
Modeling Others using Oneself in Multi-Agent Reinforcement Learning

Roberta Raileanu 1 Emily Denton 1 Arthur Szlam 2 Rob Fergus 1 2

Abstract

We consider the multi-agent reinforcement learn-
ing setting with imperfect information in which
each agent is trying to maximize its own utility.
The reward function depends on the hidden state
(or goal) of both agents, so the agents must in-
fer the other players’ hidden goals from their ob-
served behavior in order to solve the tasks. We
propose a new approach for learning in these do-
mains: Self Other-Modeling (SOM), in which
an agent uses its own policy to predict the other
agent’s actions and update its belief of their hid-
den state in an online manner. We evaluate this
approach on three different tasks and show that
the agents are able to learn better policies using
their estimate of the other players’ hidden states,
in both cooperative and adversarial settings.

1. Introduction
Reasoning about other agents’ intentions and being able to
predict their behavior is important in multi-agent systems,
in which the agents might have a diverse, and sometimes
competing, set of goals. This remains a challenging problem
due to the inherent non-stationarity of such domains.

In this paper, we introduce a new approach for estimating the
other agents’ unknown goals from their behavior and using
those estimates to choose actions. We demonstrate that in
the proposed tasks, using an explicit model of the other
player in the game leads to better performance than simply
considering the other agent to be part of the environment.

We frame the problem as a (not-necessarily zero-sum) two-
player stochastic game (Shapley, 1953), otherwise known
as a two-player Markov game, in which the agents have
full visibility of the environment, but no explicit knowledge
about other agents’ goals and there is no communication
channel. The reward received by each agent at the end of an

1Department of Computer Science, New York University, New
York City, New York, USA 2Facebook AI Research, Facebook
Inc., New York City, New York, USA. Correspondence to: Roberta
Raileanu <raileanu@cs.nyu.edu>.

episode depends on the goals of both agents, so the optimal
policy of each agent must take into account both of their
goals.

Research in cognitive science suggests that humans maintain
models of other people they interact with, which capture
their goals, beliefs, or preferences (Gopnik & Wellman,
1992; Premack & Woodruff, 1978). In some cases, humans
use their own mental process to simulate others’ behavior
by adopting their perspective (Gordon, 1986; Gallese &
Goldman, 1998). This allows them to understand others’
intentions or motives and act accordingly in social settings.
Inspired by these studies, the key idea of our approach is
that as a first approximation, to understand what the other
player in the game is doing, an agent should ask itself “what
would be my goal if I had acted as the other player had?”.
We instantiate this idea by parametrizing the agent’s action
and value functions with a (multi-layer recurrent) neural
network that takes the state and a goal as an input. As the
agent plays the game, it infers the other agent’s unknown
goal by directly optimizing over the goal (using its own
action function) to maximize the likelihood of the other’s
actions.

2. Approach
Background: A Markov game for two agents is defined by
a set of states S describing the possible configurations of
all agents, a set of actions A1,A2 and a set of observations
O1,O2 for each agents, and a transition function T : S ×
A1 ×A2 → S which gives the probability distribution on
the next state as a function of current state and actions. Each
agent i chooses actions by sampling from a stochastic policy
πθi : S × Ai → [0, 1]. Each agent has a reward function
which depends on agent’s state and action: ri : S×Ai → R.
Each agent i tries to maximize its own total expected return
Ri =

∑T
t=0 γ

trti , where γ is a discount factor and T is the
time horizon. In this work, we consider both cooperative, as
well as adversarial settings.

We now describe Self Other-Modeling (SOM), a new ap-
proach for inferring the other agents’ goals in an online fash-
ion during an episode and using these estimates to choose
actions. To decide an action and to estimate the value of a
state, we use a neural network f that takes as input its own
goal zself , an estimate of the other player’s goal z̃other, and



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

the observation state from its own perspective sself , and
outputs a probability distribution over actions π and a value
estimate V , such that for each agent i playing the game we
have:

[
πi

V i

]
= f i(siself , z

i
self , z̃

i
other; θ

i) .

Here θi are agent i’s parameters for f , which has one soft-
max output for the policy, one linear output for the value
function, and all the non-output layers shared. The actions
are sampled from the policy π. The observation state siself
explicitly contains the location of the acting agent (the one
whose action is decided by f i), as well as the location of
the other agent.

