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Abstract
Many real-world tasks, from house-cleaning to cooking, can
be formulated as multi-object rearrangement problems –
where an agent needs to get specific objects into appropriate
goal states. For such problems, we focus on the setting that as-
sumes a pre-specified goal state, availability of perfect manip-
ulation and object recognition capabilities, and a static map
of the environment but unknown initial location of objects to
be rearranged. Our goal is to enable home-assistive intelligent
agents to efficiently plan for rearrangement under such partial
observability. This requires efficient trade-offs between ex-
ploration of the environment and planning for rearrangement,
which is challenging because of long-horizon nature of the
problem. To make progress on this problem, we first analyze
the effects of various factors such as number of objects and
receptacles, agent carrying capacity, environment layouts etc.
on exploration and planning for rearrangement using classical
methods. We then investigate both monolithic and modular
deep reinforcement learning (DRL) methods for planning in
our setting. We find that monolithic DRL methods do not suc-
ceed at long-horizon planning needed for multi-object rear-
rangement. Instead, modular greedy approaches surprisingly
perform reasonably well and emerge as competitive baselines
for planning with partial observability in multi-object rear-
rangement problems. We also show that our greedy modular
agents are empirically optimal when the objects that need to
be rearranged are uniformly distributed in the environment
– thereby contributing baselines with strong performance for
future work on multi-object rearrangement planning in par-
tially observable settings.

1 Introduction
Rearrangement problems, where the goal is to get a physi-
cal environment in a specific state has been proposed as the
next frontier for embodied AI research (Batra et al. 2020).
Many tasks in everyday life from house cleaning (Newman,
Carlberg, and Desai 2020; Szot et al. 2021) to preparing gro-
ceries (Szot et al. 2021) can be formulated as rearrangement
problems. Therefore, developing embodied agents to solve
these problems would allow to us to make progress towards
the next generation of home assistant agents.

In an embodied rearrangement task, an agent must re-
arrange an unknown environment using a combination of
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sensor observations and prior knowledge to reach a goal
state, which is specified either geometrically, or through
image, language, or predicates (Batra et al. 2020). Solving
such generic rearrangement tasks requires an agent to solve
a plethora of sub-problems, such as, reasoning about the
goal state through semantic and commonsense understand-
ing; building a map of the environment in order to navigate,
search, and explore; effectively planning to figure out which
objects to pick-drop and in what order; and finally manip-
ulating objects. These problems span the spectrum of per-
ception, planning, navigation, and manipulation making re-
arrangement an extremely challenging problem (Batra et al.
2020).

Because of the complexity of rearrangement problems,
previous research has focused on different slices of the prob-
lem. Some researchers focus on understanding the goal state
by leveraging human preferences and commonsense rea-
soning (Kant et al. 2022; Kapelyukh and Johns 2022); or
through reasoning about changes in the environment config-
uration (Weihs et al. 2021; Hall et al. 2020). Another body
of work focuses on perception, planning, and manipulation
for rearrangement, albeit for small number (upto 5) of ob-
jects (Szot et al. 2021; Karkus et al. 2020). We focus on a
specific slice of the rearrangement problem – planning un-
der partial observability. In particular, to decouple our in-
vestigation from the manipulation, navigation and percep-
tion challenges, we assume perfect object recognition and
interaction capabilities in the agent. We further assume the
availability of a static map to focus on high-level task plan-
ning for rearrangement instead of integrated task and mo-
tion planning (TAMP) (Garrett et al. 2021). Lastly, instead
of dealing with uncertain information ranging from incom-
plete maps, mis-classified objects etc., which makes it chal-
lenging to study the planning problem, we directly consider
uncertainty over the object locations – decoupled from per-
ception – which allows us to study the implications of un-
certainty on the rearrangement planning problem in a more
systematic and controlled manner. Specifically, the problem
requires efficient exploration of the environment in combi-
nation with well-balanced planning for rearrangement and
this forms the core of our work.

Overall, given a pre-specified goal state, perfect manipu-
lation and object recognition capabilities, and a static map
of the environment; our goal is to enable efficient planning



for rearrangement. Such a laser focus consequently enables
us to analyze and present the effects of various factors such
as number of objects, agent carrying capacity, environment
layout complexity etc. on the complexity of planning. We
find that higher agent capacity and larger environment lay-
outs make the rearrangement planning problem challenging.
On the other hand, counter-intuitively, higher number of ob-
jects reduces the problem complexity, since in this case rear-
rangement for seen objects implicitly shoulders the burden
of exploration for unseen objects, thereby reducing the need
for additional explicit exploration, and ultimately reducing
the problem complexity.

Classical planners often fail to optimally solve task plan-
ning problems in real-time (Agia et al. 2022) and need
a world model to be known. Motivated by these limita-
tions of the classical approaches, we next present end-to-end
monolithic deep reinforcement learning (DRL) based ap-
proaches. We find that akin to prior works, monolithic DRL
methods do not succeed at long-horizon planning problems.
We then propose modular methods as competitive baselines
for planning under uncertainty in rearrangement problems.
Specifically, our methods investigate ways to achieve better
trade-off between exploration and planning. We empirically
demonstrate that approaches which plan greedily and only
explore conservatively achieve this trade-off optimally when
objects that need to be rearranged have uniform distribution
in the environments. We hope that our analysis and baselines
will provide a good starting point and benchmark for future
work on rearrangement planning.

2 Related Work
2.1 Object rearrangement
Object rearrangement has been studied in robotics (Ben-
Shahar and Rivlin 1998), for a variety of problems ranging
from table-top rearrangement (Ben-Shahar and Rivlin 1998;
King, Cognetti, and Srinivasa 2016; Huang, Jia, and Mason
2019) to house-scale rearrangement (Agia et al. 2022). Ma-
jority of planning research for rearrangement in robotics fur-
ther focuses on integrated task and motion planning (King,
Ranganeni, and Srinivasa 2017; King, Cognetti, and Srini-
vasa 2016; Ben-Shahar and Rivlin 1998). Instead, our fo-
cus is on high-level task planning for house-scale rearrange-
ment. Recent work from Newman et al. (2020) and Agia
et al. (2022) have also focused on task planning for house-
scale object rearrangement problems, however they assume
full observability while we are interested in task planning
for rearrangement under partial observability.

Embodied AI community, which is interested in virtual
agents in addition to physical agents, has also started push-
ing on house-scale rearrangement problems (Batra et al.
2020; Szot et al. 2021; Weihs et al. 2021; Kant et al. 2022;
Kim et al. 2021). Because of the use of perceptual sensors,
they also have to deal with partial observability while doing
rearrangement planning. These works push on solving re-
arrangement planning in combination with perception, ma-
nipulation, and navigation for rearrangement. Consequently,
they only show rearrangement for scenarios with small num-
ber of objects (upto 5) and single agent capacity. Instead, we

are interested in understanding various factors that affect re-
arrangement planning problem under partial observability.
In particular, our focus is on the trade-off between two main
components of rearrangement planning: object discovery via
exploration and planning for rearrangement. We next review
related work for exploration and planning.

