humans and adding attention supervision barely
helps the performance. On the other hand, adding super-
vision to feature map attention [15, 38] was found to be
beneficial. We noticed in our preliminary experiments that
directly guiding the region attention with supervision [16]
does not necessary lead to improvements in automatic sen-
tence metrics. We hypothesize that this might be due to the
lack of object context information and we thus introduce a
self-attention [29] based context encoding in our attention
model, which allows information passing across all regions
in the sampled video frames.

3. ActivityNet-Entities Dataset

In order to train and test models capable of explicit
grounding-based video description, one requires both lan-
guage and grounding supervision. Although Flickr30k En-
tities [23] contains such annotations for images, no large-
scale description datasets with object localization annota-
tion exists for videos. The large-scale ActivityNet Cap-
tions dataset [11] contains dense language annotations for
about 20k videos from ActivityNet [3] but lacks ground-
ing annotations. Leveraging the language annotations from



A man in a striped shirt is playing the piano on the street while people watch him.

Figure 2: An annotated example from our dataset. The
dashed box (“people”) indicates a group of objects.

the ActivityNet Captions dataset [11], we collected entity-
level bounding box annotations and created the ActivityNet-
Entities (ANet-Entities) dataset2, a rich dataset that can be
used for video description with explicit grounding. With
15k videos and more than 158k annotated bounding boxes,
ActivityNet-Entities is the largest annotated dataset of its
kind to the best of our knowledge.

When it comes to videos, region-level annotations come
with a number of unique challenges. A video contains more
information than can fit in a single frame, and video descrip-
tions reflect that. They may reference objects that appear
in a disjoint set of frames, as well as multiple persons and
motions. To be more precise and produce finer-grained an-
notations, we annotate noun phrases (NP) (defined below)
rather than simple object labels. Moreover, one would ide-
ally have dense region annotations at every frame, but the
annotation cost in this case would be prohibitive for even
small datasets. Therefore in practice, video datasets are
typically sparsely annotated at the region level [6]. Favour-
ing scale over density, we choose to annotate segments as
sparsely as possible and annotate every noun phrase only in
one frame inside each segment.
Noun Phrases. Following [23], we define noun phrases as
short, non-recursive phrases that refer to a specific region in
the image, able to be enclosed within a bounding box. They
can contain a single instance or a group of instances and
may include adjectives, determiners, pronouns or preposi-
tions. For granularity, we further encourage the annotators
to split complex NPs into their simplest form (e.g. “the man
in a white shirt with a heart” can be split into three NPs:
“the man”, “a white shirt”, and “a heart”).

2ActivityNet-Entities is released at https://github.com/
facebookresearch/ActivityNet-Entities.

Dataset Domain # Vid/Img # Sent # Obj # BBoxes

Flickr30k Entities [23] Image 32k 160k 480 276k

MPII-MD [27] Video �1k �1k 4 2.6k
YouCook2 [41] Video 2k 15k 67 135k
ActivityNet Humans [34] Video 5.3k 30k 1 63k
ActivityNet-Entities (ours) Video 15k 52k 432 158k

–train 10k 35k 432 105k
–val 2.5k 8.6k 427 26.5k
–test 2.5k 8.5k 421 26.1k

Table 1: Comparison of video description datasets with
noun phrase or word-level grounding annotations. Our
ActivityNet-Entities and ActivityNet Humans [34] dataset
are both based on ActivityNet [3], but ActivityNet Humans
provides boxes only for person on a small subset of videos.
YouCook2 is restricted to cooking and only has box anno-
tations for the val and the test splits.

3.1. Annotation Process

We uniformly sampled 10 frames from each video seg-
ment and presented them to the annotators together with
the corresponding sentence. We asked the annotators to
identify all concrete NPs from the sentence describing the
video segment and then draw bounding boxes around them
in one frame of the video where the target NPs can be
clearly observed. Further instructions were provided in-
cluding guidelines for resolving co-references within a sen-
tence, i.e. boxes may correspond to multiple NPs in the sen-
tence (e.g., a single box could refer to both “the man” and
“him”) or when to use multi-instance boxes (e.g. “crowd”,
“a group of people” or “seven cats”). An annotated exam-
ple is shown in Fig. 2. It is noteworthy that 10% of the
final annotations refer to multi-instance boxes. We trained
annotators, and deployed a rigid quality control by daily in-
spection and feedback. All annotations were verified in a
second round. The full list of instructions provided to the
annotators, validation process, as well as screen-shots of the
annotation interface can be found in the Appendix.

3.2. Dataset Statistics and Analysis

As the test set annotations for the ActivityNet Captions
dataset are not public, we only annotate the segments in the
training (train) and validation (val) splits. This brings the
total number of annotated videos in ActivityNet-Entities to
14,281. In terms of segments, we ended up with about 52k
video segments with at least one NP annotation and 158k
NP bounding boxes in total.

Respecting the original protocol, we keep as our training
set the corresponding split from the ActivityNet Captions
dataset. We further randomly & evenly split the original
val set into our val set and our test set. We use all avail-
able bounding boxes for training our models, i.e., including
multi-instance boxes. Complete stats and comparisons with
other related datasets can be found in Tab. 1.
From Noun Phrases to Objects Labels. Although we
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Figure 3: The proposed framework consists of three parts: the grounding module (a), the region attention module (b) and
the language generation module (c). Region proposals are first represented with grounding-aware region encodings. The
language model then dynamically attends on the region encodings to generate each word. Losses are imposed on the attention
weights (attn-loss), grounding weights (grd-loss), and the region classification probabilities (cls-loss). For clarity, the details
of the temporal attention are omitted.

chose to annotate noun phrases, in this work, we model sen-
tence generation as a word-level task. We follow the con-
vention in [16] to determine the list of object classes and
convert the NP label for box to a single-word object label.
First, we select all nouns and pronouns from the NP an-
notations using the Stanford Parser [18]. The frequency of
these words in the train and val splits are computed and a
threshold determines whether each word is an object class.
For ANet-Entities, we set the frequency threshold to be 50
which produces 432 object classes.

