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Abstract

Many scenarios involve a tension between individual
interest and the interests of others. Such situations are
called social dilemmas. Because of their ubiquity in eco-
nomic and social interactions constructing agents that
can solve them is of prime importance to researchers in-
terested in multi-agent systems. We discuss why social
dilemmas are particularly difficult, propose a way to
measure the ‘success’ of a strategy, and review recent
work on using deep reinforcement learning to construct
agents that can do well in both perfect and imperfect
information bilateral social dilemmas.

Introduction
How can an agent construct a good strategies for an
environment which involves another agent? An early
answer to this question was given by (Brown 1951) who
considered the idea of ‘fictitious play’ - an agent is going
to play some game once with another agent, if they
have access to the game beforehand and they can iterate
the game repeatedly in their own mind (ie. during the
training phase) and use the strategies they discovered
when faced with a real partner (ie. during the test
phase). This idea, also called ‘self-play’, has become an
important part of the artificial intelligence toolkit. Self-
play where agents try to maximize their own rewards can
lead to superhuman performance in zero-sum games like
Backgammon (Tesauro 1995), poker (Brown, Ganzfried,
and Sandholm 2015), or Go (Silver et al. 2016; 2017) but
can lead to bad outcomes in general-sum environments
(Sandholm and Crites 1996; Fudenberg and Levine 1998;
Lerer and Peysakhovich 2017; Foerster et al. 2017c;
Leibo et al. 2017). Recent work has begun to study
modified self-play methods to construct good strategies
for social dilemmas. In this short note we will review
some recent results in this field.

First, we need to determine what it means to do well
in a social dilemma. The repeated Prisoner’s Dilemma
(rPD) is perhaps the most studied social dilemma and
gives us a good starting point. In the rPD conditionally
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cooperative strategies such as Tit-for-Tat (Axelrod 2006)
or Win-Stay-Lose-Shift (Nowak and Sigmund 1993) per-
form well because they reward cooperation today with
cooperation tomorrow and so stabilize cooperation while
avoiding exploitation. These strategies are studied so
heavily because they have intuitively appealing proper-
ties. They are nice (begin by cooperating), are simple
to explain to a partner, cooperate with cooperators, do
not get exploited by defectors, are forgiving (eventually
return to cooperation if it breaks down). Importantly, if
one can commit to them, create incentives for a partner
to behave cooperatively. A natural desiderata then is to
ask for agents in complex social dilemmas that maintain
these properties.

There are several issues in extending these ideas to
more complex settings. First, in Markov games ‘co-
operation’ and ‘defection’ are no longer single acts,
but rather sequences of choices (Leibo et al. 2017;
Peysakhovich and Lerer 2017a; Lerer and Peysakhovich
2017; Foerster et al. 2017c; Littman 2001). Here agents
that want to maintain cooperation within the confines
of a single game have to 1) infer whether their partner
is cooperating or not, 2) know how to respond to both
of these contingencies. The work we survey here tries
to bring ideas from repeated game theory (Fudenberg
and Maskin 1986; Dutta 1995; Littman and Stone 2005;
De Cote and Littman 2012) to the one-shot setup. There
are several issues to overcome: first, rather than main-
taining good outcomes by threats of different behavior
in the next iteration of the game, agents must behave
intelligently within a single game. Second, multiple
strategies may be outcome equivalent (eg. going left
then up or up and then left in a grid world). Third,
function approximation may lead to noise in implemen-
tation. We would like to adapt the ideas from repeated
game theory to construct strategies that are robust to
these issues.