Because an agent computes both its own actions and values,
as well as estimates of the other agent’s, each agent has two
networks (omitting the agent index i for brevity):

fself (sself , zself , z̃other; θself ) (1)

and
fother(sother, z̃other, zself ; θself ) . (2)

The two networks are used in different ways: fself is used
for computing the agent’s own actions and values, and op-
erates in a feed-forward manner. The agent uses fother to
infer the other agent’s goal via an optimization over z̃other
given the other agent’s observed actions.

We propose that each agent models the behavior of the other
player using its own policy, so that the parameters of fother
are the same as the parameters of fself . However, note that
the two networks differ in their relative placement of the
inputs zself and z̃other. Additionally, since the environment
is fully observed, the observation state of the two agents
differs only by the specification of the agent’s identity on
the map (i.e. each agent will be able to distinguish between
its own location and the other’s location). Hence, in acting
mode, the network fself will take as input sself and in
inference mode, the network fother will take as input sother.

At each step of the game, the agent needs to infer z̃other in
order to input its estimate into (1) and choose its action. For
this purpose, at each step, the agent observes the other taking
an action and, at the next step, the agent uses the previously
observed action of the other as supervision, in order to back-
propagate through (2) and optimize over z̃other. Figure 1
illustrates this technique.

The number of steps taken by the optimizer in this inference
procedure is a hyperparameter that can be varied depending
on the game. Hence, the estimate of the other agent’s goal
z̃other is updated multiple times at each step during the
game. The parameters θself are updated at the end of each
episode using Asynchronous Advantage Actor-Critic (A3C)

Algorithm 1 SOM training for one episode
1: procedure SELF OTHER-MODELING
2: for k := 1, num players do
3: z̃kother ← 1

ngoals1ngoals
4: game.reset()
5: for step := 1, episode length do
6: i← game.get acting agent()
7: j ← game.get non acting agent()
8: siself ← game.get state()

9: sjother ← game.get state()

10: z̃OH,iother = one hot[argmax(z̃iother)]

11: πiself , V
i
self ← f iself (siself , z

i
self , z̃

OH,i
other; θ

i
self )

12: aiself ∼ πiself
13: game.action(aiself )
14: for k : = 1, num inference steps do
15: z̃G,jother = gumbel softmax(z̃jother)

16: π̃jother← f jother(s
j
other, z̃

G,j
other, z

j
self ; θjself )

17: loss = cross entropy loss(π̃jother, a
i
self )

18: loss.backward()
19: update(z̃jother)

20: for k := 1, num players do
21: policy.update(θkself )

(Mnih et al., 2016) with reward signal obtained by the self
agent.

Algorithm 1 represents the pseudo-code for training SOM
agents for one episode. Since the goals are discrete in all
the tasks considered here, the agent’s goal z̃self is encoded
as a one-hot vector of dimension equal to the total number
of possible goals in the game. The embedding of the other
player’s goal z̃other has the same dimension. In order to
estimate the gradients going through z̃other, which is a dis-
crete variable and thus non-differentiable, we replace it with
a differentiable sample from the Gumbel-Softmax distribu-
tion (Jang et al., 2016; Maddison et al., 2016), z̃Gother. This
reparametrization trick was shown to efficiently produce
low-variance biased gradients. After optimizing z̃other at
each step using this method, z̃other usually deviates from
a one-hot vector. At the next step, fself takes as input the
one-hot vector z̃OHother corresponding to the argmax of the
previously updated z̃other.

The agents’ policies are parametrized by long short-term
memory (LSTM) cells (Hochreiter & Schmidhuber, 1997)
with two fully-connected linear layers, and exponential lin-
ear unit (ELU) (Clevert et al., 2015) activations. The weights
of the networks are initialized with semi-orthogonal matri-
ces, as described in (Saxe et al., 2013) and zero bias.

Due to the recurrence of fother, special care must be taken
when the number of inference steps is > 1. Under this



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

Figure 1. Our Self Other-Model (SOM) architecture for a given
agent.

setting, at each step in the game, we save the recurrent state
of fother before the first forward pass in inference mode, and
initialize the recurrent state to this value for every inference
step. This procedure ensures fother is unrolled the same
number of steps during both acting and inference mode.