4. Description with Grounding Supervision
In this section we describe the proposed grounded video

description framework (see Fig. 3). The framework con-
sists of three modules: grounding, region attention and lan-
guage generation. The grounding module detects visual
clues from the video, the region attention dynamically at-
tends on the visual clues to form a high-level impression of
the visual content and feeds it to the language generation
module for decoding. We illustrate three options for incor-
porating the object-level supervision: region classification,
object grounding (localization), and supervised attention.

4.1. Overview

We formulate the problem as a joint optimization over
the language and grounding tasks. The overall loss function
consists of four parts:

L = Lsent + λαLattn + λcLcls + λβLgrd, (1)
where Lsent denotes the teacher-forcing language genera-
tion cross-entropy loss, commonly used for language gen-
eration tasks (details in Sec. 4.2). Lattn corresponds to the
cross entropy region attention loss which is presented in
Sec. 4.3. Lcls and Lgrd are cross-entropy losses that cor-

respond to the grounding module for region classification
and supervised object grounding (localization), respectively
(Sec. 4.4). The three grounding-related losses are weighted
by coefficients λα, λc, and λβ which we selected on the
dataset validation split.

We denote the input video (segment) as V and
the target/generated sentence description (words) as S.
We uniformly sample F frames from each video as
{v1, v2, . . . , vF } and define Nf object regions on sam-
pled frame f . Hence, we can assemble a set of regions
R = [R1, . . . , RF ] = [r1, r2, . . . , rN ] ∈ Rd×N to rep-
resent the video, where N =

∑F
f=1Nf is the total num-

ber of regions. We overload the notation here and use ri
(i ∈ {1, 2, . . . , N}) to also represent region feature embed-
dings, as indicated by fc6 in Fig. 3. We represent words in
S with one-hot vectors which are further encoded to word
embeddings yt ∈ Re where t ∈ {1, 2, . . . , T}, where T
indicates the sentence length and e is the embedding size.

4.2. Language Generation Module

For language generation, we adapt the language model
from [16] for video inputs, i.e. extend it to incorporate tem-
poral information. The model consists of two LSTMs: the
first one for encoding the global video feature and the word
embedding yt into the hidden state htA ∈ Rm where m is
the dimension and the second one for language generation
(see Fig. 3c). The language model dynamically attends on
videos frames or regions for visual clues to generate words.
We refer to the attention on video frames as temporal atten-
tion and the one on regions as region attention.

The temporal attention takes in a sequence of frame-wise
feature vectors and determines by the hidden state how sig-
nificant each frame should contribute to generate a descrip-



tion word. We deploy a similar module as in [43], except
that we replace the self-attention context encoder with Bi-
directional GRU (Bi-GRU) which yields superior results.
We train with cross-entropy loss Lsent.

4.3. Region Attention Module

Unlike temporal attention that works on a frame level,
the region attention [1, 16] focuses on more fine-grained
details in the video, i.e., object regions [24]. We denote the
region encoding as R̃ = [r̃1, r̃2, . . . , r̃N ], more details are
defined later in Eq. 5. At time t of the caption generation,
the attention weight over region i is formulated as:
αti = w>α tanh(Wr r̃i+Whh

t
A), αt := Softmax(αt), (2)

where Wr ∈ Rm×d, Wh ∈ Rm×m, wα ∈ Rm, and
αt = [αt1, α

t
2, . . . , α

t
N ]. The region attention encoding is

then R̃αt and along with the temporal attention encoding,
fed into the language LSTM.
Supervised Attention. We want to encourage the language
model to attend on the correct region when generating a
visually-groundable word. As this effectively assists the
language model in learning to attend to the correct region,
we call this attention supervision. Denote the indicators of
positive/negative regions as γt = [γt1, γ

t
2, . . . , γ

t
N ], where

γti = 1 when the region ri has over 0.5 IoU with the GT
box rGT and otherwise 0. We regress αt to γt and hence
the attention loss for object word st can be defined as:

Lattn = −
N∑
i=1

γti logαti. (3)

4.4. Grounding Module

Assume we have a set of visually-groundable object
class labels {c1, c2, . . . , cK}, short as object classes, where
K is the total number of classes. Given a set of object re-
gions from all sampled frames, the grounding module esti-
mates the class probability distribution for each region.

We define a set of object classifiers as Wc =
[w1, w2, . . . , wK] ∈ Rd×K and the learnable scalar bi-
ases as B = [b1, b2, . . . , bK]. So, a naive way to esti-
mate the class probabilities for all regions (embeddings)
R = [r1, r2, . . . , rN ] is through dot-product:

Ms(R) = Softmax(W>c R+B1>), (4)
where 1 is a vector with all ones, W>c R is followed by
a ReLU and a Dropout layer, and Ms is the region-class
similarity matrix as it captures the similarity between re-
gions and object classes. For clarity, we omit the ReLU and
Dropout layer after the linear embedding layer throughout
Sec. 4 unless otherwise specified. The Softmax operator is
applied along the object class dimension of Ms to ensure
the class probabilities for each region sum up to 1.

We transfer detection knowledge from an off-the-shelf
detector that is pre-trained on a general source dataset, i.e.,

Visual Genome (VG) [12], to our object classifiers. We find
the nearest neighbor for each of the K object classes from
the VG object classes according to their distances in the em-
bedding space (glove vectors [22]). We then initialize Wc

and B with the corresponding classifier, i.e., the weights
and biases, from the last linear layer of the detector.

On the other hand, we represent the spatial and tempo-
ral configuration of the region as a 5-D tuple, including 4
values for the normalized spatial location and 1 value for
the normalized frame index. Then, the 5-D feature is pro-
jected to a ds = 300-D location embedding for all the re-
gionsMl ∈ R300×N . Finally, we concatenate all three com-
ponents: i) region feature, ii) region-class similarity ma-
trix, and iii) location embedding together and project into
a lower dimension space (m-D):

R̃ = Wg[ R |Ms(R) |Ml ], (5)
where [·|·] indicates a row-wise concatenation and Wg ∈
Rm×(d+K+ds) are the embedding weights. We name R̃
the grounding-aware region encoding, corresponding to
the right portion of Fig. 3a. To further model the rela-
tions between regions, we deploy a self-attention layer over
R̃ [29, 43]. The final region encoding is fed into the region
attention module (see Fig. 3b).