2.2 Exploration in 3D environments
Exploring unknown environments is a well-studied prob-
lem in robotics and state-of-the-art results are generally
achieved with frontier-based exploration (FBE) (Yamauchi
1998; Chen, Gupta, and Gupta 2019). The overarching idea
in frontier-based approaches is to define a set of fron-
tier locations and decide the next frontier location to ex-
plore (Yamauchi 1998). Recent studies have employed util-
ity functions to choose between frontier locations in combi-
nation with DRL techniques for exploration (Chen, Gupta,
and Gupta 2019; Niroui et al. 2019). Ramakrishnan et
al. (2020) further benchmarked various DRL approaches
with several reward functions as well as FBE method for em-
bodied exploration. As an alternative approach to enable ex-
ploration, Fukazawa et al. (2005) uses the reaction-diffusion
equation on graphs and optimize a custom potential function
in order to create observation points; and then visit them
in an optimal order. However, most of these studies focus
solely on exploration of a 3D environment with the goal of
maximizing area coverage or object/landmark detection. In-
stead, we are interested in exploration for object discovery
to enable downstream rearrangement. We take inspiration
from these studies and investigate both learning-based and
frontier-based exploration approaches to enable rearrange-
ment.

2.3 Planning for rearrangement
End-to-end DRL approaches as well as classical approaches
based on Traveling Salesman Problem (TSP) formulation
have both been used for rearrangement planning (New-
man, Carlberg, and Desai 2020; Kant et al. 2022; Karkus
et al. 2020; Andreas, Klein, and Levine 2016; Szot et al.
2021). Since multiple object rearrangement is a long-
horizon problem, monolithic DRL approaches for the same
have only been shown to be successful on small grid
maps (Karkus et al. 2020; Andreas, Klein, and Levine 2016).
Researchers have therefore used modular approaches (Szot
et al. 2021; Kant et al. 2022) or classical approaches based
on TSP (Newman, Carlberg, and Desai 2020) for house-
scale rearrangement planning. Based on these findings, we
also model planning for rearrangement as Capacitated Ve-
hicle Routing Problem (CVRP), a variant of TSP, and use
OR-Tools (Perron and Furnon 2022) to solve the same.

3 Problem Characterization
In this section, we concretely define the Multiple Object Re-
arrangement Planning (MORP) problem in mapped environ-
ments with partial observability over object locations. We
also detail our procedure for generating the required datasets
and evaluation metrics.



3.1 Task Definition
Notation: We will use a Partially Observable Markov De-
cision Processes (POMDP) framework to formally define
MORP. Let s ∈ S denote a state in state space S, o ∈ O
denote an observation in observation space O, a ∈ A de-
note action in action space A, g ∈ G denote a goal spec-
ification in goal space G, and finally π(at|ot−1...o0, g) =
Pr(at|ot−1...o0, g) agent’s goal-conditioned policy. Note
that we will omit time t subscript unless indicated otherwise.

Figure 1: Multiple Object Rearrangement Planning (MORP)
problem. Top down map of the house with the objects to
be rearranged shown as circles and receptacles as squares.
Same color signifies object-receptacle pairing and multiple
objects of the same type can be placed into a receptacle (e.g.,
books into bookshelf). With perfect object recognition capa-
bilities, unique instance IDs track the objects.

Goal Specification: We consider type-level geometric goal
for rearrangement as described in (Batra et al. 2020) i.e., we
describe the goal state for rearrangement geometrically with
target location for all objects. Note that in this paper we will
only use integers for location variables. Let Z denote the set
of integers and N denote the set of natural numbers. We de-
fine p0i ∈ P : Zno×2 to be initial 2D object locations and
ri ∈ R : Znr×2 to be 2D receptacle locations where no ∈ N
is number of the objects and nr ∈ N number of object type-
s/receptacles. Each object type has a unique receptacle but
multiple objects can be rearranged to the same receptacle.
Let f be the correspondence function to map object index to
an index corresponding to its receptacle type, so that we can
elicit the object-receptacle pairing. A goal is then specified
as g =

∧no

i=1(pi == rf(i)).
Rearrangement Task: Thus, we can formally define a re-
arrangement task as, given a goal specification g, the agent
must transform the initial state s0 to a goal state s∗, by solely
acting based on observations o ∈ O, where s∗ ∈ S is a state
that satisfies goal specifications. Hence, an agent spawned
randomly in a home environment must find objects scattered
randomly around the house and rearrange them to their de-
sired receptacles (see Figure 1).

3.2 Dataset
Scenes: We choose 215 scenes from the Gibson
dataset (Xia et al. 2018), with low clutter (Ramakrish-
nan et al. 2021) and no or limited furniture. Gibson

scenes are loaded with AI Habitat simulator (Szot et al.
2021) and converted to top-down occupancy maps.
The top-down occupancy maps are discrete 2D grids
M ∈ Z200×150 with elements mij ∈ {−1, 0, 1} →
{Innavigable, Unexplored Navigable, Explored Navigable}
with a discretization of 0.1 meter per cell. The map size
of 200 × 150 was empirically chosen. Scene metrics are
presented in Table 1.

nav-area (m2) nav-complexity #scenes
large 66.09 19.36 88

medium 30.53 12.07 120
small 1.38 1.39 7

Table 1: Scene statistics: Navigable area1(nav-area) and nav-
igation complexity (nav-complexity), which is defined as the
maximum ratio of geodesic and euclidean distance between
any two navigable points in a scene, are shown for scenes in
our large/medium/small dataset splits.

Objects and Receptacles: We randomly place objects and
receptacles on the occupancy map. Object states contain
only type and location information, therefore only distinc-
tion between objects is type. Agent interaction can only
modify object locations pi and there is no other parameter
in the environment that changes during the episode. Objects
and receptacles are not considered to occupy space on M
to simplify collision computation. Multiple objects can be
located in the same grid cell mij .
Episodes: Let xt : Z2 and ϕt ∈ {0, .., 7} →
{N,NE,E, SE, S, SW,W,NW} be location and orienta-
tion of agent at time step t where {N:North, E:East, S:South,
W:West}. At start of an episode, the agent is spawned at a
random location x0 and a random heading ϕ0 (encoded as
a 8-dimensional one-hot vector) as shown in Figure 1. The
episode is terminated: (a) successfully, if all objects are in
their receptacles before the time-step maxt, or (b) unsuc-
cessfully, when the maximum episode time-step maxt is
reached. Some objects may already be in their receptacles
when the episode starts, but the agent must still verify this by
at least seeing them in their receptacles for successful com-
pletion of goal g. Figure 2 shows a successful episode com-
pletion. We split the dataset into small/medium/large cate-
gories based on the area enclosed by the map. Each cate-
gory contains train/validation/test splits. Episode statistics
are presented in Table 4 in the Appendix.

