
Neural Dynamic Policies
for End-to-End Sensorimotor Learning

Shikhar Bahl∗
CMU

Mustafa Mukadam
FAIR

Abhinav Gupta
CMU

Deepak Pathak
CMU

Abstract

The current dominant paradigm in sensorimotor control, whether imitation or
reinforcement learning, is to train policies directly in raw action spaces such
as torque, joint angle, or end-effector position. This forces the agent to make
decision at each point in training, and hence, limit the scalability to continuous,
high-dimensional, and long-horizon tasks. In contrast, research in classical robotics
has, for a long time, exploited dynamical systems as a policy representation to
learn robot behaviors via demonstrations. These techniques, however, lack the
flexibility and generalizability provided by deep learning or deep reinforcement
learning and have remained under-explored in such settings. In this work, we begin
to close this gap and embed dynamics structure into deep neural network-based
policies by reparameterizing action spaces with differential equations. We propose
Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution
space as opposed to prior policy learning methods where action represents the
raw control space. The embedded structure allow us to perform end-to-end policy
learning under both reinforcement and imitation learning setups. We show that
NDPs achieve better or comparable performance to state-of-the-art approaches on
many robotic control tasks using both reward-based training and demonstrations.
Project video and code are available at: https://shikharbahl.github.io/
neural-dynamic-policies/.

1 Introduction

 

y
if t
n t

Tf t
in itar frtT f It

TT f

 

Vanilla Policy NDP (Ours)

Figure 1: Vector field induced by NDPs. The goal
is to draw the planar digit 4 from the start position.
The dynamical structure in NDP induces a smooth
vector field in trajectory space. In contrast, a vanilla
policy has to reason individually in different parts.

Consider an embodied agent tasked with throwing
a ball into a bin. Not only does the agent need to
decide where and when to release the ball, but also
reason about the whole trajectory that it should take
such that the ball is imparted with the correct mo-
mentum to reach the bin. This form of reasoning
is necessary to perform many such everyday tasks.
Common methods in deep learning for robotics
tackle this problem either via imitation or reinforce-
ment. However, in most cases, the agent’s policy is
trained in raw action spaces like torque, joint angle,
or end-effector position, which forces the agent to
make decisions at each time step of the trajectory
instead of making decisions in the trajectory space
itself (see Figure 1). But then how do we reason
about trajectories as actions?

∗Correspondence to: sbahl2@cs.cmu.edu

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://shikharbahl.github.io/neural-dynamic-policies/
https://shikharbahl.github.io/neural-dynamic-policies/


Forward 
Integrator

!!
!̇!

fθΦ !̈t

Neural Dynamic Policy

(g, wi )

rt+k , st+k

Environment

at

st at+1

at+k

Figure 2: Given an observation from the environment, st, our Neural Dynamic Policy generates parameters w
(weights of basis functions) and g (goal for the robot) for a forcing function fθ . An open loop controller then
uses this function to output a set of actions for the robot to execute in the environment, collecting future states
and rewards to train the policy.

A good trajectory parameterization is one that is able to capture a large set of agent’s behaviors
or motions while being physically plausible. In fact, a similar question is also faced by physicists
while modeling physical phenomena in nature. Several systems in science, ranging from motion of
planets to pendulums, are described by differential equations of the form ÿ = m−1f(y, ẏ), where y
is the generalized coordinate, ẏ and ÿ are time derivatives, m is mass, and f is force. Can a similar
parameterization be used to describe the behavior of a robotic agent? Indeed, classical robotics has
leveraged this connection to represent task specific robot behaviors for many years. In particular,
dynamic movement primitives (DMP) [20–22, 37] have been one of the more prominent approaches
in this area. Despite their successes, DMPs have not been explored much beyond behavior cloning
paradigms. This is partly because these methods tend to be sensitive to parameter tuning and aren’t
as flexible or generalizable as current end-to-end deep network based approaches.

In this work, we propose to bridge this gap by embedding structure of dynamical systems2 into deep
neural network-based policies such that the agent can directly learn in the space of physically plausible
trajectory distributions (see Figure 1(b)). Our key insight is to reparameterize the action space
in a deep policy network with nonlinear differential equations corresponding to a dynamical
system and train it end-to-end over time in either reinforcement learning or imitation learning
setups. However, this is quite challenging to accomplish, since naively predicting a full arbitrary
dynamical system directly from the input, trades one hard problem for another. Instead, we want to
prescribe some structure such that the dynamical system itself manifests as a layer in the deep policy
that is both, amenable to take arbitrary previous layers as inputs, and is also fully differentiable to
allow for gradients to backpropagate.