So far the object classifier discriminates classes without
the prior knowledge about the semantic context, i.e., the in-
formation the language model has captured. To incorpo-
rate semantics, we condition the class probabilities on the
sentence encoding from the Attention LSTM. A memory-
efficient approach is treating attention weights αt as this
semantic prior, as formulated below:

M t
s(R,α

t) = Softmax(W>c R+B1> + 1αt
>

), (6)
where the region attention weights αt are determined by
Eq. 2. Note that here the Softmax operator is applied row-
wise to ensure the probabilities on regions sum up to 1.
To learn a reasonable object classifier, we can deploy a re-
gion classification task onMs(R) or a sentence-conditioned
grounding task on M t

s(R,α
t), with the word-level ground-

ing annotations from Sec. 3. Next, we describe them both.
Region Classification. We first define a positive region as
a region that has over 0.5 intersection over union (IoU) with
an arbitrary ground-truth (GT) box. If a region matches to
multiple GT boxes, the one with the largest IoU is the final
matched GT box. Then we classify the positive region, say
region i to the same class label as in the GT box, say class
cj . The normalized class probability distribution is hence
Ms[:, i] and the cross-entropy loss on class cj is

Lcls = − logMs[j, i]. (7)
The finalLcls is the average of losses on all positive regions.
Object Grounding. Given a visually-groundable word
st+1 at time step t + 1 and the encoding of all the pre-
vious words, we aim to localize st+1 in the video as one



or a few of the region proposals. Supposing st+1 corre-
sponds to class cj , we regress the confidence score of re-
gions M t

s [j, :] = βt+1 = [βt+1
1 , βt+1

2 , . . . , βt+1
N ] to indica-

tors γt as defined in Sec. 4.3. The grounding loss for word
st+1 is defined as:

Lgrd = −
N∑
i=1

γti log βt+1
i . (8)

Note that the final loss on Lattn or Lgrd is the average
of losses on all visually-groundable words. The difference
between the attention supervision and the grounding su-
pervision is that, in the latter task, the target object cj is
known beforehand, while the attention module is not aware
of which object to seek in the scene.

5. Experiments

Datasets. We conduct most experiments and ablation stud-
ies on the newly-collected ActivityNet-Entities dataset on
video description given the set of temporal segments (i.e.
using the ground-truth events from [11]) and video para-
graph description [31]. We also demonstrate our framework
can easily be applied to image description and evaluate it on
the Flickr30k Entities dataset [23]. Note that we did not ap-
ply our method to COCO captioning as there is no exact
match between words in COCO captions and object anno-
tations in COCO (limited to only 80). We use the same pro-
cess described in Sec. 3.2 to convert NPs to object labels.
Since Flickr30k Entities contains more captions, labels that
occur at least 100 times are taken as object labels, resulting
in 480 object classes [16].
Pre-processing. For ANet-Entities, we truncate captions
longer than 20 words and build a vocabulary on words with
at least 3 occurrences. For Flickr30k Entities, since the cap-
tions are generally shorter and it is a larger corpus, we trun-
cate captions longer than 16 words and build a vocabulary
based on words that occur at least 5 times.

5.1. Compared Methods and Metrics

Compared methods. The state-of-the-art (SotA) video de-
scription methods on ActivityNet Captions include Masked
Transformer and Bi-LSTM+TempoAttn [43]. We re-train
the models on our dataset splits with the original settings.
For a fair comparison, we use exactly the same frame-wise
feature from this work for our temporal attention module.
For video paragraph description, we compare our meth-
ods against the SotA method MFT [31] with the evalua-
tion script provided by the authors [31]. For image caption-
ing, we compare against two SotA methods, Neural Baby
Talk (NBT) [16] and BUTD [1]. For a fair comparison, we
provide the same region proposal and features for both the
baseline BUTD and our method, i.e., from Faster R-CNN
pre-trained on Visual Genome (VG). NBT is specially tai-
lored for each dataset (e.g., detector fine-tuning), so we re-

tain the same feature as in the paper, i.e., from ResNet pre-
trained on ImageNet. All our experiments are performed
three times and the average scores are reported.
Metrics. To measure the object grounding and atten-
tion correctness, we first compute the localization accuracy
(Grd. and Attn. in the tables) over GT sentences follow-
ing [26, 41]. Given an unseen video, we feed the GT sen-
tence into the model and measure the localization accuracy
at each annotated object word. We compare the region with
the highest attention weight (αi) or grounding weight (βj)
against the GT box. An object word is correctly localized
if the IoU is over 0.5. We also study the attention accuracy
on generated sentences, denoted by F1all and F1loc in the
tables. In F1all, a region prediction is considered correct
if the object word is correctly predicted and also correctly
localized. We also compute F1loc, which only considers
correctly-predicted object words. See Appendix for details.
Due to the sparsity of the annotation, i.e., each object only
annotated in one frame, we only consider proposals in the
frame of the GT box when computing all the localization ac-
curacies. For the region classification task, we compute the
top-1 classification accuracy (Cls. in the tables) for positive
regions. For all metrics, we average the scores across object
classes. To evaluate the sentence quality, we use standard
language evaluation metrics, including Bleu@1, Bleu@4,
METEOR, CIDEr, and SPICE, and the official evaluation
script3. We additionally perform human evaluation to judge
the sentence quality.

5.2. Implementation Details

Region proposal and feature. We uniformly sample 10
frames per video segment (an event in ANet-Entities) and
extract region features. For each frame, we use a Faster
R-CNN detector [24] with ResNeXt-101 backbone [30] for
region proposal and feature extraction (fc6). The detector is
pretrained on Visual Genome [12]. More model and train-
ing details are in the Appendix.
Feature map and attention. The temporal feature map
is essentially a stack of frame-wise appearance and motion
features from [43, 32]. The spatial feature map is the conv4
layer output from a ResNet-101 [16, 8] model. Note that
an average pooling on the temporal or spatial feature map
gives the global feature. In video description, we augment
the global feature with segment positional information (i.e.,
total number of segments, segment index, start time and end
time), which is empirically important.
Hyper-parameters. Coefficients λα ∈ {0.05, 0.1, 0.5},
λβ ∈ {0.05, 0.1, 0.5}, and λc ∈ {0.1, 0.5, 1} vary in
the experiments as a result of model validation. We
set λα = λβ when they are both non-zero considering
the two losses have a similar functionality. The region
encoding size d = 2048, word embedding size e = 512