3. Related Work
Opponent modeling has been extensively studied in games
of imperfect information. However, most previous ap-
proaches focus on developing models with domain-specific
probabilistic priors or strategy parametrizations. In contrast,
our work proposes a more general framework for oppo-
nent modeling. (Davidson, 1999) uses an MLP to predict
opponent actions given a game history, but the agents can-
not adapt to their opponents’ behavior in an online manner.
(Lockett et al., 2007) designs a neural network architec-
ture to identify the opponent type by learning a mixture of
weights over a given set of cardinal opponents. However,
the game does not unfold within the reinforcement learning
framework.

A large body of work in deep multi-agent RL focuses on
partially visible, fully cooperative settings (Foerster et al.,
2016a;b; Omidshafiei et al., 2017) and emergent commu-
nication (Lazaridou et al., 2016; Foerster et al., 2016a;
Sukhbaatar et al., 2016; Das et al., 2017; Mordatch &
Abbeel, 2017) Our setting is different since we do not al-
low any communication among the agents, so the players
have to indirectly reason about their opponents’ intentions
from their observed behavior. In contrast, (Leibo et al.,
2017) considers semi-cooperative multi-agent environments
in which the agents develop cooperative and competitive
strategies depending on the task type and reward structure.
Similarly, (Lowe et al., 2017) proposes a centralized actor-
critic architecture for efficient training in settings with such

mixed strategies. (Lerer & Peysakhovich, 2017) design RL
agents that are able to maintain cooperation in complex so-
cial dilemmas by generalizing a well-known game theoretic
strategy called tit-for-tat (Axelrod, 2006) to multi-agent
Markov games. Recent work in cognitive science attempts
to understand human decision-making by using a hierarchi-
cal model of social agency that infers the intentions of other
human agents in order to decide whether to play a coopera-
tive or competitive strategy (Kleiman-Weiner et al., 2016).
However, none of these papers design algorithms that ex-
plicitly model other artificial agents in the environment or
estimate their intentions, with the purpose of improve their
decision making.

The field of inverse reinforcement learning (IRL) (Russell,
1998; Ng et al., 2000; Abbeel & Ng, 2004), is also related
to the problem considered here. IRL’s aim is to infer the
reward function of an agent by observing its behavior, which
is assumed to be nearly optimal. In contrast, our approach
uses the observed actions of the other player to directly infer
its goal in an online manner, which is then used by the agent
when acting in the environment. This avoids the need for
collecting offline samples of the other’s (state, action) pairs
in order to estimate its reward function and then use this to
learn a separate policy that maximizes that utility. The more
recent papers by (Hadfield-Menell et al., 2016; 2017) are
also concerned with the problem of inferring others’ inten-
tions, but their focus is on human-robot interaction and value
alignment. Motivated by similar goals, (Chandrasekaran
et al., 2017) consider the problem of building a theory of
AI’s mind, in order to improve human-AI interaction and
the interpretability of AI systems. For this purpose, they
show that people can be trained to predict the responses of
a Visual Question Answering model, using a small number
of examples.

The closest work to ours is (Foerster et al., 2017) and (He
et al., 2016). (Foerster et al., 2017) designs RL agents that
take into account the learning of other agents in the environ-
ment when updating their own policies. This enables the
agents to discover self-interested yet collaborative strategies
such as tit-for-that in the iterated prisoner’s dilemma. While
our work does not explicitly attempt to shape the learning of
other agents, it has the advantage that the agents can update
their beliefs during an episode and change their strategies
in an online manner to gain more reward. Our setting is
also different in that it considers that each agent has some
hidden information needed by their the other player in order
to maximize its return.

Our work is very much in line with (He et al., 2016), where
the authors build a general framework for modeling other
agents in the reinforcement learning setting. (He et al.,
2016) proposes a model that jointly learns a policy and
the behavior of opponents by encoding observations of the



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

opponent into a DQN. Their Mixture of Experts architecture
is able to discover different opponent strategy patterns in two
purely adversarial tasks. One difference between our work
and (He et al., 2016)’s is that we do not aim to infer other
agents’ strategies, but rather focus on explicitly estimating
their goals in the environment. Moreover, rather than using
a hand designed featurization of the other agent’s actions,
in this work, the agent learns its model of the other end-to-
end, based on its own model. Another difference is that in
this work, the agent runs an optimization to infer the other
agent’s hidden state, instead of inferring the other agent’s
hidden state via a feed-forward network. In the experiments
below, we show that SOM outperforms an adaptation of the
method of (He et al., 2016) to our setting.