We address these challenges through our approach, Neural Dynamic Policies (NDPs). Specifically,
NDPs allow embedding desired dynamical structure as a layer in deep networks. The parameters
of the dynamical system are then predicted as outputs of the preceding layers in the architecture
conditioned on the input. The ‘deep’ part of the policy then only needs to reason in the lower-
dimensional space of building a dynamical system that then lets the overall policy easily reason
in the space of trajectories. In this paper, we employ the aforementioned DMPs as the structure for
the dynamical system and show its differentiability, although they only serve as a design choice and
can possibly be swapped for a different differentiable dynamical structure, such as RMPs [35].

We evaluate NDPs in imitation as well as reinforcement learning setups. NDPs can utilize high-
dimensional inputs via demonstrations and learn from weak supervisory signals as well as rewards.
In both setups, NDPs exhibit better or comparable performance to state-of-the-art approaches.

2 Modeling Trajectories with Dynamical Systems

Consider a robotic arm exhibiting a certain behavior to accomplish some task. Given a choice of
coordinate system, such as either joint-angles or end-effector position, let the state of the robot
be y, velocity ẏ and acceleration ÿ. In mechanics, Euler-Lagrange equations are used to derive

2Dynamical systems here should not be confused with dynamics model of the agent. We incorporate
dynamical differential equations to represent robot’s behavioral trajectory and not physical transition dynamics.

2



the equations of motion as a general second order dynamical system that perfectly captures this
behavior [39, Chapter 6]. It is common in classical robotics to represent movement behaviors with
such a dynamical system. Specifically, we follow the second order differential equation structure
imposed by Dynamic Movement Primitives [22, 28, 37]. Given a desired goal state g, the behavior is
represented as:

ÿ = α(β(g − y)− ẏ) + f(x), (1)

where α, β are global parameters that allow critical damping of the system and smooth convergence
to the goal state. f is a non-linear forcing function which captures the shape of trajectory and operates
over x which serves to replace time dependency across trajectories, giving us the ability to model
time invariant tasks, e.g., rhythmic motions. x evolves through the first-order linear system:

ẋ = −axx (2)

The specifics of f are usually design choices. We use a sum of weighted Gaussian radial basis
functions [22] shown below:

f(x, g) =

∑
ψiwi∑
ψi

x(g − y0), ψi = e(−hi(x−ci)
2) (3)

where i indexes over n which is the number of basis functions. Coefficients ci = e
−iαx
n are the

horizontal shifts of each basis function, and hi = n
ci

are the width of each of each basis function. The
weights on each of the basis functions wi parameterize the forcing function f . This set of nonlinear
differential equations induces a smooth trajectory distribution that acts as an attractor towards a
desired goal, see Figure 1(right). We now discuss how to combine this dynamical structure with deep
neural network based policies in an end-to-end differentiable manner.

3 Neural Dynamic Policies (NDPs)

We condense actions into a space of trajectories, parameterized by a dynamical system, while keeping
all the advantages of a deep learning based setup. We present a type of policy network, called Neural
Dynamic Policies (NDPs) that given an input,image or state, can produce parameters for an embedded
dynamical structure, which reasons in trajectory space but output raw actions to be executed. Let the
unstructured input to robot be s, (an image or any other sensory input), and the action executed by
the robot be a. We describe how we can incorporate a dynamical system as a differentiable layer in
the policy network, and how NDPs can be utilized to learn complex agent behaviors in both imitation
and reinforcement learning settings.

3.1 Neural Network Layer Parameterized by a Dynamical System

Throughout this paper, we employ the dynamical system described by the second order DMP
equation (1). There are two key parameters that define what behavior will be described by the
dynamical system presented in Section 2: basis function weights w = {w1, . . . , wi, . . . , wn} and
goal g. NDPs employ a neural network Φ which takes an unstructured input s3 and predicts the
parameters w, g of the dynamical system. These predicted w, g are then used to solve the second
order differential equation (1) to obtain system states {y, ẏ, ÿ}. Depending on the difference between
the choice of robot’s coordinate system for y and desired action a, we may need an inverse controller
Ω(.) to convert y to a, i.e., a = Ω(y, ẏ, ÿ). For instance, if y is in joint angle space and a is a torque,
then Ω(.) is the robot’s inverse dynamics controller, and if y and a both are in joint angle space then
Ω(.) is the identity function.

As summarized in Figure 2, neural dynamic policies are defined as π(a|s; θ) , Ω
(
DE
(
Φ(s; θ)

))
where DE(w, g) → {y, ẏ, ÿ} denotes solution of the differential equation (1). The forward pass of
π(a|s) involves solving the dynamical system and backpropagation requires it to be differentiable.
We now show how we differentiate through the dynamical system to train the parameters θ of NDPs.

3robot’s state y is not to be confused with environment observation s which contains world as well as robot
state (and often velocity). s could be given by either an image or true state of the environment.