3https://github.com/ranjaykrishna/densevid eval



Method λα λβ λc B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Unsup. (w/o SelfAttn) 0 0 0 23.2 2.28 10.9 45.6 15.0 14.9 21.3 3.70 12.7 6.89
Unsup. 0 0 0 23.0 2.27 10.7 44.6 13.8 2.42 19.7 0.28 1.13 6.06
Sup. Attn. 0.05 0 0 23.7 2.56 11.1 47.0 14.9 34.0 37.5 6.72 22.7 0.42
Sup. Grd. 0 0.5 0 23.5 2.50 11.0 46.8 14.7 31.9 43.2 6.04 21.2 0.07
Sup. Cls. 0 0 0.1 23.3 2.43 10.9 45.7 14.1 2.59 25.8 0.35 1.43 14.9
Sup. Attn.+Grd. 0.5 0.5 0 23.8 2.44 11.1 46.1 14.8 35.1 40.6 6.79 23.0 0
Sup. Attn.+Cls. 0.05 0 0.1 23.9 2.59 11.2 47.5 15.1 34.5 41.6 7.11 24.1 14.2
Sup. Grd. +Cls. 0 0.05 0.1 23.8 2.59 11.1 47.5 15.0 27.1 45.7 4.79 17.6 13.8
Sup. Attn.+Grd.+Cls. 0.1 0.1 0.1 23.8 2.57 11.1 46.9 15.0 35.7 44.9 7.10 23.8 12.2

Table 2: Results on ANet-Entities val set. “w/o SelfAttn” indicates self-attention is not used for region feature encoding.
Notations: B@1 - Bleu@1, B@4 - Bleu@4, M - METEOR, C - CIDEr, S - SPICE. Attn. and Grd. are the object localization
accuracies for attention and grounding on GT sentences. F1all and F1loc are the object localization accuracies for attention
on generated sentences. Cls. is classification accuracy. All accuracies are in %. Top two scores on each metric are in bold.

Method B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Masked Transformer [43] 22.9 2.41 10.6 46.1 13.7 – – – – –
Bi-LSTM+TempoAttn [43] 22.8 2.17 10.2 42.2 11.8 – – – – –

Our Unsup. (w/o SelfAttn) 23.1 2.16 10.8 44.9 14.9 16.1 22.3 3.73 11.7 6.41
Our Sup. Attn.+Cls. (GVD) 23.6 2.35 11.0 45.5 14.7 34.7 43.5 7.59 25.0 14.5

(a) Results on ANet-Entities test set.

vs. Unsupervised vs. [43]

Judgments Judgments
Method % ∆ % ∆

About Equal 34.9 38.9

Other is better 29.3 6.5 27.5 6.1GVD is better 35.8 33.6

(b) Human evaluation of sentences.

Table 3: (a) Results on ANet-Entities test set. The top one score for each metric is in bold. (b) Human evaluation of sentence
quality. We present results for our supervised approach vs. our unsupervised baseline and vs. Masked Transformer [43].

and RNN encoding size m = 1024 for all methods. Other
hyper-parameters in the language module are the same as
in [16]. We use a 2-layer 6-head Transformer encoder as
the self-attention module [43].

5.3. Results on ActivityNet-Entities

5.3.1 Video Event Description

Although dense video description [12] further entails local-
izing the segments to describe on the temporal axis, in this
paper we focus on the language generation part and assume
the temporal boundaries for events are given. We name this
task Video Event Description. Results on the validation and
test splits of our ActivityNet-Entities dataset are shown in
Tab. 2 and Tab. 3a, respectively. Given the selected set of re-
gion proposals, the localization upper bound on the val/test
sets is 82.5%/83.4%, respectively.

In general, methods with some form of grounding super-
vision work consistently better than the methods without.
Moreover, combining multiple losses, i.e. stronger super-
vision, leads to higher performance. On the val set, the
best variant of supervised methods (i.e., Sup. Attn.+Cls.)
ourperforms the best variant of unsupervised methods (i.e.,
Unsup. (w/o SelfAttn)) by a relative 1-13% on all the met-
rics. On the test set, the gaps are small for Bleu@1, ME-
TEOR, CIDEr, and SPICE (within ± 2%), but the super-
vised method has a 8.8% relative improvement on Bleu@4.

The results in Tab. 3a show that adding box supervision
dramatically improves the grounding accuracy from 22.3%

to 43.5%. Hence, our supervised models can better localize
the objects mentioned which can be seen as an improve-
ment in their ability to explain or justify their own descrip-
tion. The attention accuracy also improves greatly on both
GT and generated sentences, implying that the supervised
models learn to attend on more relevant objects during lan-
guage generation. However, grounding loss alone fails with
respect to classification accuracy (see Tab. 2), and therefore
the classification loss is required in that case. Conversely,
the classification loss alone can implicitly learn grounding
and maintains a fair grounding accuracy.

Comparison to existing methods. We refer to our best
model (Sup. Attn.+Cls.) as GVD (Grounded Visual De-
scription) and show that it sets the new SotA on ActivityNet
Captions for the Bleu@1, METEOR and SPICE metrics,
with relative gains of 2.8%, 3.9% and 6.8%, respectively
over the previous best [43]. We observe slightly inferior
results on Bleu@4 and CIDEr (-2.8% and -1.4%, respec-
tively) but after examining the generated sentences (see Ap-
pendix) we see that [43] generates repeated words way more
often. This may increase the aforementioned evaluation
metrics, but the generated descriptions are of lower quality.
Another noteworthy observation is that the self-attention
context encoder (on top of R̃) brings consistent improve-
ments on methods with grounding supervision, but hurts
the performance of methods without, i.e., “Unsup.”. We
hypothesize that the extra context and region interaction in-
troduced by the self-attention confuses the region attention
module and without any grounding supervision makes it fail



Method VG Box B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

ATT-FCN* [37] 64.7 19.9 18.5 – – – – – – –
NBT* [16] X 69.0 27.1 21.7 57.5 15.6 – – – – –
BUTD [1] X 69.4 27.3 21.7 56.6 16.0 24.2 32.3 4.53 13.0 1.84

Our Unsup. (w/o SelfAttn) X 69.2 26.9 22.1 60.1 16.1 21.4 25.5 3.88 11.7 17.9
Our GVD model X X 69.9 27.3 22.5 62.3 16.5 41.4 50.9 7.55 22.2 19.2

Table 4: Results on Flickr30k Entities test set. * indicates the results are obtained from the original papers. GVD refers to
our Sup. Attn.+Grd.+Cls. model. “VG” indicates region features are from VG pre-training. The top one score is in bold.