4. Experiments
In this section, we evaluate our model SOM on three tasks:

• The coin game, in Section 4.2, which is a fully co-
operative task where the agents’ roles are symmetric.

• The recipe game, in Section 4.3, which is adversarial,
but with symmetric roles.

• The door game, in Section 4.4, which is fully coopera-
tive but has asymmetric roles for the two players.

We compare SOM to three other baselines and to a model
that has access to the ground truth of the other agent’s goal.
All the tasks considered are created in the Mazebase grid-
world environment (Sukhbaatar et al., 2015).

4.1. Baselines

TRUE-OTHER-GOAL (TOG): We provide an upper bound
on the performance of our model given by a policy network
which takes the other agent’s true goal as input, zother, as
well as the state features sself and its own goal zself . Since
this model has direct access to the true goal of the other
agent, it does not need a separate network to model the
behavior of the other agent. The architecture of TOG is the
same as the one of SOM’s policy network, fself .

NO-OTHER-MODEL (NOM): The first baseline we use
only takes as inputs the observation state sself and its own
goal zself . NOM has the same architecture as the one used
for SOM’s policy network, fself . This baseline has no
explicit model of the other agent or estimate of its goal.

INTEGRATED-POLICY-PREDICTOR (IPP): Starting with
the architecture and inputs of NOM, we construct a stronger
baseline, IPP, which has an additional final linear layer that
outputs a probability distribution over the next action of the
other agent. Besides the A3C loss used to train the policy of
this network, we also add a cross-entropy loss to train the

prediction of the other agent’s action, using observations of
its behavior.

SEPARATE-POLICY-PREDICTOR (SPP): He et al. (2016)
propose an opponent modeling framework based on DQN.
In their approach, a neural network (separate from the
learned Q-network) is trained to predict the opponent’s ac-
tions, given hand crafted state information specific to the
opponent. An intermediate hidden representation from this
network is given as input to the the Q-network.

We adapt the model of He et al. (2016) to our setting. In
particular, we use A3C instead of DQN and we do not use
the task-specific features used to represent the hidden state
of the opponent.

The resulting model, SPP, consists of two separate net-
works, a policy network for deciding the agent’s actions,
and an opponent network for predicting the other’s actions.
The opponent network takes as input the state of the world s
and its own goal zself , and outputs a probability distribution
for the action taken by the other agent at the next step, as
well as its hidden state (given by the network’s recurrence).
As in IPP, we train the opponent policy predictor with a
cross-entropy loss using the true actions of the other agent.
At each step, the hidden state output by this network is taken
as input by the agent’s policy network, along with the ob-
servation state and its own goal. Both the policy network
and the opponent policy predictor are LSTMs with the same
architecture as SOM.

In contrast to SOM, SPP does not explicitly infer the other
agent’s goal. Rather, it builds an implicit model of the
opponent by predicting the agent’s actions at each time step.
In SOM, an inferred goal is given as additional input to the
policy network. The analog of the inferred goal in SPP is
the hidden representation obtained from the opponent policy
predictor which is given as an additional input to the policy
network.

Training Details. In all our experiments, we train the
agents’ policies using A3C (Mnih et al., 2016) with an
entropy coefficient of 0.01, a value loss coefficient of 0.5,
and a discount factor of 0.99. The parameters of the agents’
policies are optimized using Adam (Kingma & Ba, 2014)
with β1 = 0.9, β2 = 0.999, ε = 1×10−8, and weight decay
0. SGD with a learning rate of 0.1 was used for inferring
the other agent’s goal, z̃other.

The hidden layer dimension of the policy network was 64
for the Coin and Recipe Games and 128 for the Door Game.
We use a learning rate of 1 × 10−4 for all the games and
models.

The observation state s is represented by few-hot vectors
indicating the locations of all the objects in the environment,
as well as the locations of the self and the other. The dimen-



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

sion of this input state is 1× nfeatures, where the number
of features is 384, 192, and 900 for the Coin, Recipe, and
Door games, respectively.