The first set of results we focus on construct con-
ditional cooperators for fully observed games. Ap-
proximate Markov Tit-for-Tat (amTFT, (Lerer and
Peysakhovich 2017)) applies modified self-play to learn
two policies at training time: a fully cooperative policy



and a ‘safe’ policy (we refer to this as defection)1 which
forms an equilibrium with lower payoffs than coopera-
tion.
At test time, the amTFT agent is matched with a

partner whose policy is unknown. At each time step the
amTFT agent computes the gain from the action their
partner actually chose compared to the one prescribed
by the cooperative policy. This can be done either using
a learned Q function or via policy rollouts. We refer to
this as a per period debit. If the total debit is below a
threshold the agent behaves according to the coopera-
tive policy. If the debit at some time period is above the
threshold, the agent switches to the defecting policy for
k turns and then returns to cooperation. This k is com-
puted such that the partner’s gains (debit) are smaller
than the losses they incur (k lost turns of cooperation).
The threshold trades off robustness to noise and func-
tion approximation with allowing the amTFT agent to
be slightly exploitable. (Lerer and Peysakhovich 2017)
show analytically and experimentally that amTFT can
maintain cooperation and avoid being exploited in social
dilemmas, including ones where agents learn from raw
pixels.

Recent work has argued that TFT-like properties need
not be hardwired and strategies can be trained from
scratch. (Foerster et al. 2017c) modifies policy gradient
to take into account that one’s partner is a reactive
(rather than static) agent. This method can construct
cooperation maintaining strategies in several Markov
games. This approach is computationally challenging
and has no known theoretical guarantees, and it may
construct strategies that are hard to explain (eg. to a
human partner). Despite these drawbacks we believe
end-to-end training is a fruitful direction for future re-
search and that explicit constructions like the ones we
discuss here are a complement to, not a substitute for,
end-to-end approaches.
An advantage of amTFT is that it requires no addi-

tional machinery beyond what is required by standard
self-play, thus if deep RL can construct competitive
agents in some environment (eg. Atari, (Mnih et al.
2015)) then we can also construct agents that solve
social dilemmas in that environment. A disadvantage
is that it requires full observability of a partner’s ac-
tion as well as a good model of the future consequences
of a partner’s action. Thus, it will not work in many
POMDPs. (Peysakhovich and Lerer 2017a) solves this
problem by showing that amTFT’s focus on future ex-
pected rewards as the result of an action can be replaced
by consequentialism: focusing on the reward stream that
one actually obtains. Consequentialist conditionally co-
operative (CCC) use self play to compute cooperate
and defect strategies like amTFT. CCC uses rollouts
of these strategies to compute a time-dependent payoff

1In the PD this action is ‘defect’. However, in social
dilemmas that occur naturally in economic situations, such
a safe policy is the outside option of ‘stop transacting with
this agent.’

threshold, if the CCC agent’s payoff at a period is below
this threshold they defect, otherwise they cooperate.
(Peysakhovich and Lerer 2017a) show analytically that
as long as a POMDP satisfies a technical conditions (re-
ward ergodicity) CCC agents can maintain cooperation
in the long-run.
CCC is much simpler to compute than amTFT and

can perform just as well in some perfect information
games. However, this is not always the case. Consider a
situation where a partner tries to cheat (very obviously)
but due to stochasticity in the environment fails to do so.
amTFT would correctly mark this as a deviation from
cooperation (because it focuses on the ‘intention’ behind
an action) while CCC would not (because it only looks at
consequences). In reality intention is usually somewhat
observed (but not perfectly) while consequences are also
noisy. This suggests that an important future direction
towards constructing agents that solve social dilemmas
is finding ways to combine intention and consequences
efficiently.

We now describe in more technical detail the results we
have surveyed here. Note that the experiments described
here are not new, rather they are taken from the papers
in question and presented in a summarized way to convey
our main points. We point the interested reader back
to the original papers for the full details.

Cooperation With Perfect Information
We begin with a generalization of Markov decision prob-
lems:

Definition 1 ((Shapley 1953)) A (finite, 2-player)
Markov game consists of

• A set of states S = {s1, . . . , sn}
• A set of actions for each player A1 = {a11, . . . , a1k},
A2 = {a21, . . . , a2k}

• A transition function τ : S ×A1 ×A2 → ∆(S) which
tells us the probability distribution on the next state
as a function of current state and actions
• A reward function for each player Ri : S×A1×A2 →
R which tells us the utility that player gains from a
state, action tuple
We assume rewards are bounded above and below.