Method B@1 B@4 M C

MFT [31] 45.5 9.78 14.6 20.4
Our Unsup. (w/o SelfAttn) 49.8 10.5 15.6 21.6
Our GVD 49.9 10.7 16.1 22.2

Table 5: Results of video paragraph description on test set.

to properly attend to the right region, something that leads
to a huge attention accuracy drop from 14.9% to 2.42%.
Human Evaluation. Automatic metrics for evaluating gen-
erated sentences have frequently shown to be unreliable
and not consistent with human judgments, especially for
video description when there is only a single reference [28].
Hence, we conducted a human evaluation to evaluate the
sentence quality on the test set of ActivityNet-Entities. We
randomly sampled 329 video segments and presented the
segments and descriptions to the judges. From Tab. 3b, we
observe that, while they frequently produce captions with
similar quality, our GVD works better than the unsuper-
vised baseline (with a significant gap of 6.1%). We can also
see that our GVD approach works better than the Masked
Transformer [43] with a significant gap of 6.5%. We be-
lieve these results are a strong indication that our approach
is not only better grounded but also generates better sen-
tences, both compared to baselines and prior work [43].

5.3.2 Video Paragraph Description

Besides measuring the quality of each individual descrip-
tion, we also evaluate the coherence among sentences
within a video as in [31]. We obtained the result file and
evaluation script from [31] and evaluated both methods on
our test split. The results are shown in Tab. 5 and show that
we outperform the SotA method of [31] by a large margin.
The results are even more surprising given that we generate
description for each event separately, without conditioning
on previously-generated sentences. We hypothesize that the
temporal attention module can effectively model the event
context through the Bi-GRU context encoder and context
benefits the coherence of consecutive sentences.

5.4. Results on Flickr30k Entities

We show the overall results on image description in
Tab. 4 (test) and the results on the validation set are in

the Appendix. The method with the best validation CIDEr
score is the full model (Sup. Attn.+Grd.+Cls.), which we
further refer to as the GVD model in the table. The upper
bounds on the val/test sets are 90.0%/88.5%, respectively.
We see that the supervised method outperforms the unsu-
pervised baseline by a relative 1-3.7% over all the metrics.
Our GVD model sets new SotA for all the five metrics with
relative gains up to 10%. In the meantime, object local-
ization and region classification accuracies are significantly
boosted, showing that our captions can be better visually
explained and understood.

6. Conclusion

In this work, we collected ActivityNet-Entities, a novel
dataset that allows joint study of video description and
grounding. We show how to leverage the noun phrase an-
notations to generate grounded video descriptions. We also
use our dataset to evaluate how well the generated sentences
are grounded. We believe our large-scale annotations will
also allow for more in-depth analysis which have previ-
ously only been able on images, e.g. about hallucination
[25] and bias [9] as well as studying co-reference resolution.
Besides, we showed in our comprehensive experiments on
video and image description, how the box supervision can
improve the accuracy and the explainability of the gener-
ated description by not only generating sentences but also
pointing to the corresponding regions in the video frames
or image. According to automatic metrics and human eval-
uation, on ActivityNet-Entities our model performs state-
of-the-art w.r.t. description quality, both when evaluated per
sentence or on paragraph level with a significant increase
in grounding performance. We also adapted our model to
image description and evaluated it on the Flickr30k Enti-
ties dataset where our model outperforms existing methods,
both w.r.t. description quality and grounding accuracy.
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A. Appendix
This Appendix provides additional details, evaluations,

and qualitative results.

• In Sec. A.1, we provide more details on our dataset
including the annotation interface and examples of our
dataset, which are shown in Figs. 4, 5.

• In Sec. A.2, we clarify on the four localization metrics.

• In Sec. A.3, we provide additional ablations and results
on our ActivityNet-Entities dataset, including qualita-
tive results, which are shown in Figs. 6, 7.

• In Sec. A.4, we provide additional results on the
Flickr30kEntities dataset, including qualitative results,
which are shown in Fig. 8.

• In Sec. A.5, we provide more implementation details
(e.g., training details).

A.1. Dataset

Definition of a noun phrase. Following the convention
from Flickr30k Entities dataset [23], we define noun phrase
as:

• short (avg. 2.23 words), non-recursive phrases (e.g.,
the complex NP “the man in a white shirt with a heart”
is split into three: “the man”, “a white shirt”, and “a
heart”)

• refer to a specific region in the image so as to be anno-
tated as a bounding box.

• could be

– a single instance (e.g., a cat),

– multiple distinct instances (e.g. two men),

– a group of instances (e.g., a group of people),

– a region or scene (e.g., grass/field/kitchen/town),

– a pronoun, e.g., it, him, they.

• could include

– adjectives (e.g., a white shirt),

– determiners (e.g., A piece of exercise equipment),

– prepositions (e.g. the woman on the right)

– other noun phrases, if they refer to the identical
bounding concept & bounding box (e.g., a group
of people, a shirt of red color)

Annotator instructions
Further instructions include:

• Each word from the caption can appear in at most one
NP. “A man in a white shirt” and “a white shirt” should
not be annotated at the same time.

• Annotate multiple boxes for the same NP if the NP
refers to multiple instances.

– If there are more than 5 instances/boxes (e.g., six
cats or many young children), mark all instances
as a single box and mark as “a group of objects”.

– Annotate 5 or fewer instances with a single box if
the instances are difficult to separate, e.g. if they
are strongly occluding each other.

• We don’t annotate a NP if it’s abstract or not presented
in the scene (e.g., “the camera” in “A man is speaking
to the camera”)

• One box can correspond to multiple NPs in the sen-
tence (e.g., “the man” and “him”), i.e., we annotate
co-references within one sentence.

