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Abstract

On-device speech recognition requires training models of dif-

ferent sizes for deploying on devices with various computa-

tional budgets. When building such different models, we can

benefit from training them jointly to take advantage of the

knowledge shared between them. Joint training is also efficient

since it reduces the redundancy in the training procedure’s data

handling operations. We propose a method for collaboratively

training acoustic encoders of different sizes for speech recogni-

tion. We use a sequence transducer setup where different acous-

tic encoders share a common predictor and joiner modules. The

acoustic encoders are also trained using co-distillation through

an auxiliary task for frame level chenone prediction, along with

the transducer loss. We perform experiments using the Lib-

riSpeech corpus and demonstrate that the collaboratively trained

acoustic encoders can provide up to a 11% relative improvement

in the word error rate on both the test partitions.

Index Terms: speech recognition, knowledge distillation, co-

distillation, collaborative training, transformer

1. Introduction

Speech interfaces are accessible today on many edge devices

(e.g., mobile phone and smart speaker), which possess very dif-

ferent computational capabilities. Hence, it has become nec-

essary to build speech recognition models of different sizes

to accommodate the wide variety of computational resources.

Many automatic speech recognition models [1, 2, 3] usually are

proposed in a few different size configurations, which fall into

the relative categories of small, medium, and large. Typically,

the models of different sizes are trained independently of each

other. This leads to inefficiency in the training steps due to re-

peated data loading and manipulation. The separately trained

models might also be sub-optimal in performance since there is

no knowledge shared between them.

One of the popular approaches for sharing knowledge be-

tween the models is Knowledge Distillation [4] (KD). The tradi-

tional KD technique is a two-step procedure that trains a teacher

model in the first step and uses the teacher’s supervision to train

a student model in the second step. While this procedure can

help in improving the model’s performance, it increases the

total time for building a model due to the serialized training

procedure. The serialization overhead can be avoided using a

single-step version of knowledge distillation referred to as co-

distillation [5, 6]. Co-distillation trains models jointly and has

improved the performance and training efficiency of image clas-

sifiers [7]. We propose a method that applies co-distillation to

train a group of speech recognition models of different sizes.

A widely used on-device automatic speech recognition

(ASR) model is the sequence transducer network [8]. A se-
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quence transducer model consists of an acoustic encoder, a pre-

dictor, and a joiner network. The commonly used acoustic en-

coders are multi-layered RNN/LSTM [9, 10] and Transformers

[1, 2, 3, 11]. In this work, we use the low latency streaming

Transformer [12] based encoder proposed in the Emformer [2]

architecture.

In the sequence transducer network, the acoustic encoder

is the major contributor to the model’s size and the computa-

tion cost. The acoustic encoder has a deeper structure than the

predictor and the joiner. Hence, we design an on-device ASR

model to have a configurable acoustic encoder with a shared

predictor and a joiner network. A group of acoustic encoders

are trained jointly in a single sequence transducer model. Dur-

ing deployment, an appropriate size encoder can be selected de-

pending on the computational constraints.

We construct a group of acoustic encoders of different sizes

by using different number of layers. The encoders share a set of

low-level layers and branch off into additional layers according

to the size requirements. An auxiliary task projects the last layer

outputs from each branch to logits used for frame-level chenone

[13] prediction. Such an auxiliary task was shown to be helpful

by Liu et al. [14] for improving acoustic encoders in sequence

transducer model. Along with the benefit of training for the

auxiliary task in each branch, we apply a KL divergence loss on

the output probabilities, which helps in knowledge distillation

between the encoders.

Our proposed collaborative training method is a novel

framework for single-step training of acoustic encoders of dif-

ferent sizes in a speech recognition model. We demonstrate

on the LibriSpeech dataset [15] that the collaboratively trained

models can provide a 3-11% relative improvement in the word

error rate when compared to the models trained separately. The

joint training also helps in sharing the computational resources

since we can perform operations, e.g., data loading and manip-

ulation, just once for all the models.