3



3.2 Training NDPs by Differentiating through the Dynamical System

To train NDPs, estimated policy gradients must flow from a, through the parameters of the dynamical
system w and g, to the network Φ(s; θ). At any time t, given the previous state of robot yt−1 and
velocity ẏt−1 the output of the DMP in Equation (1) is given by the acceleration

ÿt = α(β(g − yt−1)− ẏt−1 + f(xt, g) (4)

Through Euler integration, we can find the next velocity and position after a small time interval dt

ẏt = ẏt−1 + ÿt−1dt, yt = yt−1 + ẏt−1dt (5)

In practice, this integration is implemented in m discrete steps. To perform a forward pass, we unroll
the integrator for m iterations starting from initial ẏ0, ÿ0. We can either apply all the m intermediate
robot states y as action on the robot using inverse controller Ω(.), or equally sub-sample them into
k ∈ {1,m} actions in between, where k is NDP rollout length. This frequency of sampling could
allow robot operation at a much higher frequency (.5-5KHz) than the environment (usually 100Hz).
The sampling frequency need not be same at training and inference as discussed further in Section 3.5.

Now we can compute gradients of the trajectory from the DMP with respect to w and g using
Equations (3)-(5) as follows:

∂f(xt, g)

∂wi
=

ψi∑
j ψj

(g − y0)xt,
∂f(xt, g)

∂g
=

ψjwj∑
j ψj

xt (6)

Using this, a recursive relationship follows between, (similarly to the one derived by Pahic et al. [26])
∂yt
∂wi

, ∂yt∂g and the preceding derivatives of wi, g with respect to yt−1, yt−2, ẏt−1 and ẏt−2. Complete
derivation of equation (6) is given in appendix.

We now discuss how NDPs can be leveraged to train policies for imitation learning and reinforcement
learning setups.

3.3 Training NDPs for Imitation (Supervised) Learning

Training NDPs in imitation learning setup is rather straightforward. Given a sequence of input
{s, s′, . . . }, NDP’s π(s; θ) outputs a sequence of actions a, a′ . . .. In our experiments, s is the high
dimensional image input. Let the demonstrated action sequence be τtarget, we just take a loss between
the predicted sequence as follows:

Limitation =
∑
s

||π(s)− τtarget(s)||2 (7)

The gradients of this loss are backpropagated as described in Section 3.2 to train the parameters θ.

3.4 Training NDPs for Reinforcement Learning

Algorithm 1 Training NDPs for RL
Require: Policy π, k NDP rollout length, Ω low-level

inverse controller
for 1, 2, ... episodes do

for t = 0, k, . . . , until end of episode do
w, g = Φ(st)
Robot yt, ẏt from st (pos, vel)
for m = 1, ...,M (integration steps) do

Estimate ẋm via (2) and update xm
Estimate ÿt+m, ẏt+m, yt+m via (4), (5)
a = Ω(yt+m, yt+m−1)
Apply action a to get s′

Store transition (s, a, s′, r)
end for
Compute Policy gradient∇θ
θ ← θ + η∇θJ

end for
end for

We now show how an NDP can be used as a
policy, π in the RL setting. As discussed in Sec-
tion 3.2, NDP samples k actions for the agent
to execute in the environment given input obser-
vation s. One could use any underlying RL al-
gorithm to optimize the expected future returns.
In this paper, we use Proximal Policy Optimiza-
tion (PPO) [38] and treat a independently when
computing the policy gradient for each step of
the NDP rollout and backprop via a reinforce
objective.

There are two choices for value function critic
V π(s): either predict a single common value
function for all the actions in the k-step rollout
or predict different critic values for each step in
the NDP rollout sequence. We found that the

4



(a) Throwing (b) Picking (c) Pushing (d) Faucet Open (e) Soccer (f) 50 Tasks
Figure 3: Environment snapshot for different tasks considered in experiments. (a,b) Throwing and picking tasks
are adapted from [17] on the Kinova Jaco arm. (c-f) Remaining tasks are adapted from [46]

Input Ours CNN DMP[26] Input Ours CNN DMP[26]
Figure 4: Imitation (supervised) learning results on held-out test images of digit writing task. Given an input
image (left), the output action is the end-effector position of a planar robot. All methods have the same neural
network architecture for fair comparison. We find that the trajectories predicted by NDPs (ours) are dynamically
smooth as well as more accurate than both baselines.

latter works better in practice. We call this multi-
action critic architecture and predict k different
estimates of value using k-heads on top of critic
network. Later, in the experiments we perform ablations over the choice of k. To further create a
strong baseline comparison, as we discuss in Section 4, we also design and compare against a variant
of PPO that predicts multiple actions using our multi-action critic architecture.

Algorithm 1 provides a summary of our method for training NDPs with policy gradients. We only
show results of using NDPs with on-policy RL (PPO), however, NDPs can also be adapted similarly
to off-policy methods.