See Fig. 4 for more examples.
Annotation interface. We show a screen shot of the inter-
face in Fig. 5.
Validation process. We deployed a rigid quality control
process during annotations. We were in daily contact with
the annotators, encouraged them to flag all examples that
were unclear and inspected a sample of the annotations
daily, providing them with feedback on possible spotted an-
notation errors or guideline violations. We also had a post-
annotation verification process where all the annotations are
verified by human annotators.
Dataset statistics. The average number of annotated boxes
per video segment is 2.56 and the standard deviation is
2.04. The average number of object labels per box is 1.17
and the standard deviation is 0.47. The top ten frequent
objects are “man”, “he”, “people”, “they”, “she”, “woman”,
“girl”, “person”, “it”, and “boy”. Note that the statistics are
on object boxes, i.e., after pre-processing.

List of objects. Tab. 10 lists all the 432 object classes
which we use in our approach. We threshold at 50 occur-
rences. Note that the annotations in ActivityNet-Entities
also contain the full noun phrases w/o thresholds.

A.2. Localization Metrics

We use four localization metrics, Attn., Grd., F1all,
and F1loc as mentioned in Sec. 5.1. The first two are com-
puted on the GT sentences, i.e., during inference, we feed
the GT sentences into the model and compute the attention
and grounding localization accuracies. The last two mea-
sure are computed on the generated sentences, i.e., given a



test video segment, we perform the standard language gen-
eration inference and compute attention localization accu-
racy (no grounding measurement here because it is usually
evaluated on GT sentences). We define F1all and F1loc as
follows.

We define the number of object words in the generated
sentences as A, the number of object words in the GT sen-
tences as B, the number of correctly predicted object words
in the generated sentences as C and the counterpart in the
GT sentences as D, and the number of correctly predicted
and localized words asE. A region prediction is considered
correct if the object word is correctly predicted and also cor-
rectly localized (i.e., IoU with GT box > 0.5).

In F1all, the precision and recall can be defined as:

Precisionall =
E

A
, Recallall =

E

B
(9)

However, since having box annotation for every single ob-
ject in the scene is unlikely, an incorrectly-predicted word
might not necessarily be a hallucinated object. Hence,
we also compute F1loc, which only considers correctly-
predicted object words, i.e., only measures the localization
quality and ignores errors result from the language genera-
tion. The precision and recall for F1loc are defined as:

Precisionloc =
E

C
, Recallloc =

E

D
(10)

If multiple instances of the same object exist in the target
sentence, we only consider the first instance. The precision
and recall for the two metrics are computed for each object
class, but it is set to zero if an object class has never been
predicted. Finally, we average the scores by dividing by the
total number of object classes in a particular split (val or
test).

During model training, we restrict the grounding region
candidates within the target frame (w/ GT box), i.e., only
consider the Nf proposals on the frame f with the GT box.

A.3. Results on ActivityNet-Entities

We first include here the precision and recall associated
with F1all and F1loc (see Tabs. 6, 7).
Temporal attention & region attention. We conduct ab-
lation studies on the two attention modules to study the im-
pact of each component on the overall performance (see
Tab. 8). Each module alone performs similarly and the
combination of two performs the best, which indicates the
two attention modules are complementary. We hypothesize
that the temporal attention captures the coarse-level details
while the region attention captures more fine-grained de-
tails. Note that the region attention module takes in a lower
sampling rate input than the temporal attention module, so
we expect it can be further improved if having a higher sam-
pling rate and the context (other events in the video). We

F1all F1loc
Method Precision Recall Precision Recall

Unsup. (w/o SelfAttn) 3.76 3.63 12.6 12.9
Unsup. 0.28 0.27 1.13 1.13
Sup. Attn. 6.71 6.73 22.6 22.8
Sup. Grd. 6.25 5.84 21.2 21.2
Sup. Cls. 0.40 0.32 1.39 1.47
Sup. Attn.+Grd. 7.07 6.54 23.0 23.0
Sup. Attn.+Cls. 7.29 6.94 24.0 24.1
Sup. Grd. +Cls. 4.94 4.64 17.7 17.6
Sup. Attn.+Grd.+Cls. 7.42 6.81 23.7 23.9

Table 6: Attention precision and recall on generated sen-
tences on ANet-Entities val set. All values are in %.

F1all F1loc
Method Precision Recall Precision Recall

Unsup. (w/o SelfAttn) 3.62 3.85 11.7 11.8
Sup. Attn.+Cls. 7.64 7.55 25.1 24.8

Table 7: Attention precision and recall on generated sen-
tences on ANet-Entities test set. All values are in %.

Method B@1 B@4 M C S

Region Attn. 23.2 2.55 10.9 43.5 14.5
Tempo. Attn. 23.5 2.45 11.0 44.3 14.0
Both 23.9 2.59 11.2 47.5 15.1

Table 8: Ablation study for two attention modules using our
best model. Results reported on val set.

leave this for future studies.
Notes on Video Paragraph Description. The authors of
the SoTA method [31] kindly provided us with their result
file and evaluation script, but as they were unable to provide
us with their splits, we evaluated both methods on our test
split. Even though we are under an unfair disadvantage,
i.e., the authors’ val split might contain videos from our test
split, we still outperform SotA method by a large margin,
with relative improvements of 8.9-10% on all the metrics
(as shown in Tab. 5).
Qualitative examples. See Figs. 6 and 7 for qualitative re-
sults of our methods and the Masked Transformer on ANet-
Entities val set. We visualize the proposal with the highest
attention weight in the corresponding frame. In (a), the su-
pervised model correctly attends to “man” and “Christmas
tree” in the video when generating the corresponding words.
The unsupervised model mistakenly predicts “Two boys”.
In (b), both “man” and “woman” are correctly grounded.
In (c), both “man” and “saxophone” are correctly grounded
by our supervised model while Masked Transformer hallu-
cinates a “bed”. In (d), all the object words (i.e., “people”,
“beach”, “horses”) are correctly localized. The caption gen-
erated by Masked Transformer is incomplete. In (e), sur-
prisingly, not only major objects “woman” and “court” are
localized, but also the small object “ball” is attended with
a high precision. Masked Transformer incorrectly predicts