3.3 Evaluation
For MORP, we are interested in measuring the agent’s suc-
cess rate in completing the task and the agent’s efficiency,
i.e., distance traveled/time taken for the task. In addition, to
evaluate exploration methods, we use object discovery and

1We calculate navigable area using mesh calculated for agent
with 1.5m height and 0.1m radius. Gibson dataset used to create
top-down maps consists 1447 floors with 56 m2 average navigable
area. Comparing to Gibson floors our dataset consists less naviga-
ble area, since slicing a 3D scene into top-down map from a certain
height does not necessarily capture whole floor area.



Figure 2: A sample episode for MORP – Agent finds misplaced objects, carries them to known receptacles locations and places
them. Object ids for seen and rearranged objects as well as object held by the agent are shown.

map coverage metrics. We describe these metrics below:
Rearrangement:
• Episode Success (ES): If all objects are seen and rear-

ranged, ES is 1 otherwise 0 (Kant et al. 2022).
• Rearranged Object Ratio (ROR): Ratio of the number

of rearranged objects to the total number of objects that
need to be rearranged.

• Episodic Success Weighted by Path Length (ESPL):
In order to measure agent’s efficiency, we compare path
length and ES with oracle agent’s path length. ESPL is
defined as

ESPL = ES
z

max(z, l)
(1)

where z ∈ R is the oracle agent’s path length, and l ∈ R
is the path length (Anderson et al. 2018). An oracle agent
is essentially an agent that has full observability of the
environment and uses CVRP planner to optimally per-
form rearrangement, similar to (Newman, Carlberg, and
Desai 2020). We will describe this agent in more detail
in Sec. 4.

Exploration:

• Seen Object Ratio (SOR): Ratio of the number of seen
objects to the total number of objects.

• Map Coverage (MC): Ratio of the explored area to the
total navigable area.

3.4 Agent Definition
Next, we define an agent, which is capable of sensing the
environment and objects, navigating around, and rearrang-
ing objects.
Sensor Suite:
• Top-down Occupancy Map M: We assume that a static

top-down occupancy map of the environment M is avail-
able to the agent. Such a map could be obtained by a
one-time scan of a house and thus may be a reasonable
assumption for future home-assistant agents of any form.

• Receptacle Locations R: Receptacle locations on the
map M are available to agent.

• Agent Location x and Orientation ϕ: Agent can detect its
location, x =(x,y) coordinates on M and orientation ϕ
in 8 discrete directions.

• Field of View FOV : Agent can explore the map area and
detect objects within its field-of-view determined by the
conical sector (θ, rs) where θ is angle around the orien-
tation direction ϕ and rs is the cut-off distance from x.

• Gripper H ∈ Rc×no : This proprioceptive sensor con-
tains flags indicating whether object j is being held by
the agent’s gripper slot i, where c ∈ N is number of the
slots equivalent to agent’s carrying capacity. All objects
can be held by any slot and a slot can only hold one object
at a time.

Action Space: The agent has three discrete actions: for-
ward, left turn, and right turn for navigation and a single
grab/drop action for object manipulation. The forward ac-
tion moves the agent to one of 8 immediate grid cells in the
map depending on its orientation ϕ. The left/right turn action
changes ϕ by 45◦ in counter-clockwise/clockwise direction
respectively. The grab/drop action is similar to “discrete ob-
ject grasping” (Batra et al. 2020). Such action space A en-
ables abstraction from downstream embodiment including
parameters for continuous control of motors and allows us
to focus on high-level task planning and exploration.

4 Complexity Analysis and Benchmarking
In this section, we present an analysis of factors that affect
the complexity of rearrangement planning. Inspired by re-
lated work, we investigate various factors for our analysis,
such as agent carrying capacity c (Batra et al. 2020), total
number of objects no (Agia et al. 2022), number of recepta-
cles nr, and navigable area of the scene. To that end, we in-
troduce heuristic and oracle agents and benchmark their per-
formance using metrics introduced in Sec. 3 on the MORP
as a way to analyze the complexity of MORP.

4.1 Oracle Agent
In order to find an upper bound on performance for MORP,
we consider the oracle agent with access to privileged infor-
mation. Specifically, the oracle agent has full state informa-
tion and knows all object locations. Such full observability
enables the agent to use a Capacitated Vehicle Routing Prob-
lem (CVRP) based approach to calculate shortest path length
for rearranging objects, similar to (Newman, Carlberg, and
Desai 2020). We describe the CVRP formulation in more
detail in Appendix A.2. We solve the formulated planning
problem using OR-Tools (Perron and Furnon 2022).



The oracle agent also leverages the full state information
to ignore objects that are already arranged at the start of an
episode. Such CVRP-based optimal path computation for
only misplaced objects truly makes the oracle agent’s per-
formance an upper bound for multiple object rearrangement
planning without any uncertainty. We next extend this ora-
cle agent with exploration capability in a heuristic manner
to deal with the uncertainty of object location in our setup.

4.2 Heuristic Agents
To benchmark the performance for multiple object rear-
rangement planning in presence of uncertainty (MORP),
we consider heuristic agents. We leverage the intuition that
MORP requires solving two sub-problems – (a) efficient
exploration and search of the indoor environment to deal
with location uncertainty of misplaced objects, (b) optimal
path planning balanced with such object search to rearrange
the misplaced objects. Based on this intuition, our heuristic
agents use a modular approach that greedily combines clas-
sical optimal approaches for both of these sub-problems.

In particular, we use CVRP-based approach similar to the
oracle agent for rearrangement planning of discovered ob-
jects and frontier-based exploration (FBE) approaches and
its variants for efficient exploration and object discovery,
based on the evidence of FBE’s performance in classical
robotics applications (Niroui et al. 2019). The agent greedily
chooses planning if there are any seen objects that need to
be rearranged, and exploration otherwise. Our approach of
such greedy combination of these exploration and planning
methods is also similar to recent work on house-scale rear-
rangement in EAI (Kant et al. 2022; Fukazawa et al. 2005).

One can also think of planning and exploration as high-
level actions. Given one of these high-level actions, the
agent executes a sequence of low-level navigation ac-
tions described in Sec. 3 until certain conditions are satis-
fied: (1) planning reaches the planned location, or (2) ex-
ploration reaches the target location, or (3) maximum high-
level action distance maxdist is reached. These navigation
actions are computed to follow a shortest path 2 between
the agent’s current location and the target planned or explo-
ration location. The agent executes grab/drop action when it
reaches a planned location and replans when new object(s)
are discovered. Likewise, the agent chooses to explore if no
objects have been discovered or if all the discovered objects
are in their goal state and Rearranged Object Ratio (ROR)
as described in Sec. 3 is less than 1. Such a modular ap-
proach of executing a low-level policy toward a goal given
by a high-level policy is also inspired by recent work in em-
bodied AI (Chaplot et al. 2020).