3.5 Inference in NDPs

In the case of inference, our method uses the NDP policy π once every k environment steps,
hence requires k-times fewer forward passes as actions applied to the robot. While reducing the
inference time in simulated tasks may not show much difference, in real world settings, where
large perception systems are usually involved, reducing inference time can help decrease overall
time costs. Additionally, deployed real world systems may not have the same computational power
as many systems used to train state-of-the-art RL methods on simulators, so inference costs end
up accumulating, thus a method that does inference efficiently can be beneficial. Furthermore, as
discussed in Section 3.2, the rollout length of NDP can be more densely sampled at test-time than at
training allowing the robot to produce smooth and dynamically stable motions. Compared to about
100Hz frequency of the simulation, our method can make decisions an order of magnitude faster (at
about 0.5-5KHz) at inference.

4 Experimental Setup

Environments To test our method on dynamic environments, we took existing torque control based
environments for Picking and Throwing [17] and modified them to enable joint angle control. The
robot is a 6-DoF Kinova Jaco Arm. In Throwing, the robot tosses a cube into a bin, and in Picking,
the robot picks up a cube and lifts it as high as possible. To test on quasi-static tasks, we use Pushing,
Soccer, Faucet-Opening from the Meta-World [46] task suite, as well as a setup that requires learning
all 50 tasks (MT50) jointly (see Figure 3). These Meta-World environments are all in end-effector
position control settings and based on a Sawyer Robot simulation in Mujoco [43]. In order to make
the tasks more realistic, all environments have some degree of randomization. Picking and Throwing
have random starting positions, while the rest have randomized goals.

Baselines We use PPO [38] (PPO) as the underlying optimization algorithm for NDPs and all the
other baselines compared in the reinforcement learning setup. The first baseline is the PPO algorithm
itself without the embedded dynamical structure. Further, as mentioned in the Section 3.2, NDP

5



is able to operate the robot at a much higher frequency than the world. Precisely, it’s frequency
is k-times higher where k is the NDP rollout length (described in Section 3.2). Even though the
robot moves at a higher frequency, the environment/world state is only observed at normal rate,
i.e., once every k robot steps and the reward computation at the intermediate k steps only use stale
environment/world state from the first one of the k-steps. Hence, to create a stronger baseline that can
also operate at higher frequency, we create a “PPO-multi” baseline that predicts multiple actions and
also uses our multi-action critic architecture as described in Section 3.4. All methods are compared
in terms of performance measured against the environment sample states observed by the agent. In
addition, we also compare to Variable Impedance Control in End-Effector Space (VICES) [24] and
Dynamics-Aware Embeddings (Dyn-E) [45] . VICES learns to output parameters of a PD controller
or an Impedance controller directly. Dyn-E, on the other hand, using forward prediction based on
environment dynamics, learns a lower dimensional action embedding.

5 Evaluation Results: NDPs for Imitation and Reinforcement Learning

We validate our approach on Imitation Learning and RL tasks in order to ascertain how our NDP
compares to state-of-the-art methods. We investigate: a) Does dynamical structure in NDPs help
in learning from demonstrations in imitation learning setups?; b) How well do NDPs perform on
dynamic and quasi-static tasks in deep reinforcement learning setups compared to the baselines?; c)
How sensitive is the performance of NDPs to different hyper-parameter settings?

5.1 Imitation (Supervised) Learning

Method NN NDP (ours)
Throw 0.528 ± 0.262 0.642 ± 0.246
Pick 0.672 ± 0.074 0.408 ± 0.058
Push 0.002 ± 0.004 0.208 ± 0.049
Soccer 0.885 ± 0.016 0.890 ± 0.010
Faucet 0.532 ± 0.231 0.790 ± 0.059

Table 1: Imitation (supervised) learning results
(success rates between 0 and 1) on Mujoco [43]
environments. We see that NDP outperforms
the neural network baseline in many tasks.

To evaluate NDPs in imitation learning settings we train
an agent to perform various control tasks. We evalu-
ate NDPs on the Mujoco [43] environments discussed
in Section 4 (Throwing, Picking, Pushing, Soccer and
Faucet-Opening). Experts are trained using PPO [38]
and are subsequently used to collect trajectories. We
train an NDP via the behaviour cloning procedure de-
scribed in Section 3.3, on the collected expert data. We
compare against a neural network policy (using roughly
the same model capacity for both). Success rates in Ta-
ble 1 indicate that NDPs show superior performance on
a wide variety of control tasks.

In order to evaluate the ability of NDPs to handle complex visual data, we perform the task of learning
to write digits using a 2D end-effector. The goal is to train a planar robot to trace the digit given its
image as input. The output action is the robot’s end-effector position, and supervision is obtained by
treating ground truth trajectories as demonstrations. We compare NDPs to a regular behavior cloning
policy parametrized by a CNN and the prior approach which maps image to DMP parameters [26]
(dubbed, CNN-DMP). CNN-DMP [26] trains a single DMP for the whole trajectory and requires
supervised demonstrations, which is in contrast to NDPs can generate multiple DMPs across time
and can be used in RL setup as well. However, for a fair comparison, we compare both methods
apples-to-apples with single DMP for whole trajectory, i.e., k = 300.