Method λα λβ λc B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Unsup. (w/o SelfAttn) 0 0 0 70.0 27.5 22.0 60.4 15.9 22.0 25.9 4.44 12.8 17.6
Unsup. 0 0 0 69.3 26.8 22.1 59.4 15.7 4.04 16.3 0.80 2.09 1.35
Sup. Attn. 0.1 0 0 71.0 28.2 22.7 63.0 16.3 42.3 44.1 8.08 22.4 6.59
Sup. Grd. 0 0.1 0 70.1 27.6 22.5 63.1 16.1 38.5 49.5 7.59 21.0 0.03
Sup. Cls. (w/o SelfAttn) 0 0 1 70.1 27.6 22.0 60.2 15.8 20.9 32.1 4.12 11.5 19.9
Sup. Attn.+Grd. 0.1 0.1 0 70.2 27.6 22.5 62.3 16.3 42.7 49.8 8.62 23.6 0
Sup. Attn.+Cls. 0.1 0 1 70.0 27.9 22.6 62.4 16.3 42.1 46.5 8.35 23.2 19.9
Sup. Grd. +Cls. 0 0.1 1 70.4 28.0 22.7 62.8 16.3 29.0 51.2 5.19 13.7 19.7
Sup. Attn.+Grd.+Cls. 0.1 0.1 1 70.6 28.1 22.6 63.3 16.3 41.2 50.8 8.30 23.2 19.6

Table 9: Results on Flickr30k Entities val set. The top two scores on each metric are in bold.

F1all F1loc
Method Precision Recall Precision Recall

Unsup. (w/o SelfAttn) 4.08 4.89 12.8 12.8
Unsup. 0.75 0.87 2.08 2.10
Sup. Attn. 7.46 8.83 22.4 22.5
Sup. Grd. 6.90 8.43 21.0 21.0
Sup. Cls. (w/o SelfAttn) 3.70 4.66 11.4 11.5
Sup. Attn.+Grd. 7.93 9.45 23.7 23.6
Sup. Attn.+Cls. 7.61 9.25 23.2 23.1
Sup. Grd. +Cls. 4.70 5.83 13.7 13.7
Sup. Attn.+Grd.+Cls. 7.56 9.20 23.2 23.2

Table 10: Attention precision and recall on generated sen-
tences on Flickr30k Entities val set. All values are in %.

F1all F1loc
Method Precision Recall Precision Recall

BUTD [1] 4.07 5.13 13.1 13.0
Our Unsup. (w/o SelfAttn) 3.44 4.47 11.6 11.8
Our Sup. Attn.+Grd.+Cls. 6.91 8.33 22.2 22.2

Table 11: Attention precision and recall on generated sen-
tences on Flickr30k Entities test set. All values are in %.

the gender of the person. In (f), the Masked Transformer
outputs an unnatural caption “A group of people are in a
raft and a man in red raft raft raft raft raft” containing con-
secutive repeated words “raft”.

A.4. Results on Flickr30k Entities

See Tab. 9 for the results on Flickr30k Entities val set.
Note that the results on the test set can be found in the main
paper in Tab. 4. The proposal upper bound for attention
and grounding is 90.0%. For supervised methods, we per-
form a light hyper-parameter search and notice the setting
λα = 0.1, λβ = 0.1 and λc = 1 generally works well.
The supervised methods outperform the unsupervised base-
line by a decent amount in all the metrics with only one
exceptions: Sup. Cls., which has a slightly inferior result
in CIDEr. The best supervised method outperforms the best
unsupervised baseline by a relative 0.9-4.8% over all the
metrics. The precision and recall associated with F1all and
F1loc are shown in Tabs. 10, 11.
Qualitative examples. See Fig. 8 for the qualitative re-
sults by our methods and the BUTD on Flickr30k Entities

val set. We visualize the proposal with the highest atten-
tion weight as the green box. The corresponding attention
weight and the most confident object prediction of the pro-
posal are displayed as the blue text inside the green box.
In (a), the supervised model correctly attends to “man”,
“dog” and “snow” in the image when generating the corre-
sponding words. The unsupervised model misses the word
“snow” and BUTD misses the word “man”. In (b), the su-
pervised model successfully incorporates the detected vi-
sual clues (i.e., “women”, “building”) into the description.
We also show a negative example in (c), where interestingly,
the back of the chair looks like a laptop, which confuses
our grounding module. The supervised model hallucinates
a “laptop” in the scene.

A.5. Implementation Details

Region proposal and feature. We uniformly sample
10 frames per video segment (an event in ANet-Entities)
and extract region features. For each frame, we use
a Faster RCNN model [24] with a ResNeXt-101 FPN
backbone [30] for region proposal and feature extraction.
The Faster RCNN model is pretrained on the Visual
Genonme dataset [12]. We use the same train-val-test
split pre-processed by Anderson et al. [1] for joint object
detection (1600 classes) and attribute classification. In
order for a proposal to be considered valid, its confident
score has to be greater than 0.2. And we limit the number
of regions per image to a fixed 100 [10]. We take the
output of the fc6 layer as the feature representation for each
region, and fine-tune the fc7 layer and object classifiers
with 0.1× learning rate during model training.

Training details. We optimize the training with Adam
(params: 0.9, 0.999). The learning rate is set to 5e-4 in
general and to 5e-5 for fine-tuning, i.e., fc7 layer and object
classifiers, decayed by 0.8 every 3 epochs. The batch size
is 240 for all the methods. We implement the model in
PyTorch based on NBT4 and train on 8x V100 GPUs. The
training is limited to 40 epochs and the model with the best
validation CIDEr score is selected for testing.

4https://github.com/jiasenlu/NeuralBabyTalk



(a) “Teams” refers to more than 5 instances and hence
should be annotated as a group.

(b) “People” and “horses” can be clearly separated and the #
of instances each is ≤ 5. So, annotate them all.

(c) “plant life” and “it” refer to the same box and “He”,
“’his”, “he”, “his” all refer to the same box.

(d) Only annotate the NP mentioned in the sentence, in this
case, “The weight lifter”. “proper stance” is a NP but not
annotated because it is abstract/not an object in the scene.

(e) Note that (e) and (f) refer to the same video segment.
See the caption of (f) for more details.

(f) “The radio” is annotated in a different frame as “a man”
and “a baseball bat”, since it cannot be clearly observed in

the same frame.