We now describe the variants of the FBE method and
a random exploration approach, which we investigated for
efficient exploration in our heuristic agents. Each time the
agent engages the high-level action of exploration, a target
location to be explored is obtained based on one of these
approaches, described below.

2The shortest path is computed using the A∗ algorithm (Hart,
Nilsson, and Raphael 1968).

Weighted Frontier Based Exploration FBE computes
unexplored frontiers, which are the borderline grid-cells be-
tween explored and unexplored navigable area on a map. It
then chooses the closest frontier location to the agent’s loca-
tion as the next location to visit for exploration (Yamauchi
1997). Recent variants of FBE referred to as weighted FBE
(WFBE) use a utility function to determine next the frontier
location to visit (Niroui et al. 2019). The utility function bal-
ances the potential information gain for exploration achieved
by visiting a frontier location with the distance that needs to
be traveled to reach the frontier location from the agent’s
current location. The information gain for a given frontier is
defined as the sum of newly seen grid-cells along the shortest
path between the agent’s current location and the frontier3.
Inspired by the performance of WFBE method, we inves-
tigate two variants of WFBE, which leverage two different
utility functions:
• WFBEr: uses the ratio between frontier information gain

and frontier distance as the utility function. It chooses a
frontier that maximizes this function.

• WFBEw: uses weighted sum of normalized distance and
normalized gain as the utility function, where the weight
w is weight on distance and (1−w) is the weight on gain.
It then chooses the frontier that minimizes this function.
We experiment with different values of the w: 0, 0.5, 1
respectively.

Please refer to the Appendix A.3 for more details on the
utility functions.

Random Exploration (RND) This approach picks a ran-
dom navigable location from the unexplored area as the tar-
get location for exploration.

4.3 MORP Complexity Analysis
In order to analyze the effect of various factors such as agent
carrying capacity c, total number of objects no, number of
receptacles nr, and navigable area of the scene etc., we con-
sider different configurations of MORP and show the per-
formance of the heuristic and oracle agents on these con-
figurations. Specifically, we vary these factors over a range
to create different configurations of MORP: c ∈ {1, 3},
no ∈ {1, 3, 5, 10}, nr ∈ {1, 2, 3}. We present the empir-
ical results in Table 2 with these different configurations.
The “medium” and “large” dataset splits as described in Ta-
ble 1 were used for these experiments. Note that we investi-
gate both WFBEr and WFBEw with w = {0, 0.5, 1}, but we
found WFBEr to work the best. We therefore use WFBEr
for most of our conclusions. Next, we summarize our main
findings on the effect of the various factors on MORP.
Higher agent capacity c makes MORP more challeng-
ing. In Table 2, we observe that all agents’ performance de-
creases with the increase in agent capacity c. For instance,
when the agent capacity increases from 1 to 3, on average
ESPL drops by 10%. Such increase in MORP’s complexity
can be attributed to planning. Specifically, fig. 3 shows in-
crease in planning time taken by the CVRP solver for oracle

3We find no difference in WFBE performance when the infor-
mation gain is computed only at the frontier location instead.



ESPL

Explorer c
nr

no 1 3 5 10 avg

1 3 .62 .69 .74 .82 .72RND 3 3 .62 .63 .60 .62 .62
1 3 .56 .67 .75 .83 .71WFBE1 3 3 .56 .62 .61 .64 .61
1 3 .68 .75 .81 .87 .78WFBE0.5 3 3 .68 .69 .65 .67 .67
1 3 .65 .71 .76 .84 .74WFBE0 3 3 .65 .65 .61 .65 .64
1 1 .67 .79 .83 .91 .80WFBEr 3 1 .67 .60 .63 .65 .64
1 3 .67 .76 .81 .87 .78WFBEr 3 3 .67 .70 .65 .68 .68
1 5 .67 .76 .81 .88 .78WFBEr 3 5 .67 .70 .70 .71 .70

Table 2: MORP’s complexity analysis as measured through
the ESPL performance metric of heuristic agents: We mea-
sure the effect of number of objects no, number of recepta-
cles nr and agent capacity c on MORP. For all agents, other
metrics were MC = 0.83, ES = 1 and SOR = 1 on av-
erage (detailed metrics are shown in Appendix A.4). Bold
numbers indicate best performance in a particular MORP
configuration.

agents with higher carrying capacity. Although we perform
experiments with static agent capacity, practical instantia-
tions of MORP such as house-cleaning might require dy-
namic capacity through use of containers etc., which may
further increase the complexity of MORP.

Figure 3: Scalability of oracle agent: time spent by CVRP
solver for different values of c and no.

Higher number of objects reduces exploration complex-
ity. When there are more objects in the environment, higher
percentage of the object discovery happens while planning.
For instance, average percentage of objects discovered dur-
ing the planning {26%, 43%, 59%} increases with the to-
tal number of objects {3, 5, 10} respectively. This reduces
the burden on exploration for object search. Inspite of in-
crease in planning complexity with higher number of ob-
jects (see fig. 3), such reduction in exploration complexity
also reduces the overall problem complexity thereby leading
to improved ESPL (Tab. 2). Specifically, when the number
of objects increases from 1 to 10, on average ESPL for agent
with c = 1 increases by 20%. Such performance improve-
ment in ESPL however disappears with increase in agent ca-
pacity e.g., no significant correlation between no and ESPL
is observed for c = 3. This highlights complex interplay be-

tween exploration and planning complexity for MORP.
Higher number of receptacles nr > 1 reduces MORP’s
complexity only when the agent has higher capacity c >
1. In Table 2, we see that increase in nr has different ef-
fects on performance of agents with different c. When nr

is increased from 1 to 5, we observe that on average ESPL
for c = 1 decreases by 2%, whereas ESPL for c = 3 in-
creases by 6%. It suggests that for episodes with multiple
receptacles (nr > 1), there are scenarios where an object’s
receptacle is within the close proximity of another object.
The agents can exploit such scenarios to reduce navigated
distance and thereby ESPL for MORP.

Figure 4: Effect of navigable area on performance as mea-
sured by ESPL for WFBEr exploration policy.

Greater navigable area worsens the performance. Figure
4 shows how WFBEr exploration policy performance is neg-
atively correlated with navigable area. Similar trends were
observed with other exploration strategies. Overall, explo-
ration strategy matters more for larger areas and thus affects
performance. We didn’t find any correlation between navi-
gation complexity of the scenes (as described in Sec. 3) and
performance.

4.4 Agent Benchmarking
We next elaborate on the analysis and failure modes of the
classical approaches that we used for exploration and plan-
ning in our heuristic and oracle agents. Specifically, we in-
vestigate the scaling of the CVRP solver, its applicability to
real-time applications, and the performance of different ex-
ploration policies.