Method Train Test (held-out)

CNN 10.42 ± 5.26 10.59 ± 4.63
CNN-DMP [26] 9.44 ± 4.59 8.46 ± 8.45

NDP (ours) 0.70 ± 0.36 0.74 ± 0.34

Table 2: Imitation learning on digit writing task.
We report the mean loss across 10 digit classes. The
input is the image of the digit to be written and
action output is the end-effector position of robot.
Our method significantly outperforms the baseline.

Qualitative examples are in Figure 4 and quantita-
tive results in Table 2 report the mean loss between
output trajectory and ground truth. NDP outper-
forms both CNN and CNN-DMP [26] drastically.
Our method also produces much higher quality and
smoother reconstructions as shown in Figure 4. Re-
sults show that our method can efficiently capture
dynamic motions in a supervised setting, while learn-
ing from visual data.

6



0.0 0.5 1.0 1.5 2.0
Environment Samples 1e5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Su
cc

es
s R

ate

ppo
dynE
vices
ppo-multi
ours

(a) Throwing

0 1 2 3 4 5
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s R

ate

(b) Picking

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Su
cc

es
s R

ate

(c) Pushing

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Environment Samples 1e5

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

(d) Faucet Open

0 1 2 3 4 5
Environment Samples 1e5

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

(e) Soccer

0.0 0.2 0.4 0.6 0.8
Environment Samples 1e6

0.00
0.02
0.04
0.06
0.08
0.10
0.12

Su
cc

es
s R

ate

(f) Joint 50 MetaWorld Tasks

Figure 5: Evaluation of reinforcement learning setup for continuous control tasks. Y axis is success rate and X
axis is number of environment samples. We compare to PPO [38], a multi-action version of PPO, VICES [24]
and DYN-E [45]. The dynamic rollout for NDP & PPO-multi is k = 5.

5.2 Reinforcement Learning

In contrast to imitation learning where the rollout length of NDP is high (k = 300), we set k = 5 in
RL because the reward becomes too sparse if k is very large. We compare the success rate of our
method with that of the baseline methods PPO, a version of PPO which outputs multiple actions
(k = 5), VICES and DYN-E.

As shown in In Figure 5, our method NDP sees gains in both efficiency and performance in most
tasks. In Soccer, PPO reaches a higher final performance, but our method shows twice the efficiency
at small loss in performance. The final task of training jointly across 50 Meta-World tasks is too hard
for all methods. Nevertheless, our NDP attains slightly higher absolute performance than baseline
but doesn’t show efficiency gains over baselines.

PPO-multi, a multi-action algorithm based on our proposed multi-action critic setup tends to perform
well in some case (Faucet Opening, Pushing etc) but is inconsistent in its performance across all
tasks and fails completely at times, (Picking etc.). Our method also outperforms prior state-of-the-art
methods that re-paremeterize action spaces, namely, VICES [24] and Dyn-E [45]. VICES is only
slightly successful in tasks like throwing, since a PD controller can efficiently solve the task, but suffer
in more complex settings due to a large action space dimensionality (as it predicts multiple quantities
per degree of freedom). Dyn-E, on the other hand, performs well on tasks such as Pushing, or Soccer,
which have simpler dynamics and contacts, but fails to scale to more complex environments.

Through these experiments, we show the diversity and versatility of NDP, as it has a strong perfor-
mance across different types of control tasks. NDP outperforms baselines in both dynamic (throwing)
and static tasks (pushing) while being able to learn in a more data efficient manner. It is able to reason
in a space of physically meaningful trajectories, but it does not lose the advantages and flexibility of
other policy setups have.

5.2.1 Ablations for NDPs in Reinforcement Learning Setup

We aim to understand how design choices affect the RL performance of NDP. We run comparisons on
the pushing task, varying the number of basis functions N (in the set {2, 6, 10, 15, 20}), DMP rollout
lengths (in set {3, 5, 7, 10, 15}), number of integration steps (in set {15, 25, 35, 45}), as well as
different basis functions: Gaussian RBF (standard), ψ defined in Equation (3), a liner map ψ(x) = x,
a multiquadric map: ψ(x) =

√
1 + (εx)2, a inverse quadric map ψ(x) = 1

1+(εx)2 , and an inverse
multiquadric map: ψ(x) = 1√

1+(εx)2
.