2. Related work

Knowledge distillation (KD) techniques have been used in the

context of speech recognition for model compression [16, 17,

18], domain adaptation [19, 20, 21, 22, 23] and transferring

knowledge from full-context to streaming scenarios [24, 25].

These methods have applied KD both at the sequence level

[17, 18], and the frame-level [16, 23]. The early works on se-

quence level KD [26, 24] used a two-step procedure. However,

a recently proposed method by Panchapagesan et al. [18] allows

for single-step co-distillation in RNNT models. Yu et al. [25]

used this loss function for training encoder modules capable of

working in both streaming and full-context speech recognition

scenarios. Wu et al. [27] applied the sequence level KD to

train models of different sparsity levels. Their method results in

unstructured sparsity that needs specialized implementation to



fully exploit the computational benefit of sparsity. Our method

varies the number of layers in the encoders to be able to reuse

existing implementations for easy deployment. The methods

[16, 23] which perform frame-level KD, are usually for acous-

tic encoders used in a hybrid system. These methods are also a

two-step procedure that requires a trained teacher model. Our

proposed method is a single-step procedure with frame-level co-

distillation and uses a shared predictor and joiner modules for

implicitly sharing the sequence level knowledge between the

acoustic encoders.

Co-distillation based collaborative learning methods [7, 28,

29] have been used for image classification. Lan et al. [7] pro-

posed the idea of using a multi-branch network with shared low-

level layers and training the branches using co-distillation. We

apply a similar concept and combine it with the auxiliary task

idea of Liu et al. [14] for frame-level co-distillation.

Configurable neural networks are a class of models that are

trained once and deployed in different configurations. There are

two categories of such methods. In the first category [30, 31], an

appropriate network setting is used for inference based on a pre-

determined computational budget. In the second category, the

methods train networks to dynamically adjust their resources

during inference. The second category can be further divided

based on whether the methods allow an external agent to con-

trol the resources during inference. Some methods [32, 33, 27]

can adjust the forward pass pathway in the network to reduce the

computation based on the input. Another set of methods called

anytime inference [34, 35] allow an external agent to stop the

computation at any point and get the best possible prediction.

Our method falls into the first category, where an appropriate

acoustic encoder is selected based on a specific device’s con-

straint.

3. Collaborative Training of Encoders

3.1. Low Latency Emformer Transducer

We focus on building models for low latency streaming on-

device speech recognition using the Emformer [2] transducer.

Emformer is an efficient extension of the Augmented Mem-

ory Transformer (AM-TRF) [1]. They both perform streaming

Transformer [12] based speech recognition by splitting an ut-

terance into multiple segments, and decoding a segment along

with the context of surrounding segments. The model size and

the computation cost of an Emformer encoder are determined

by the input dimension, size of the feed-forward network, and

the number of layers. We demonstrate a training methodology

for a group of Emformer encoders of different depths.

3.2. Collaborative Training

As shown in Figure 1, we design a group of Emformer en-

coders with a shared set of layers F that then splits into multiple

branches {B0, B1, . . . , Bn−1} depending on the desired num-

ber of encoders based on the size. The number of layers in the

shared network is denoted by LF , and the number of layers in

a branch Bi is denoted by LBi
. For deployment and decoding,

we extract a copy of the shared layers and only one branch of

the encoder based on the specific device requirement. Hence,

the effective number of layers during the decoding is LF +LBi

for a model created from branch Bi.

Figure 1 shows that the predictor and the joiner network are

shared with all the encoder branches. Given the input acoustic

feature sequence x = {x1, . . . , xT } with sequence length T

and target token sequence y = {y1, . . . , yU} with length U
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Figure 1: Block diagram of the training setup for the collabo-

rative acoustic encoders. The nodes in yellow are the shared

layers between the branches. B0, B1 and B2 are three different

encoders with different sizes.