Players can choose between policies which are maps
from states to probability distributions on actions πi :
S → ∆(Ai). We denote by Πi the set of all policies for
a player.

Definition 2 A value function for a player i inputs a
state and a pair of policies V i(s, π1, π2) and gives the
expected discounted reward to that player from starting
in state s. We assume agents discount the future with
rate δ which we subsume into the value function.

We will be talking about strategic agents so we often
refer to the concept of a best response:

Definition 3 A policy for agent j denoted πj is a best
response starting at state s to a policy πi if for any



π′
j and any s′ along the trajectory generated by these

policies we have

V j(s′, πi, πj) ≥ V j(s′, πi, π′j).

We denote the set of such best responses as BRj(πi, s).
If πj obeys the inequality above for any choice of state s
we call it a perfect best response.

The set of stable states in a game is the set of equilib-
ria. We call a policy for player 1 and a policy for player
2 a Nash equilibrium if they are best responses to each
other. We call them a Markov perfect equilibrium if
they are perfect best responses.

We are interested in a special set of policies:

Definition 4 Cooperative Markov policies starting
from state s (π1

C , π
2
C) are those which, starting from

state s, maximize

V 1(s, π1, π2) + V 2(s, π1, π2).

We let the set of cooperative policies be denoted by ΠC
i (c).

Let the set of policies which are cooperative from any
state be the set of perfectly cooperative policies.

A social dilemma is a game where there are no coop-
erative policies which form equilibria. In other words, if
one player commits to play a cooperative policy at every
state, there is a way for the other to exploit them and
earn higher rewards. Note that in a social dilemma there
may be policies which achieve the payoffs of cooperative
policies because they cooperate on the trajectory of play
and prevent exploitation by threatening non-cooperation
on states which are never reached by the trajectory.

For the same situation the choice of state representa-
tion can affect whether a social dilemma is solvable or
unsolvable. To make this more clear, let us consider the
repeated Prisoner’s Dilemma. In the simplest version
rPD individuals are matched to play infinitely many
rounds of a stage game in which each player chooses
in each round either to give the other player a benefit
b at a cost c to themselves (cooperate) or not (defect).
When b > c the highest total payoff is achieved when
both individuals cooperate, however, each can do better
in the short-run by defecting.

The rPD as described in words above can be written
as a Markov game in many ways. For example, we can
say that there is a single state and two actions per period.
In this case, the rPD is an unsolvable social dilemma.
This is because the only way to deter defection today is
to affect the future payoffs of the defecting agent. With
single state, this is impossible. On the other hand, if
we model the rPD as a Markov game where the state
is the outcome from last period, there are now policies
which maintain cooperation and are an equilibrium. For
any state representation can never be equilibria which
cooperate at every state in the rPD because deterring
defection today depends on being willing to withhold
cooperation from defectors tomorrow and so policies
that maintain cooperation at some states must defect
at others.

The distinction made above is important because in
many examples of interest the simplest choice of rep-
resentation may not be one that makes the dilemma
solvable. In particular, this implies that to play from
raw pixels some memory is required, either in the form of
an RNN (or similar) or a hardcoded summary statistic.
Note that adding memory can create equilibrium poli-
cies which maintain cooperation. However, it does not
remove equilibria in which both players which always
defect. Thus, even with memory applying the self-play
paradigm of ‘learn a Nash equilibrium at training time
and then play your half at test time’ may still lead
to defecting agents. It has been demonstrated several
times that such defecting equilibria can be more robust
attractors than cooperative equilibria.

amTFT bypasses this problem by doing the following.
When paired with an actual partner the amTFT agent
starts in a C phase. While in a C phase the agent
behaves according to πC . However, at each time step
while in the C phase the amTFT agent looks at the
actions a partner (called j) takes and computes

d = Qj
CC(s, πC

i (s), aj)−Qj
CC(s, πC

i (s), πj
C(s)).