7



0.0 0.5 1.0 1.5 2.0 2.5 3.0
EQvLrRQmeQt 6amSles 1e5

−0.2

0.0

0.2

0.4

0.6

6u
cc

es
s 5

at
e

0ultLquaGrLc
LLQear
GaussLaQ
IQv. 4uaGrLc
IQv. 0ultLquaGrLc

(a) RBF Kernels

0.0 0.5 1.0 1.5 2.0 2.5 3.0
EnvirRnment 6amSles 1e5

0.0

0.2

0.4

0.6

6u
cc
es
s 5
at
e

1 2
1 6
1 10
1 15
1 20

(b) # of basis functions

0.0 0.5 1.0 1.5 2.0 2.5 3.0
EnvirRnment 6amSles 1e5

−0.2

0.0

0.2

0.4

0.6

6u
cc
es
s 5
at
e

Int-steSs 15
Int-steSs 25
Int-steSs 35
Int-steSs 45

(c) Integration steps

0.0 0.5 1.0 1.5 2.0 2.5 3.0
EnvirRnment 6amSles 1e5

−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

6u
cc
es
s 5
at
e

7 3
7 5
7 7
7 10
7 15

(d) Rollout length
Figure 6: Ablation of NDPs with respect to different hyperparameters in the RL setup (pushing). We ablate
different choices of radial basis functions in (a). We ablate across number of basis functions, integration steps,
and length of the NDP rollout in (b,c,d). Plots indicate that NDPs are fairly stable across a wide range of choices.

Additionally, we investigate the effect of different NDP components on its performance. To this
end, we ablate a setting where only g (the goal) is learnt while the radial basis function weights (the
forcing function) are 0 (we call this setting ‘only-g’). We also ablate a version of NDP that learns the
global constant α (from Equation 4), in addition to the other parameters (g and w).

Figure 6 shows results from ablating different NDP parameters. Varying N (number of basis
functions) controls the shape of the trajectory taken by the agent. A small N may not have the
power to represent the nuances of the motion required, while, a big N may make the parameter space
too large to learn efficiently. We see that number of integration steps do not have a large effect on
performance, similarly to the type of radial basis function. Most radial basis functions generally have
similar interpolation and representation abilities. We see that k = 3 (the length of each individual
rollout within NDP) has a much lower performance due to the fact that 3 steps cannot capture the
smoothness or intricacies of a trajectory. Overall, we mostly find that NDP is robust to design choices.
Figure 7 shows that the current formulation of NDP outperforms the one where α is learnt. We
also observe that setting the forcing term to 0 (only learning the goal, g) is significantly less sample
efficient than NDPs while converging to a slightly lower asymptotic performance.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

ate

throw

only-g
learn-a_z
ours

(a) Throwing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

ate

push

only-g
learn-a_z
ours

(b) Push

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

ate

soccer

only-g
learn-a_z
ours

(c) Soccer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

−0.2

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

faucet

only-g
learn-a_z
ours

(d) Faucet Open

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

ate

pick
only-g
learn-a_z
ours

(e) Picking

Figure 7: Ablations for different NDP design choices. The first entails NDP also learning the parameter α
(shown as az). In the second one, g is learnt but not wi, i.e. the forcing function is 0 (‘only-g’). Results indicate
that NDP outperforms both these settings.

6 Related Work

Dynamic Movement Primitives Previous works have proposed and used Dynamic Movement
Primitives (DMP) [22, 32, 37] for robot control. Work has been done in representing dynamical
systems, both as extensions of DMPs [6, 7, 11, 44], and beyond DMPs by learning kernels [19] and
designing Riemannian metrics [35]. Learning methods have been used to incorporate environment
sensory information into the forcing function of DMPs [33, 41]. DMPs have also been prime
candidates to represent primitives when learning hierarchical policies, given the range of motions
DMPs can be used for in robotics [13, 23, 29, 40]. Parametrization of DMPs using gaussian processes

8



has also been proposed to facilitate generalization [31, 44]. Recently, deep learning have also been
used to map images to DMPs [26] and to learn DMPs in latent feature space [8]. However most
of these works require pre-trained DMPs via expert demonstrations or are only evaluated in the
supervised setting. Furthermore, either a single DMP is used to represent the whole task trajectory or
the demonstration is manually segmented to learn a different DMP for each segment. In contrast, our
proposed NDPs outputs a new dynamical system for each timestep to fit diverse trajectory behaviours
across time. Since we embed dynamical structure into the deep network, NDP can flexibly be
incorporated not just in visual imitation but also deep reinforcement learning setup, in an end-to-end
manner.

Reparameterized Policy and Action Spaces A broader area of work that makes use of action
reparameterization is the study of Hierarchical Reinforcement Learning (HRL). Works in the options
framework [4, 42] attempt to learn an overarching policy that controls usage of lower-level policies or
primitives. Lower-level policies are usually pre-trained therefore require supervision and knowledge
of the task beforehand, limiting the generalizability of such methods. For example, Daniel et al.
[13], Parisi et al. [27] incorporate DMPs into option-based RL policies, and using a pre-trained DMPs
as options. This setup requires re-learning DMPs for different tasks and does not allow the policy
the ability to generalize, the policy needs to have access to an extremely large number of DMPs.
Action space can also be reparameterized in terms of pre-determined PD controller [47] or learned
impedance controller parameters [24]. While this helps for policies to adapt to contact rich behaviors,
it does not change the trajectories taken by the robot. In addition, Whitney et al. [45] learn an action
embedding based on passive data, however, it does not take environment dynamics or explicit control
structure into account.