where yu ∈ Y , we can get the embedding representation hx
i for

each encoder Bi and hy for the predictor as follows:

h
x
i = q(fi(x)) (1)

h
y = g({∅,y}). (2)

where ∅ is a blank token. fi and g are the projections from

the acoustic encoder Bi and the predictor, respectively. q is the

shared projection layer for each acoustic encoder. By combin-

ing each encoder’s hidden representation with the predictor’s

output, the joiner generates the logits for each encoder Bi.

li = z(hx
i ,h

y). (3)

where each element l(t,u),i in li is the logit given the acoustic

sequence {x1, ..., xt} and label sequence {∅, y1, ..., yu}. We

can get the transducer loss [8] for each acoustic encoder Bi

by passing the logits through a softmax function and applying

the forward and backward algorithm. We use the sum of all

the encoders’ transducer loss as the final transducer loss for the

sequence transducer model with multiple acoustic encoders.

LTrans = −

n−1∑

i=0

logPi(y|x) (4)

The term Pi(y|x) is the summation of all the alignment prob-

abilities Pi(a|x) where a is an alignment with elements at ∈
{Y ∪ ∅}. The removal of blank tokens from a gives the tar-

get sequence y. In the work of Liu et al. [14], the outputs

from the intermediate layers of an acoustic encoder are also



connected to the transducer loss through a joiner. However,

its purpose is to stabilize the deep encoder training where the

gradients are passed back to the encoder without updating the

weights of the joiner using the intermediate transducer losses.

In contrast to their work, we update the joiner weights using

the transducer losses obtained from the embeddings of all the

encoder branches.

The proposed collaborative training method also includes

a shared auxiliary network that projects the last layer outputs

from each of the branches to logits for predicting the frame-

level chenone [13] targets. The auxiliary network consists of

a hidden layer with RELU activation followed by an output

layer. The same auxiliary network (MLPaux) is used for all

the branches. The output from the auxiliary network is passed

through a softmax operator that produces a probability distri-

bution Pi(s|x) over the chenone targets given the embedding

representation from an encoder branch Bi. It is defined as

Pi(s|x) = softmax(MLPaux(fi(x)) (5)

where s is the frame level sequence of chenone targets.

We apply the cross-entropy loss for chenone prediction

from each branch and also a KL divergence loss between pairs

of branches. Since the number of pairs can blow up combina-

torially, we identify the largest encoder branch and create pairs

with each of the remaining branches. The largest branch plays

a role as a teacher in knowledge distillation. The loss for the

outputs from the encoder branches can be written as

LCE = −

n−1∑

i=0

logPi(s|x) (6)

LKL = −
∑

i 6=K

PK(s|x) log
Pi(s|x)

PK(s|x)
(7)

LEnc = LCE + LKL (8)

where K is the index for branch BK with the largest size. LCE

in Eqn 6 is the cross entropy loss with the groundtruth and LKL

in Eqn 7 is the KL divergence loss with the soft targets from the

largest branch. The entire model with all the branches is trained

jointly in an end-to-end manner and the overall loss function is

given by

L =
∑

D

(LTrans + λLEnc) (9)

where λ is a hyperparameter to control for the weight given to

the encoder loss and D represents the training dataset.

4. Experiments

4.1. Datasets and Setup

We perform experiments using the LibriSpeech corpus [15].

The LibriSpeech corpus contains around 960 hours of training

data and around 5 hrs each of “dev-clean”, “dev-other”, “test-

clean”, “test-other” datasets.

The input acoustic features are 80-dimensional log Mel fil-

ter bank energies. The width of an audio frame is 25ms with a

stride of 10ms. We augment the data using speed perturbation

[36] and SpecAugment [37] without the time warping modifier.

The 80 dimensional features for each audio frame are projected

to a 128 dimensional vector and the frames are concatenated at

a stride of 4 to form a 512 dimensional vector. The input di-

mension of each Emformer layer is 512, the number of heads

in the self-attention layer is 8 and the size of the feed-forward

Table 1: Number of parameters in the Speech Recognition

model based on the number of layers in the acoustic encoder.