If d > 0 the amTFT agent switches to a D phase for
k periods which is computed such that the loss to the
partner from k periods of πD followed by mutual πC is
relative to both behaving according to πC the whole time
is greater than d. In other words, if a partner deviates
today, they lose k periods of cooperation tomorrow.

In (Lerer and Peysakhovich 2017), the following ana-
lytical result is shown:

Theorem (Intuitive Version) 1 If the game satis-
fies some technical conditions which generalize the no-
tion of a Prisoner’s Dilemma then if agent j’s partner is
an amTFT agent, the best response for agent j to play
according to πC

j during the C phase and πD
j during the

D phase. This means that if agents start in a C phase
they cooperate forever. If agents start in a D phase they
eventually return to cooperation and cooperate forever.

(Lerer and Peysakhovich 2017) implement amTFT
using deep reinforcement learning. Importantly, during
training time the amTFT agent has to find cooperative
policy πC and a defect policy πD. These are found using
a modified self-play procedure where the agent either
controls both agents and reinforces at each time step on
the agents’ individual rewards (this is standard self-play
and is used to find πD) or on the joint reward (this finds
the joint payoff maximizing policies πC). In addition, d
and k are computed by rollouts and to deal with issues
of function approximation d is aggregated over multiple
time steps of the game and the D phase begins only if
the sum of d passes a threshold.

Cooperation Without Perfect
Information

With imperfect information we can use the generaliza-
tion of a POMDP to the multi-agent case. Here, we



take the Markov game definition above and append the
notion of observational states. Each player has a set
of possible observations Oi and a function Ωi which
maps the state and actions at a given time period to
an observation. When Ωi is the identity for all players
we get back a Markov game. Policies, instead of being
able to condition on the state, must condition only on
observations.
Note that here amTFT is not implementable since

the action of a partner may not be perfectly observed.
An ideal solution may be to construct a full posterior be-
lief on actions using Bayesian methods. However, often
such solutions are intractable. (Peysakhovich and Lerer
2017a) show that it is possible to construct a simple
strategy for any game which satisfies a reward-ergodicity
condition: for any pair of policies, there exists a lim-
iting average rate of rewards which is independent of
initial starting state. Let ρCC be the asymptotic rate
under joint cooperation and ρCD be the asymptotic rate
under the CCC agent cooperating and the other defect-
ing. We can construct a consequentialist conditionally
cooperative (CCC) agent who looks at their current
average per period payoff and cooperates if this is above
αρCC + (1− α)ρCD and defects otherwise. This gives a
theoretical result:

Theorem (Intuitive Version) 2 If the game satis-
fies some technical conditions on the strategies then
if a CCC agent is paired with a cooperator they are both
guaranteed their cooperative payoffs and if a CCC agent
is paired with a defector the defector is guaranteed at
most the joint defect payoffs.

In practice (Peysakhovich and Lerer 2017a) construct
CCC agents using the same modified self-play as amTFT
during training to compute πC and πD. Rollouts are
used to compute per-period thresholds. Note that the
analytic results are asymptotic in nature and use the
ergodicity condition heavily. To make the CCC strategy
work well in finite time (Peysakhovich and Lerer 2017a)
use batches of rollouts and suggest using statistics other
than the mean (eg. quantiles) from these batches to
construct thresholds. This allows the strategy to trade
off flexibly between finite time false positives (assuming
a partner is defecting when they are not) and false neg-
atives (missing a defector). Note that this is a purely
finite-time tradeoff - asymptotically the theoretical guar-
antees continue to hold.