Planning In Figure 3, we see that the time spent by or-
acle agent to solve the CVRP problem increases expo-
nentially w.r.t. no. Figure 3 also shows that increasing c
makes the planning more complex. Since our focus is not on
solvers, we choose a CVRP solver configuration4 from OR-
Tools (Perron and Furnon 2022) that can find optimal solu-
tion under real-time constraints for our experiments. Based
on the exponential increase in compute time for CVRP prob-
lems, we recommend using satisficing or learning-based
planners e.g., (Agia et al. 2022) to tackle larger-scale plan-
ning problems in the future.

Exploration We find that agents with WFBEr and
WFBE50 exploration policy outperform all other agents,
which suggests that one could potentially learn to find an
optimal balance between gain and distance. All other explo-
ration approaches exhibit varied failure modes. For instance,

4CVRP solver: RoutingModel, FirstSolutionStrategy:
PARALLEL-CHEAPEST-INSERTION, solution-limit:50.



the agents with RND and WFBE0 exploration policies start
picking locations at the opposite sides of the map consec-
utively and keep going back and forth after exploring for a
while. This prevents these agents from exploring unexplored
areas. Consequently, the agents fail to discover objects and
complete the task within maximum episode time maxt. Al-
though intuitively choosing the closest frontier location aka
WFBE100 or frontier with maximum gain i.e., WFBE0 per-
form better than agents with RND exploration policy, they
perform worse than the agents that consider both gain and
distance aka agents with WFBEr and WFBE50. Based on
these observations, we also propose WFBEr and its perfor-
mance on MORP as a baseline for benchmarking future re-
search on MORP. Please see the Appendix for detailed com-
parison on various exploration approaches using all the met-
rics defined in Sec. 3.

5 Learning-based Agents
Inspired by the limitations of our heuristic agents and their
classical exploration and planning approaches, we explore
learning-based agents to obtain policies better than that of
the heuristic agents for MORP. In particular, we investigate
end-to-end approaches aka monolithic RL for MORP. In
addition, we also experiment with ways to improve our
heuristic agents. We describe these learning-based agents in
detail below.

Monolithic agents: These agents leverage monolithic deep
reinforcement learning approach such as (Karkus et al.
2020) to learn direct mapping from observations to actions.

• End-to-End Planner (E2E-P) learns direct mapping
from observations to low-level actions – forward, left,
right, grab/drop. E2E-P agent thus learns to navigate,
explore, and then to accomplish rearrangement from
scratch.

• Where-to-Go Planner (W2G-P) learns where to go on
the occupancy map M. Instead of low-level navigation
actions of forward, left, right, W2G-P agent uses navi-
gable cells from M as actions in combination with the
grab/drop action. Once target cell from M is chosen as
the action, we obtain the low-level navigation actions to
follow the shortest path between the agent’s current loca-
tion and the chosen cell as described in Sec. 4.2. Unlike
E2E-P that has to learn low-level navigation in combina-
tion with exploration and planning for MORP, the W2G-
P focuses on only learning exploration and planning.

Modular agents: To improve our modular heuristic agents
that greedily combine WFBE-based exploration and CVRP-
based planning (Sec. 4), we investigate ways to a) improve
exploration performance, b) improve the trade-off between
exploration and planning beyond greedy, and c) jointly im-
prove both.

• Learnt Explorer (LE) is focused on improving explo-
ration performance of WFBE methods in our heuris-
tic agents, inspired by the performance difference be-
tween these agents in Table 2. Specifically, we learn a
utility function approximation for frontier selection in

WFBE, which trades-off information gain and frontier
distance. We train two types of LE agents: (1) LEdisc that
chooses directly among candidate frontiers, in particular,
these candidates correspond to the agent’s discrete ac-
tions and (2) LEw (Niroui et al. 2019) that outputs a con-
tinues variable w ∈ R : [0, 1] to be used as a weight on
normalized distance and normalized information gain in
WFBEw exploration policy. See Appendix A.3 for more
details on WFBEw and candidate frontier computation.
Contrary to WFBEw, LEw dynamically changes the w at
each step rather than using a fixed w. We train LE agents
explicitly on the exploration task of finding all objects
but not rearranging them for the MORP dataset. We then
evaluate the LE agents on MORP by combining them
with CVRP planner, akin to the heuristic agents.

• Optimal Balancer (OB) agent learns to combine
WFBE-based exploration and CVRP-based planning op-
timally, instead of greedily choosing between them as in
the heuristic agents. OB agent thus has two correspond-
ing high-level actions: explore and plan that it learns to
choose from.

• Balanced Explorer (BE) learns exploration policy
and optimal balance between exploration and planning
jointly. BE agent’s discrete actions thus consists of plan
action, which calls the CVRP planner; and actions that
map to candidate frontier locations.

For all of the above agents, the input consists of occu-
pancy map, receptacle locations, agent location, total num-
ber of objects to be rearranged, and agent’s current grip-
per state as described in agent’s sensor suite (see Sec. 3).
For modular agents, we additionally use frontier locations
as input. More details on the representations of these in-
puts for individual agents are described in Appendix A.5.
For the policy architecture, we use ConvLSTM-like archi-
tecture for E2E-P and W2G-P agents and ConvMLP-like ar-
chitecture5 for OB, LE, and BE agents. The reward function
for all agents is the weighted sum of navigated distance, the
number of newly seen objects, grab/drop reward, the newly
discovered map area at time step t, and the episode success
reward. Please see the Appendix A.5 for more details.

5.1 Training Process
We use Rllib (Liang et al. 2018) implementation of DD-
PPO (Wijmans et al. 2020) in order to train our agents with
train splits of the dataset. E2E-P and W2G-P agents are
trained with a naive curriculum, where we first train with
single object rearrangement episodes before training with
MORP episodes. The “small” dataset split was used to train
E2E-P and W2G-P. All other agents were trained using the
“medium” and “large” dataset splits (see Table 1). Details
on task configuration including hyperparameters for training
and benchmarking can be found in Appendix A.5.

5Since our inputs for OB, LE, and BE contain all the informa-
tion pertaining to the sufficient state for MORP, recurrent policies
are not needed. We verified this empirically by swapping the MLP
layer with the recurrent LSTM layer and found no difference in
ESPL of these agents.



5.2 Benchmarking Learning-based Agents
We evaluate the performance of learning-based agents and
compare them against the best performing heuristic agent
WFBEr in Table 3. We also present our conclusions on lever-
aging learning to obtain policies for MORP.