Figure 4: Examples of our ActivityNet-Entities annotations in the annotation interface.



Figure 5: A screen shot of our annotation interface. The “verify (and next)” button indicates the annotation is under the
verification mode, where the initial annotation is loaded and could be revised.



(a) Sup.: A man and a woman are standing in a room with a Christmas tree;
Unsup.: Two boys are seen standing around a room holding a tree and speaking to one another;
Masked Trans.: They are standing in front of the christmas tree;
GT: Then, a man and a woman set up a Christmas tree.

(b) Sup.: The man and woman talk to the camera;
Unsup.: The man in the blue shirt is talking to the camera;
Masked Trans.: The man continues speaking while the woman speaks to the camera;
GT: The man and woman continue speaking to the camera.

(c) Sup.: A man is standing in a room holding a saxophone;
Unsup.: A man is playing a saxophone;
Masked Trans.: A man is seated on a bed;
GT: We see a man playing a saxophone in front of microphones.

(d) Sup.: The people ride around the beach and ride around on the horses;
Unsup.: The people ride around the beach and ride around;
Masked Trans.: The camera pans around the area and the girl leading the horse and the woman leading the;
GT: We see four people on horses on the beach.

Figure 6: Qualitative results on ANet-Entities val set. The red text at each frame indicates the generated word. The green box
indicates the proposal with the highest attention weight. The blue text inside the green box corresponds to i) the object class
with the highest probability and ii) the attention weight. Better zoomed and viewed in color. See Sec. A.3 for discussion.



(e) Sup.: The woman is then seen standing in a tennis court holding tennis rackets and hitting the ball around;
Unsup.: The woman serves the ball with a tennis racket;
Masked Trans.: We see a man playing tennis in a court;
GT: Two women are on a tennis court, showing the technique to posing and hitting the ball.

(f) Sup.: A group of people are in a raft on a raft;
Unsup.: A group of people are in a raft;
Masked Trans.: A group of people are in a raft and a man in red raft raft raft raft raft;
GT: People are going down a river in a raft.

Figure 7: (Continued) Qualitative results on ANet-Entities val set. See the caption in Fig. 6 for more details.



(a) Sup.: A man and a dog are pulling a sled through the snow;
Unsup.: A man in a blue jacket is pulling a dog on a sled;
BUTD: Two dogs are playing in the snow;
GT (5): A bearded man wearing a blue jacket rides his snow sled pulled by his two dogs / Man in blue coat is being pulled
in a dog sled by two dogs / A man in a blue coat is propelled on his sled by two dogs / A man us using his two dogs to sled
across the snow / Two Huskies pull a sled with a man in a blue jacket.

(b) Sup.: Three women are standing in front of a building;
Unsup.: Three women in costumes are standing on a stage with a large wall in the background;
BUTD: Three women in yellow and white dresses are walking down a street;
GT (5): Three woman are crossing the street and on is wearing a yellow coat / Three ladies enjoying a stroll on a cold, foggy
day / A woman in a yellow jacket following two other women / Three women in jackets walk across the street / Three women
are crossing a street.

(c) Sup.: A man in a gray jacket is sitting in a chair with a laptop in the background;
Unsup.: A man in a brown jacket is sitting in a chair at a table;
BUTD: A man in a brown jacket is sitting in a chair with a woman in a brown jacket in a;
GT (5): Several chairs lined against a wall, with children sitting in them / A group of children sitting in chairs with monitors
over them / Children are sitting in chairs under some television sets / Pre-teen students attend a computer class / Kids
conversing and learning in class.

Figure 8: Qualitative results on Flickr30k Entities val set. Better zoomed and viewed in color. See Sec. A.4 for discussion.



background egg nail kid snowboard hoop roller pasta
bagpipe stilt metal butter cheerleader puck kitchen stage
coach paper dog surfboard landscape scene guitar trophy
bull dough tooth object eye scissors grass stone
rod costume pipe ocean sweater ring drum swimmer
disc oven shop person camera city accordion stand
dish braid shot edge vehicle horse ramp road
chair pinata kite bottle raft basketball bridge swimming
carpet bunch text camel themselves monkey wall image
animal group barbell photo calf top soap playground
gymnast harmonica biker polish teen paint pot brush
mower platform shoe cup door leash pole female
bike window ground sky plant store dancer log
curler soccer tire lake glass beard table area
ingredient coffee title bench flag gear boat tennis
woman someone winner color adult shorts bathroom lot
string sword bush pile baby gym teammate suit
wave food wood location hole wax instrument opponent
gun material tape ski circle park blower head
item number hockey skier word part beer himself
sand band piano couple room herself stadium t-shirt
saxophone they goalie dart car chef board cloth
team foot pumpkin sumo athlete target website line
sidewalk silver hip game blade instruction arena ear
razor bread plate dryer roof tree referee he
clothes name cube background cat bed fire hair
bicycle slide beam vacuum wrestler friend worker slope
fence arrow hedge judge closing iron child potato
sign rock bat lady male coat bmx bucket
jump side bar furniture dress scuba instructor cake
street everyone artist shoulder court rag tank piece
video weight bag towel goal clip hat pin
paddle series she gift clothing runner rope intro
uniform fish river javelin machine mountain balance home
supplies gymnasium view glove rubik microphone canoe ax
net logo set rider tile angle it face
exercise girl frame audience toddler snow surface pit
body living individual crowd beach couch player cream
trampoline flower parking people product equipment cone lemon
leg container racket back sandwich chest violin floor
surfer house close sponge mat contact helmet fencing
water hill arm mirror tattoo lip shirt field
studio wallpaper reporter diving ladder tool paw other
sink dirt its slice bumper spectator bowl oar
path toy score leaf end track member picture
box cookie finger bottom baton flute belly frisbee
boy guy teens tube man cigarette vegetable lens
stair card pants ice tomato mouth pan pool
bow yard opening skateboarder neck letter wheel building
credit skateboard screen christmas liquid darts ball lane
smoke thing outfit knife light pair drink phone
trainer swing toothbrush hose counter knee hand mask
shovel castle news bowling volleyball class fruit jacket
kayak cheese tub diver truck lawn student stick

Table 12: List of objects in ActivityNet-Entities, including the “ background ” class.