Num Layers 20 18 14 10 7

Num Params (M) 76.7 70.4 57.8 45.2 35.7

network is 2048. A final projection layer outputs a 1024 dimen-

sional vector to pass to the joiner. We use a dropout of 0.1 in the

self-attention and the feed-forward layers. Since we perform

experiments for low latency conditions, the center chunk size

and look-ahead context size in Emformer are set to 160ms and

40ms, respectively. The algorithmic latency [2] of the acoustic

encoders is 120 ms.

The predictor is a three layer LSTM with an input and hid-

den dimension of 512 and the output is projected to 1024 di-

mensions before passing it to the joiner. The joiner adds the

acoustic and label embeddings and projects it to the target space

of word pieces obtained using SentencePiece [38]. For experi-

ments which use the auxiliary task, the frame level chenone [13]

targets are generated by forced alignment using a hybrid HMM-

GMM system. This hybrid model was bootstrapped using the

standard Kaldi [39] LibriSpeech recipe.

We use the Alignment Restricted RNNT [40] loss for train-

ing the models. All the models are trained for 120 epochs using

a learning rate of 1e-3 with the ADAM optimizer. The learning

rate is increased linearly from 2e-7 to 1e-3 over 10K warmup

updates for all the experiments. We use the last checkpoint for

performing decoding.

We experiment with acoustic encoders of different number

of layers. The total number of parameters including the predic-

tor and the joiner can be found in Table 1.

4.2. Results

We compare the performance of the collaboratively trained

models with the models trained separately. We use a weight of

0.6 for the auxiliary cross-entropy loss when training the mod-

els individually based on the observation from the work [14].

When training the models collaboratively, we use a weight of

0.1 for the auxiliary cross-entropy loss and the distillation loss.

Table 2 shows the word error rate results based on collaborative

training method using 3 different encoders with the different

weight values (λ in Eqn. 9) used during the collaborative train-

ing. We observe no single value that performs consistently well

across all the model sizes and the dataset partitions. A value of

0.05 gives better results on the test-other partition, and a value

of 0.2 gives better results on the test-clean partition for the 20

and 14 layers models. Finally, we use the value of 0.1 since it

performs better on average across the model sizes.

Table 2: Word error rate (WER) results from using different

weight value for the encoder loss during collaborative training.

The two numbers in each cell are the WER results on test-clean

and test-other datasets, respectively.

Num Layers

λ 20 14 7

0.05 3.47, 9.14 3.78, 9.67 4.84, 12.80

0.1 3.50, 9.23 3.57, 9.80 4.88, 12.21

0.2 3.38, 9.19 3.56, 9.74 4.90, 13.41

0.3 3.43, 9.21 3.60, 9.68 5.00, 13.18

The baseline models in our experiments are the ones trained

separately. The first row of Table 3 shows the word error rate



Table 3: Word error rate (WER) results from models trained with and without the different factors of the collaborative learning method.

We also include results for collaboratively trained models with different number of branches. The two numbers in each cell are the WER

results on test-clean and test-other datasets respectively. Bold values indicate the best performing model in a group when compared to

the baselines. All the encoders have the same algorithmic latency of 120ms with 160ms chunk size and 40ms look-ahead context size.