ESPL ∆ESPL

Methods
c
no 1 3 5 10 µ σ

1 .67 .76 .81 .87 - -WFBEr 3 .67 .70 .65 .68 - -
1 .68 .72 .75 .85 .029 .15LEw 3 .68 .70 .65 .68 .002 .15
1 .64 .69 .72 .82 .062 .19LEdisc 3 .64 .67 .62 .65 .033 .20
1 .68 .76 .81 .87 .007 .05OB 3 .68 .70 .65 .68 .006 .05
1 .58 .65 .72 .77 .097 .19BE 3 .58 .60 .58 .58 .090 .18

Table 3: Comparison of heuristic and learning-based agents.
∆ESPL shows mean and variance for ESPL difference
between best performing heuristic agent (WFBEr) and other
agents. For all agents, other metrics on average are: MC =
0.83, ES = 1 and SOR = 1. Bold numbers indicate best
performance in a particular MORP configuration.

Learning rearrangement planning from scratch is hard.
We find that both E2E-P and W2G-P fail in completing
even single object rearrangement episodes. They learn to
discover the object and can move towards the object, yet they
fail to grab the object or to rearrange it into the receptacle.
DRL approaches are known to struggle in long-horizon and
sparse reward settings (Matheron, Perrin, and Sigaud 2020)
as is the case with E2E-P. Likewise, DRL approaches strug-
gle with large discrete actions spaces (Dulac-Arnold et al.
2015) such as that of W2G-P. Prior work on object rear-
rangement therefore uses modular approaches over mono-
lithic ones (Karkus et al. 2020; Szot et al. 2021). We do not
include E2E-P and W2G-P metrics in Table 3 since these
agents do not succeed in any MORP episodes.
Learning exploration explicitly or jointly with rear-
rangement planning does not help MORP. We first com-
pare agents that explicitly learn to explore (LEw and LEdisc)
with WFBE-based exploration on purely exploration task
of finding all objects in MORP scenes (see Table 8 in Ap-
pendix A.5 for detailed comparison of the same). We find
that learnt exploration agents do not perform better than
the WFBE policies when evaluated on this exploration task.
Agents with short-sighted frontier-based exploration poli-
cies e.g., WFBEr and WFBEw agents, which try to find
objects by exploring most area while navigating minimum
distance, perform better than the learnt exploration policies
that consider the long-term and minimize total path length
in order to discover all the objects in LEw and LEdisc agents.
Consequently, combining them with optimal planning us-
ing the CVRP solver for rearrangement (LEw, LEdisc in Ta-
ble 3) does not lead to improvement in MORP. This sug-
gests that on average, finding the first object fast and count-
ing on the object discovery during rearrangement planning

is a good strategy for MORP. Since LE agents explicitly
learn to explore without accounting for rearrangement plan-
ning, we also train the BE agent which learns to combines
exploration with CVRP planning, while jointly learning to
explore. However, we find that this doesn’t improve perfor-
mance on MORP either.
The greedy combination of frontier-based exploration
and CVRP-based planning is empirically optimal. Dur-
ing the training of OB agent, we intermittently evaluate the
agent on the test dataset in order to understand the evolu-
tion of agent behavior over the training process. Our eval-
uations indicate that in the early stages of the training, OB
acts non-greedily as opposed to the heuristic WFBEr agent.
Yet, despite hyper-parameter tuning such as that of the en-
tropy loss coefficient in DD-PPO and reward shaping, OB
eventually converges to a greedy behaviour. This is evident
in ∆ESPL between OB’s performance and WFBEr agent’s
performance in Table 3, which is similar to a zero-centered
normal distribution with 5% standard error. Post conver-
gence, OB’s high entropy action policies have occasional
attempts (10% of the test data) to explore non-greedily i.e.,
explore even when there are discovered objects that need
to be rearranged. Such non-greedy behavior enables OB
to discover objects earlier than the WFBEr agent in cer-
tain episodes. However, on average OB’s behavior is greedy.
This empirically demonstrates that the greedy combination
of frontier-based exploration and CVRP-based planning (as
in WFBE agents) is optimal for MORP.

In summary, E2E-P and W2G-P demonstrate that conven-
tional, monolithic deep RL does not succeed at MORP since
the agent needs to learn navigation, exploration, and plan-
ning from scratch. Modular agents that leverage the induc-
tive biases of conventional frontier-based exploration and
CVRP-based planning in combination with learning to im-
prove exploration and/or the trade-off between exploration
and planning still do not outperform their greedy, heuristic
counterparts.

6 Conclusion
We propose Multiple Object Rearrangement Planning
(MORP) in mapped environments with partial observabil-
ity over object locations as a benchmark task. We conduct
a comprehensive complexity analysis of MORP, where we
investigate various factors such as number of objects and re-
ceptacles, agent carrying capacity, environment layouts etc.
that make MORP challenging. We further introduce com-
petitive heuristic baselines for MORP that greedily combine
classical frontier-based exploration and optimization-based
planning. We also train reinforcement learning policies for
MORP in order to outperform the heuristic baselines. How-
ever, we find that monolithic RL policies struggle at MORP
while modular RL policies converge to behaviors similar to
heuristic policies. This empirically demonstrates that greedy
combination of exploration and planning for MORP is opti-
mal when objects to be rearranged are uniformly distributed
in the 3D environments. However, developing agents that
outperform heuristic agents at MORP remains an open prob-
lem for future research.
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A Appendix
A.1 Dataset
Table 4 shows the number of scenes and episodes for the
small, medium and large variants of our dataset. Figure 5 vi-
sualizes multiple episodes in our dataset variants with vary-
ing number of objects and receptacles.

#scenes #episodes
no - 1 3 5 10

large train 44 4.4k 4.4k 4.4k 4.4k
test 22 220 220 220 220

medium train 60 6k 6k 6k 4843
test 30 300 300 299 231

small train 5 500 - - -
test 1 10 - - -

Table 4: Episode and scene counts in the dataset.

A.2 Capacitated Vehicle Routing Problem
In this section, we describe the CVRP formulation employed
by the oracle agent. Let O = {0, ..., ns − 1} denote the set
of ns objects seen and yet to be rearranged. Then the set
of object pickup locations and their corresponding recepta-
cle locations yields 2ns + 1 locations in total including the
agent’s initial location x. We order these locations with in-
dices {0, ..., 2ns} such that the zeroth index corresponds to
x, every odd index 2i+1 corresponds to the pickup location
in P and every even index 2i+2 corresponds to the dropoff
location in B for object i ∈ O. We denote the set of pickup
locations as Γ = {1, 3, ..., 2ns − 1} and the set of dropoff
locations as Ψ = {2, 4, ..., 2ns}.