Structure in Policy Learning Various methods in the field of control and robotics have employed
physical knowledge, dynamical systems, optimization, and more general task/environment dynamics
to create more structured learning. Works such as [12, 18] are networks constrained through physical
properties such as Hamiltonian co-ordinates or Lagrangian Dynamics. However, the scope of these
works is limited to toy examples such as a point mass, and are often used for supervised learning.
Similarly, other works [25, 30, 34, 36] all employ dynamical systems to model demonstrations, and
do not tackle generalization or learning beyond imitation. Fully differentiable optimization problems
have also been incorporated as layers inside a deep learning setup [1, 2, 9]. They share the underlying
idea of embedding structure in deep networks such that some parameters in the structure can be
learned end-to-end, although they haven’t been explored in tackling complex robotic control tasks.
Further, it is common in RL setups to incorporate planning based on a system model [3, 10, 14–16].
However, this is usually learned from experience and attempts to predict the effects of actions on the
environment, and often tend to fail for complex dynamic tasks.

7 Discussion

Our method attempts to bridge the gap between classical robotics, control and recent approaches
in deep learning and deep RL. We propose a novel re-parameterization of action spaces via Neural
Dynamic Policies, a set of policies which impose the structure of a dynamical system on action spaces.
We show how this set of policies can be useful for continuous control with RL, and in supervised
learning settings. Our method obtains superior results due to its natural imposition of structure and
yet it is still generalizable to almost any continuous control environment.

The use of DMPs in this work was a particular design choice within our architecture which allows
for any form of dynamical structure that is differentiable. As alluded to in the introduction, other
similar representations can be employed in their place. In fact, DMPs are a special case of a general
second order dynamical system [5, 35] where the inertia term is identity, and potential and damping
functions are defined in a particular manner via first order differential equations with a separate
forcing function which captures the complexities of the desired behavior. Given this, one can setup
a dynamical structure such that it explicitly models and learns the metric, potential, and damping
explicitly. While this brings advantages in better representation it also brings challenges in learning.
We leave these directions for future work to explore.

9



Acknowledgments

We thank Giovanni Sutanto, Stas Tiomkin and Adithya Murali for fruitful discussions. We also thank
Franziska Meier, Akshara Rai, David Held, Mengtian Li, George Cazenavette, and Wen-Hsuan Chu
for comments on early drafts of this paper. This work was supported in part by DARPA Machine
Common Sense grant and Google Faculty Award to DP.

Broader Impact

We attempt to create algorithms that empower robotic agents to do complex and long-horizon tasks.
However, before our algorithms are deployed in the real world, we must consider how safely our
work can interact with humans and their surroundings. We believe that the structured imposed by
our method ensures not ensures not only smoother and thus lower risk exploration, but also a larger
degree of interpretability of the algorithm. A higher degree of interpretability it is easier reason about
how our algorithms will interact with humans, and thus we can operate robots in the wild, in a safer
manner.

There are many possible applications of robotics including assembly and manufacturing, medicine,
search and rescue, autonomous vehicles and transportation, and slowly moving towards personal
robotics. A method that provides safe and efficient real world robotic can have a positive impact
by advancing by increasing the quality of assembly lines, minimizing failure in factories, creating
more robust search and rescue robots, increasing the flexibility of personal robotics, especially in the
case of assistive robots. More efficient automation also has economic benefits and has the potential
to save energy resources (using less power to do the same tasks). On the other hand, we must
consider negative consequences increased automation, from the the misuse of such technology to the
vulnerability of it to external software attacks, to an increase in unemployment.

References

[1] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
ICML, 2017. 9

[2] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and J. Z. Kolter. Differentiable mpc for
end-to-end planning and control. In NeurIPS, 2018. 9

[3] C. G. Atkeson and J. C. Santamaria. A comparison of direct and model-based reinforcement
learning. In ICRA, 1997. 9

[4] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In AAAI, 2017. 9

[5] F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems. Springer, 2005. 9

[6] S. Calinon. A tutorial on task-parameterized movement learning and retrieval. Intelligent
Service Robotics, 2016. 8

[7] S. Calinon, I. Sardellitti, and D. G. Caldwell. Learning-based control strategy for safe human-
robot interaction exploiting task and robot redundancies. IROS, 2010. 8

[8] N. Chen, M. Karl, and P. Van Der Smagt. Dynamic movement primitives in latent space of
time-dependent variational autoencoders. In International Conference on Humanoid Robots
(Humanoids), 2016. 9

[9] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In NeurIPS, 2018. 9

[10] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114, 2018. 9

[11] A. Conkey and T. Hermans. Active learning of probabilistic movement primitives. 2019
IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), 2019. 8

10



[12] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neural
networks. arXiv preprint arXiv:2003.04630, 2020. 9

[13] C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Hierarchical relative entropy policy search.
Journal of Machine Learning Research, 2016. 8, 9

[14] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to
policy search. In ICML, 2011. 9

[15] M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics. Found.
Trends Robot, 2013.