Num Layers

Shared Predictor

and Joiner

Shared Encoder

Layers

Aux task with

CE loss

Aux task with

CE+KLDiv Loss
20 18 14 10 7

- - - - 3.76, 9.86 3.83, 9.82 3.87, 10.35 4.29, 11.31 4.65, 12.50

- - y - 3.58, 10.48 3.80, 10.91 3.94, 11.29 4.19, 11.76 4.75, 12.81

4 branches

y - - - 4.18, 10.46 4.35, 10.55 4.52, 11.06 4.97, 12.01 -

y - y - 3.90, 9.61 3.97, 9.92 4.25, 10.95 4.53, 11.68 -

y - y y 3.83, 9.72 3.87, 9.69 4.10, 10.40 4.53, 11.33 -

y y - - 3.69, 9.95 3.83, 10.16 3.96, 10.34 4.42, 11.85 -

y y y - 3.52, 9.39 3.47, 9.49 3.70, 10.24 4.02, 11.53 -

y y y y 3.45, 9.34 3.39, 9.57 3.72, 10.10 4.17, 11.57 -

3 branches

y - y y 3.38, 8.87 - 3.57, 9.77 - 4.38, 11.84

y y y y 3.50, 9.23 - 3.57, 9.80 - 4.88, 12.21

2 branches

y y y y 3.49, 9.36 - 3.72, 9.95 - -

(WER) results from the baseline model trained using the trans-

ducer loss without any auxiliary task. The second row of Table 3

shows the WER from different models trained using transducer

loss together with the frame-level cross-entropy loss based on

the chenone alignment. We observe that the performance is

mixed when using the auxiliary task. This could indicate that

the original weight for the auxiliary loss proposed in [14] might

have been sub-optimal and requires additional tuning.

There are four critical factors in the proposed collaborative

training method: shared predictor and joiner, shared low-level

encoder layers, an auxiliary task with cross-entropy (CE) loss,

and the auxiliary task with CE and KL divergence loss. We

perform an ablation study of these factors with a model of four

different encoder branches. We also experiment with a differ-

ent number of branches ranging from two to four. When using

the setting with shared encoder layers, the first six layers are

common between the different encoder branches. We show the

results grouped by the number of branches in Table 3 for the

experiments done using collaborative training.

The collaborative training results with four branches show

that the performance incrementally improves as we enable the

different factors. The WER of the model that uses all the four

factors of our proposed method improves by 3-11% and 2.5-

5.5% on the test-clean and test-other partitions, respectively.

The last two rows in the group using four branches differ in

whether they use the KL divergence loss for the auxiliary task

or not. The results indicate that the performance obtained from

these two settings is very close to each other, but they are still

significantly better than their baseline counterparts.

One of the interesting observations is that the performance

of the largest branch sees an improvement along with that of

the student branches. This can be attributed to the shared mod-

ules which are improved due to the training on the inputs from

the different branches. An outlier result is that the ten layers

model’s performance did not show an improvement on the test-

other partition.

Similar to the trend with the four encoder branches, the

model with two encoder branches trained collaboratively by en-

abling all the factors also achieves significantly better results

than the baseline models. The last row in Table 3 shows that the

20 layers branch gets a relative WER reduction over 7% on test-

clean and 5% on test other, compared with a baseline model of

the same size. The 14 layers branch gets a similar WER as the

20 layers baseline model with a 25% reduction in model size.

We observed that when training a collaborative set of three

branches, the seven layers model results were worse than the

baseline. Hence, we experimented with a setting that did not

include the shared low-level encoder layers. Interestingly, this

setting provided better performance than the other settings used

for the three branches. The results show that without using layer

sharing in encoders, the 20 layers model trained with collabora-

tive learning achieves the best WER among all the cases, with

over 10% improvement on the test-clean and test-other parti-

tions. However, the training time as measured using the train

wall time from the fairseq [41] logs is 28% slower when there

are no shared layers between the different encoders.

5. Conclusions

We have presented a collaborative learning method to train a

sequence transducer model with multiple acoustic encoders for

low latency on-device ASR. Our method can train models of

different sizes at once and allows picking one specific acoustic

encoder for deployment that meets the computational constraint

of a device. The proposed collaborative learning method takes

advantage of shared predictor and joiner modules along with

shared low level encoder layers to improve the performance and

reduce the training time. A context-dependent graphemic state

prediction task was used to provide the transducer model with

forced alignment information that acted as a bridge for transfer-

ring knowledge among different acoustic encoders. The exper-

iments on the LibriSpeech dataset based on a low latency con-

straint showed that the collaborative learning method can im-

prove each acoustic encoder compared with training them sepa-

rately. The large encoder got over 10% relative WER reduction

on both test-clean and test-other evaluation datasets. The col-

laboratively trained smaller encoders also got 3-11% relative

WER reduction on both evaluation sets when compared with

the smaller baseline models.
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