Let τ : {0, ..., 2ns}×{0, ..., 2ns} → R be the transporta-
tion cost function which calculates the geodesic distance be-
tween two navigable locations given the location indices and
satisfies τ(i, i) = 0. We define φ : {0...2ns} → {0...2ns}
as an invertible operator that maps a step number to a loca-
tion index to visit. The operator φ is the solution variable for
our oracle planner, so the optimal sequence of location visits
is given by (φ∗(0), ..., φ∗(2ns)) and is computed as the so-
lution to a combinatorial optimization problem. Invertibility
is assumed for φ since every location is visited exactly once
and each visit (except the zeroth location x) is implicitly tied
to either an object pickup or dropoff. Let 1I(·) be the indi-
cator function to check if its argument is in the set I. The
CVRP optimization problem is then framed as:

min
(φ(0),...φ(2ns))

2ns∑
i=1

τ(φ(i), φ(i− 1)) (2a)

s.t. φ(0) = 0 (2b)
j∑

i=1

1Γ(φ(i))− 1Ψ(φ(i)) ≤ c, ∀j ∈ {1, ..., 2ns}

(2c)

φ−1(i+ 1) > φ−1(i),∀i ∈ Γ (2d)

φ−1(2i+ 1) ≤ ||H||1, ∀i ∈ {O | ||H:,i||1 = 1}
(2e)

The objective function in eq (2a) corresponds to the to-
tal distance traveled. Eq (2b) states that the initial location
of the agent should be the first location visited. Eq (2c) ex-
presses the capacity constraint for the agent. Eq (2d) indi-
cates that the agent should pickup the object before dropping
it to its receptacle. Eq (2e) use the gripper slot representation
H ∈ Rc×no defined in Section 3.4 to maintain consistency
for held objects when re-planning occurs and is trivially sat-
isfied if no object is being held. It states that the pickup for
held objects must happen before others. But since they are
already being held in the environment, no actual re-pickup
needs to be performed during plan execution.

A.3 Weighted Frontier Based Exploration
We detail our implementation of WFBE along with the util-
ity function definitions in this section.

In our implementation, we first compute the FBE frontiers
and then cluster them into K clusters6 using K-means clus-
tering (Lloyd 1982). Denoting the set {1, . . . ,K} by [K], let
V be the set of K frontier locations with element vk ∈ Z2

being the frontier location closest to the centroid of cluster
k ∈ [K]. Define dk to be the shortest path length between vk
and x. Further, let gaink ∈ Z be the gain for the candidate
frontier vk defined as the sum of newly seen cells along the
shortest path between x and vk.

We explore two choices to calculate the utility function
for choosing the next frontier:

• WFBEr: Chooses the candidate frontier which maxi-
mizes the ratio between gain and distance of the frontier
from x,

choice = argmax
k∈[K]

{
gaink

dk

}
(3)

• WFBEw: Chooses the candidate frontier which mini-
mizes a weighted sum of normalized gain and normalized
distance from x,

choice = argmin
k∈[K]

{w ∗ d̄k + (1− w) ∗ gaink}, (4)

where d̄k =
dk∑

j∈[K] dj
, gaink =

gaink∑
j∈[K] gainj

,

and w is a balancing hyperparameter (Niroui et al. 2019).

A.4 Complexity analysis of MORP
Table 5 shows the performance metrics for heuristic agents
when the number of objects no, number of receptacles nr

and the agent capacity c vary.

A.5 Learning-Based Agents Implementation
Details

In this section, we describe the policy neural network archi-
tectures, reward functions and training hyperparameters for
our learning-based agents.

6We empirically chose the number of clusters K to be 10.



Figure 5: Instantiation of multiple episodes. The top row shows different scenes that belong to small/medium/large splits of our
dataset. The bottom row shows the instantiation of a single scene with varying number of objects no and receptacles nr.

Inputs We first define a common set of inputs for learning-
based agents. The inputs to individual agents are shown in
Table 6.

• Agent Location Map: A matrix Ma ∈ Z200×150 with all
entries 0s, except the agent location which is a 1.

• Expected Number of Objects Map: Mo : Rnr×200×150

which contains the expected number of objects of type
i in the i-th slice Mo,i,:,:. The matrix Mo is initialized
with zeros. Every seen object of type i contributes a fur-
ther additive value of 1 and unseen type i objects con-
tribute the additive value 1

# of unseen navigable cells to the i-th
slice.

• Final Object Locations Map: Mb : Rnr×200×150 with
the i-th slice Mb,i,:,: containing the number of type i ob-
jects at the i-th receptacle location and zero otherwise.

• Candidate Frontier Map: Mv ∈ Z200×150 with candi-
date frontier locations represented as ones and all other
locations as zeros.

• Candidate Frontier Distances and Gains: D =
{dvi ,∀vi ∈ V} distances and K = {gainvi ,∀vi ∈ V}
gains associated with candidate frontiers.

• Exploration Location Map: Me : Z200×150 which rep-
resents the selected exploration location with 1 and all
other locations with 0.

• Planning Location Map: Mp : Z200×150 which repre-
sents the next planned object/receptacle location as 1 and
all other locations as 0.

• Gripper Load: gl =
||H||1

c , continuous representation of
gripper load in [0, 1].

Policy Architectures In order to present policy architec-
tures we define individual and combined layers as follows:
• conv1: 8 (4× 4) kernels, padding:1, stride:2 + ReLU.
• conv2: 16 (4× 4) kernels, padding:1, stride:2 + ReLU.
• conv3: 16 (3× 3) kernels, padding:1, stride:2 + ReLU.
• conv4: 8 (3× 3) kernels, padding:1, stride:2 + ReLU.
• conv5: 4 (3× 3) kernels, padding:1, stride:1 + ReLU.
• conv6: 2 (2× 2) kernels, padding:1, stride:1 + ReLU.
• conv7: 32 (3× 3) kernels, padding:1, stride:1 + ReLU.
• flat1: FC layer from 1900-dim to 512-dim + ReLU.
• flat2: FC layer from 3800-dim to 512-dim + ReLU.
• concat1: FC layer from 1545-dim to 256-dim + ReLU.
• concat2: FC layer from 1609-dim to 256-dim + ReLU.
• concat3: LSTM layer from 1549-dim to 256-dim.
• concat4: LSTM layer from 1613-dim to 256-dim.
• concat5: FC layer from 585-dim to 256-dim + ReLU.
• concat6: LSTM layer from 521-dim to 256-dim.
• act-emb: Embeds action into 4-dim cont. space.
• dir-emb: Embeds direction into 8-dim cont. space.
• info: FC layer from 20-dim to 64-dim + ReLU.
• c1:flat1(conv5(conv4(conv4(conv1(·)))))
• c2:flat1(conv5(conv4(conv3(conv2(·)))))
• c3:flat2(conv4(conv3(conv7(conv2(·)))))
• act: Action head FC layer from 256-dim to actions.
• cri: Critic head FC layer from 256-dim to 1-dim.