[16] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning
in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.
9

[17] D. Ghosh, A. Singh, A. Rajeswaran, V. Kumar, and S. Levine. Divide-and-conquer reinforce-
ment learning. arXiv preprint arXiv:1711.09874, 2017. 5

[18] S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks. In NeurIPS, 2019. 9

[19] Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell. Kernelized movement primitives. The
International Journal of Robotics Research, 2019. 8

[20] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In ICRA. IEEE, 2002. 2

[21] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor
primitives. In NeurIPS, 2003.

[22] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement
primitives: Learning attractor models for motor behaviors. Neural Computation, 2013. 2, 3, 8

[23] J. Kober and J. Peters. Learning motor primitives for robotics. In ICRA, 2009. 8

[24] R. Martin-Martin, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance
control in end-effector space: An action space for reinforcement learning in contact-rich tasks.
IROS, 2019. 6, 7, 9

[25] K. Neumann and J. Steil. Learning robot motions with stable dynamical systems under diffeo-
morphic transformations. Robotics and Autonomous Systems, 2015. 9

[26] R. Pahic, A. Gams, A. Ude, and J. Morimoto. Deep encoder-decoder networks for mapping raw
images to dynamic movement primitives. ICRA, 2018. 4, 5, 6, 9

[27] S. Parisi, H. Abdulsamad, A. Paraschos, C. Daniel, and J. Peters. Reinforcement learning vs
human programming in tetherball robot games. In IROS, 2015. 9

[28] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor skills
by learning from demonstration. In ICRA, 2009. 3

[29] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. Skill learning and task
outcome prediction for manipulation. In ICRA, 2011. 8

[30] N. Perrin and P. Schlehuber-Caissier. Fast diffeomorphic matching to learn globally asymptoti-
cally stable nonlinear dynamical systems. Systems & Control Letters, 2016. 9

[31] A. Pervez and D. Lee. Learning task-parameterized dynamic movement primitives using mixture
of gmms. Intelligent Service Robotics, 2018. 9

[32] M. Prada, A. Remazeilles, A. Koene, and S. Endo. Dynamic movement primitives for human-
robot interaction: Comparison with human behavioral observation. In International Conference
on Intelligent Robots and Systems, 2013. 8

[33] A. Rai, G. Sutanto, S. Schaal, and F. Meier. Learning feedback terms for reactive planning and
control. In ICRA, 2017. 8

11



[34] M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, and N. Ratliff. Euclideanizing flows: Diffeo-
morphic reduction for learning stable dynamical systems. arXiv preprint arXiv:2005.13143,
2020. 9

[35] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox. Riemannian motion policies. arXiv
preprint arXiv:1801.02854, 2018. 2, 8, 9

[36] H. Ravichandar, I. Salehi, and A. Dani. Learning partially contracting dynamical systems from
demonstrations. In CoRL, 2017. 9

[37] S. Schaal. Dynamic movement primitives-a framework for motor control in humans and
humanoid robotics. In Adaptive motion of animals and machines. Springer, 2006. 2, 3, 8

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017. 4, 5, 6, 7

[39] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control. John Wiley &
Sons, 2020. 3

[40] F. Stulp, E. A. Theodorou, and S. Schaal. Reinforcement learning with sequences of motion
primitives for robust manipulation. Transactions on Robotics, 2012. 8

[41] G. Sutanto, Z. Su, S. Schaal, and F. Meier. Learning sensor feedback models from demonstra-
tions via phase-modulated neural networks. In ICRA, 2018. 8

[42] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 1999. 9

[43] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In The
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012. 5, 6

[44] A. Ude, A. Gams, T. Asfour, and J. Morimoto. Task-specific generalization of discrete and
periodic dynamic movement primitives. Transactions on Robotics, 2010. 8, 9

[45] W. Whitney, R. Agarwal, K. Cho, and A. Gupta. Dynamics-aware embeddings. arXiv preprint
arXiv:1908.09357, 2019. 6, 7, 9

[46] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. arXiv preprint
arXiv:1910.10897, 2019. 5

[47] Y. Yuan and K. Kitani. Ego-pose estimation and forecasting as real-time pd control. In ICCV,
2019. 9

12