Experiments
We show the results of applying CCC and amTFT to
several games. Here all results are trained using deep
RL using standard methods. We refer the readers to
the original papers for the full training details.

We also follow the metrics introduced in the original
papers. We focus on the key desiderata: a good strategy
should be safe from a defector partner, should incentivize
cooperation from its partner, and, when matched with
a conditional cooperator, should achieve good payoffs.

We define Si(X,Y ) as the expected reward to policy
πX
1 matched with πY

2 . Safety(X) = S1(X,D)−S1(D,D)
measures how a strategy is safe from exploitation by a
defector; and IncentC(X) = S2(X,C)− S2(X,D) mea-
sures whether a strategy incentivizes cooperation from
its partner. While we cannot enumerate all possible
conditionally cooperative strategy, we can use a proxy
in the case of CCC/amTFT. SelfMatch(X) = S1(X,X)
measures whether a strategy achieves good outcomes
with itself. We can compare this payoff to S1(C,C) and
see how much cooperation these policies can achieve.
We begin with the results from (Peysakhovich and

Lerer 2017a) using CCC in a POMDP: Fishery. Fishery
is a grid-world partially observed Markov game where
two agents live on 5 × 5 grids on opposite sides of a
lake. Agents cannot observe the other side of the lake.
Fish spawn in each agent’s grid and start as young, if
they are not caught when they are young they swim to
the other side of the lake and become mature. Moving
over a fish catches it. Catching a young fish is worth
1 point and catching a mature fish is worth 3 points.
Thus, cooperative strategies are those which one catch
mature fish but selfish agents are tempted to increase
their payoff at a cost to their partner by catching young
fish as well. Because this is a partially observed game,
we can only use CCC as a cooperation maintaining
strategy. We see that in this game agents that play the
cooperative strategy (found by modified self-play with
both agents receiving the joint reward at training time)
can be exploited by defectors (this strategy is found by
standard self-play). However CCC achieve cooperation
with other CCC agents, is safe, and can incentivize its
partner to cooperate.

Strategy SelfMatch Safety IncentC

πC 141 -36 -31
πD 64 0 -34
CCC 125 -3 64

Figure 1: Fishery is a partially observed Markov social
dilemma. Mutual cooperation leads to high payoffs but
cooperators can be exploited by defectors. CCC cooper-
ates with cooperators, is not exploited by defectors, and
makes cooperation a high payoff strategy for its partner.

We now show the results of applying amTFT and CCC
to a social dilemma where agents are trained directly
from raw pixels. We apply the method of (Tampuu et
al. 2017) to change the payoffs of Atari Pong to make it



a social dilemma (the Pong Player’s Dilemma or PPD).
In the PPD when a player scores they receive a reward
of 1 while their partner receives a reward of −2. Thus,
cooperative strategies are those which gently hit the
ball back and forth until the end of the game (and are
exploitable by defectors who try hard to score). We
see in Figure 2 that both amTFT and CCC perform
well in the PPD - cooperating with cooperators, not
being exploited by defectors, earning high payoffs when
matched with other conditionally cooperative strategies,
and incentivizing cooperation from a partner who can
choose a strategy.
Because CCC is computationally simpler, one may

believe the last result implies it is strictly better than
amTFT. This is not always the case. We can change
the payoff structure of the PPD to make it stochastic –
when a player scores a point their partner gets a reward
of − 2

p with probability p. We call this the risky PPD.
Thus, the expected reward is the same as in the PPD
but if p is low then most of the time the cooperative
and defect trajectories look identical from the point of
view of the payoffs. Here, CCC can be exploited by
a defector while amTFT (which uses expected future
payoffs) behaves the same as in the standard PPD.