Learning-based agents’ policy architectures are as fol-
lows:



MC SOR ROR ESPL

Explorer c
nr

no 1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10 avg

1 3 .66 .84 .89 .94 1 1 1 1 1 1 1 1 .62 .69 .74 .82 .72RND 3 3 .66 .84 .89 .94 1 1 1 1 1 1 1 1 .62 .63 .60 .62 .62
1 3 .66 .85 . 89 .94 1 1 1 1 1 1 1 1 .56 .67 .75 .83 .71WFBE1 3 3 .66 .85 .87 .94 1 1 1 1 1 1 1 1 .56 .62 .61 .64 .61
1 3 .65 .84 .88 .94 1 1 1 1 1 1 1 1 .68 .75 .81 .87 .78WFBE0.5 3 3 .65 .84 .89 .94 1 1 1 1 1 1 1 1 .68 .69 .65 .67 .67
1 3 .65 .84 .89 .94 1 1 1 1 1 1 1 1 .65 .71 .76 .84 .74WFBE0 3 3 .65 .84 .89 .93 1 1 1 1 1 1 1 1 .65 .65 .61 .65 .64
1 3 .65 .84 .89 .94 1 1 1 1 1 1 1 1 .67 .76 .81 .87 .78WFBEr 3 3 .65 .84 .89 .93 1 1 1 1 1 1 1 1 .67 .70 .65 .68 .68
1 3 .65 .80 .87 .94 1 1 1 1 1 1 1 1 .68 .72 .75 .85 .75LEw 3 3 .65 .80 .87 .94 1 1 1 1 1 1 1 1 .68 .70 .65 .68 .68
1 3 .65 .79 .87 .94 1 1 1 1 1 1 1 1 .67 .64 .69 .72 .68LEdisc 3 3 .65 .79 .87 .94 1 1 1 1 1 1 1 1 .67 .64 .67 .62 .65
1 3 .65 .84 .89 .94 1 1 1 1 1 1 1 1 .68 .76 .81 .87 .78OB 3 3 .65 .84 .89 .94 1 1 1 1 1 1 1 1 .68 .70 .65 .68 .68
1 3 .66 .85 .90 .94 1 1 1 1 1 1 1 1 .58 .65 .82 .77 .68BE 3 3 .66 .85 .89 .94 1 1 1 1 1 1 1 1 .58 .60 .58 .58 .59

Table 5: MORP’s complexity analysis as measured through the ESPL performance metric of heuristic agents: We measure the
effect of number of objects no, number of receptacles nr and agent capacity c on MORP.

• LEw, LEdisc: concat5([c3(M,Ma,Mo,Mv), dir-
emb(ϕ), info([K,D])]).

• E2E-P: concat6([c3(M,Ma,Mo,Mb), dir-emb(ϕ),
gl)]).

• W2G-P: We use E2E-P network to obtain state represen-
tation and 200 × 150 top-down map, action logits, is re-
constructed by using up-sampling similar to U-Net (Ron-
neberger, Fischer, and Brox 2015) combined with coor-
dinate convolution (Liu et al. 2018).

• OB(MLP): concat1([c1(M), c2(Mb,Me,Mp),
c1(Mo,Mb), dir-emb(ϕ), gl]).

• OB(LSTM): concat3([c1(M), c2(Mb,Me,Mp),
c1(Mo,Mb), dir-emb(ϕ), act-emb(prev-action), gl]).

• BE(MLP): concat2([c1(M), c2(Mb,Mv,Mp),
c1(Mo,Mb), dir-emb(ϕ), gl, info([K,D])]).

• BE(LSTM): concat4([c1(M), c2(Mb,Mv,Mp),
c1(Mo,Mb), dir-emb(ϕ), act-emb(prev-action), gl,
info([K,D])]).

We feed output of concatX layers into act and cri layers
in order to produce the actor and the critic in the DD-PPO
algorithm.

Reward Functions The reward function for all agents
is the weighted sum of navigated distance, the number of
newly seen objects, grab/drop reward, the newly discov-
ered map area at time step t, and the episode success re-
ward. Letting ∆xt = d(xt, xt−1) be the distance navigated
by agent at t, ∆SOt = (SORt − SORt−1) ∗ no be the
change in the number of seen objects at time t, ∆ROt =
(RORt − RORt−1) ∗ no be the change in the number of
rearranged objects at time t, ∆SCt = (MCt −MCt−1)×
{total number of navigable cells in the map} be the number
of newly seen cells at time t, ∆ht = c ∗ (glt − glt−1) be
the change in the number of held objects at time t, and ES

be the episode success from Section 3.3, we can define the
reward functions as follows:

R1
t = −3∆xt + 20(∆ROt +∆SOt)

+ 10−2∆SCt + 500ES (5a)

R2
t = −3∆xt + 20(∆ROt +∆SOt

+∆ht) + 10−2∆SCt (5b)

R3
t =

{
0, t ̸= T
eESPL, t = T

}
(5c)

These rewards are then used to train the various learning-
based agents as shown in Table 6.

Agent Inputs Reward
LEdisc , LEw Mv,K,D Eq (5a)

E2E-P, W2G-P Mb, gl Eq (5b)
OB(MLP) Mb,Me,Mp, gl Eq (5a)

OB(LSTM) Mb,Me,Mp, gl Eq (5c)
BE(MLP) Mb,Mv,Mp,K,D, gl Eq (5a)

BE(LSTM) Mb,Mv,Mp,K,D, gl Eq (5c)

Table 6: Inputs, policies and rewards for learning-
based agents. Additionally, all agents’ input consists of
M,Mo,Ma, ϕ (where ϕ is the orientation as defined in
Section 3.2).

Hyperparameters We train agents with Rllib implemen-
tation of DD-PPO algorithm. Each agent is trained for 100M
steps with 8x Tesla V100 16GB GPUs and on a 64-core Intel
Xeon E5-2686 CPU. Table 7 shows the training and evalua-
tion hyperparameters.



Symbol Value
θ, rs, maxt, no, nr, c 360◦, 2.0m, 100, 5, 3, 3

batch size 128
discount factor γ 0.9

lambda λ 1.0
vf-loss-coeff 0.8
entropy-coeff 10−1 to 10−3 in 5M steps
vf-clip-param 100
clip-param ε 0.1

Table 7: Training and evaluation hyperparameters for bench-
marking unless otherwise specified.

Comparison of learnt exploration methods with frontier-
based exploration methods Table 8 shows a detailed
comparison of learnt exploration agents with WFBE agents
for purely exploration task on MORP test scenes. LE agents
were also trained for the exploration task. The goal of the
exploration task is to find all objects in a given scene.

Path Length l(m)

Metds.
no 1 3 5 10 avg FO

RND 368 870 1250 2053 1104 81
WFBE1 198 336 393 474 346 84

WFBE0.5 146 268 339 440 293 58
WFBE0 183 349 440 601 386 71
WFBEr 146 260 320 411 280 59

LEw 146 267 338 440 293 92
LEdisc 176 341 425 548 366 70

Table 8: Comparison of exploration methods: We evaluate
exploration agents using exploration only task on MORP test
scenes. We compare agent’s path length required to find all
objects in the scene and path length until the first object is
found (FO).