PPD
Strategy SelfMatch Safety IncentC

πC 0 -18.4 -12.3
πD -5.9 0 -18.4
CCC 0 -4.6 3.3
amTFT -1.6 -5.2 2.6

Risky PPD
Strategy SelfMatch Safety IncentC

πC -0.7 -23.6 -12.8
πD -5.8 0 -22.6
CCC -0.2 -12.2 -5.7
amTFT -3.6 -3.1 2.5

Figure 2: In the PPD both amTFT and CCC agents
can be trained from raw pixels. Cooperators can again
be exploited by defectors and conditionally cooperative
strategies can be both safe and incentivize coopera-
tion. In the non-stochastic version CCC does as well
as amTFT but in the stochastic version CCC can be
exploited in finite time games while amTFT cannot.

Future Directions
Humans are remarkably adapted to solving bilateral
social dilemmas. We have focused on recent work that
tries to use deep reinforcement learning to give artificial
agents this capability. We have shown that amTFT and
CCC can maintain cooperation and avoid exploitation
in Markov games. In addition we have discussed the
training of these strategies and shown that it requires
no more than modified self-play. We now highlight
important future directions.

The first is game theoretic. We have discussed a con-
ditionally cooperative strategy that uses the intentions
behind an action (amTFT) and one purely uses the
consequences (CCC). In the real world intentions are
generally only partially observed (either because actions
are only partially observed or because modeling their
future consequences is difficult) while consequences can
sometimes be poor diagnostics for intentions (because
of stochasticity). Thus, an important future direction is
to construct strategies that combine these two signals.
The second has to do with non-degeneracy of coop-

erative strategies. The technical conditions for amTFT
and CCC to work require the cooperative strategies
satisfy a form of exchangeability - that is, given two
sets of cooperative policies any re-combination of them
leads to the same outcomes. If cooperative poli-
cies are not exchangeable we will have both a social
dilemma (‘should we cooperate?’) and a coordination
(‘in which way should we cooperate?’) problem. This is
strongly related to work on focal points as well as choos-
ing equilibria in coordination games (Schelling 1980;
Peysakhovich and Lerer 2017b). Solving this problem,
eg. via introducing communication, is an important av-
enue for future work (see (Kleiman-Weiner et al. 2016)
for a more in depth discussion).
The third is algorithmic. Any conditionally cooper-

ative strategy needs access to the cooperative strat-
egy and a ‘threat’ strategy. In the surveyed pa-
pers we used modified self-play to find these strate-
gies. However, to the best of our knowledge there
are no guarantees that even if such strategies exist
that standard self-play will find them. In addition,
self-play can have stability issues in multi-agent sys-
tems as the environment from the perspective of a sin-
gle agent becomes non-stationary due to the fact that
other agents are learning (Foerster et al. 2017b; 2017a;
Lowe et al. 2017). Finally, in some situations it can be
difficult to find the joint payoff maximizing cooperative
policy. Dealing with each of these issues is an important
step in scaling these ideas to new environments.
The final issue has to do with human psychology.

Here we have focused on implementing strategies that
achieve socially optimal payoffs (that is, maximizing
the sum of payoffs). However, if we are interested
in agents that interact with humans this may not be
enough. Human social preferences are more complex
than this and the kinds of allocations that humans find
fair vary greatly among cultures and contexts – some-
times it is fair for one person to get a lot more than



the other and other times it is not (Roth et al. 1991;
Henrich et al. 2001; Herrmann, Thöni, and Gächter 2008;
List 2007). Perceptions of fairness greatly influence
behavior and in particular humans are often willing
to pay costs to retaliate against an unfair partner
(Camerer and Thaler 1995; Fehr and Gächter 2002;
Peysakhovich, Nowak, and Rand 2014; Ouss and
Peysakhovich 2015). Thus, if an artificial agent tries
to behave according to an efficient but unfair policy, it
may find itself stuck in πD even though a better out-
come was possible. Understanding social preferences
in context is thus an important question to answer if
we seek to construct systems which lead to good out-
comes (Crandall et al. 2017; Shirado and Christakis 2017;
Hauser et al. 2014).
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