For each experiment, we trained the models using 5 different
random seeds. All the results shown are for 10 optimization
updates of z̃other at each step in the game, unless mentioned
otherwise.

4.2. Coin Game.

First, we evaluate the model on a fully cooperative task, in
which the agents can gain more reward when using both of
their goals rather than only their own goal. So it is in the
best interest of each agent to estimate the other player’s goal
and use that information when taking actions. The game,
shown in the left diagram of Figure 4, takes place on a 8× 8
grid containing 12 coins of 3 different colors (4 coins of
each color). At the beginning of each episode, the agents
are randomly assigned one of the three colors. The action
space consists of: go up, down, left, right, or pass. Once
an agent steps on a coin, that coin disappears from the grid.
The game ends after 20 steps (i.e. each agent takes 10 steps).
The reward received by both agents at the end of the game
is given by the formula below:

R = (nselfCself
+ notherCself

)2 + (nselfCother
+ notherCother

)2

− (nselfCneither
+ notherCneither

)2,

where notherCself
is the number of coins of the self’s goal-color,

which were collected by the other agents, and nselfCneither
is

the number of coins corresponding to neither of the agents’
goals, collected by the self. For the example in Figure 4,
agent 1 has Cself = orange and Cother = cyan, while agent
2’s Cself is cyan and Cother is orange. Cneither is red for
both agents.

The role of the penalty for collecting coins that do not cor-
respond to any of the agents’ goals is to avoid convergence
to a brute force policy in which the agents can gain a non-
negligible amount of reward by collecting all the coins in
their proximity, without any regard to their color.

To maximize its return, each agent needs to collect coins
of its own or its collaborator’s color, but not those of the
remaining color. Thus, when both agents are able to infer
their collaborators’ goals with high accuracy and as early
as possible in the game, they can use that information to
maximize their shared utility.

Figure 3 shows the mean and standard deviation of the
reward across 5 runs with different random seeds obtained
by SOM. Our model clearly outperforms all the baselines
on this task. We also show the empirical upper bound on the
reward using the model which takes as input the true color
assigned to the other agent.

Figure 2 analyzes the strategies of the different models by
looking at the proportion of coins of each type collected
by the agents. The optimal strategy is for each agent to
maximize nselfCself

+ nselfCother
and nselfCneither

= 0. Due to
the randomness in the initial conditions (in particular, the
locations of coins in the environment), this amounts to each
agent collecting an equal number of coins of its own color
and coins of the other’s color on average, across a large
number of episodes (i.e. n̄selfCself

= n̄selfCother
).

Indeed, this is the strategy learned by the model with perfect
information of the other agent’s goal (TOG). SOM also
learns to collect significantly more Other than Neither coins
(although not as many as Self coins), indicating its ability to
distinguish between the two types, at least during some of
the episodes. This means that SOM can accurately infer the
other agent’s goal early enough during the episode and use
that information to collect more Other Coins, thus gaining
more reward than if it were only using its own goal to direct
its actions.

In contrast, the agents trained with the three baseline models
collect significantly more Self coins, and as many Other as
Neither coins on average. This shows that they learn to use
their own goal for gaining reward, but they are unable to use
the hidden goal of the other agent for further increasing their
reward. Even if IPP and SPP are able to predict the actions of
the other player with an accuracy of about 50%, they do not
learn to distinguish between the coins that would increase
(Other) and those that would decrease (Neither) their reward.
This shows the weaknesses of using an implicit model of
the other agent to maximize reward on certain tasks.

4.3. Recipe Game.

Agents in adversarial scenarios can also benefit from having
a model of their opponents, which would enable them to
exploit the weaknesses of certain players. With this moti-
vation in mind, we evaluate our model on a game in which
the agents have to craft certain compositional recipes, each
containing multiple items found in the environment. The
agents are given as input the names of their goal-recipes,
without the corresponding components needed to make it.
The resources in the environment are scarce, so only one of
the agents can craft its recipe within one episode.

As illustrated in Figure 4 (center), there are 4 types of items:
{sun, star, moon, lightning} and 4 recipes: {sun, sun, star};
{star, star, moon}; {moon, moon, lightning}; {lightning,
lightning, sun}. The game is played in a 4× 6 grid, which
contains 8 items in total, 2 of each type.

At the beginning of each episode, we randomly assign a
recipe to one of the agents, and then we randomly pick a
recipe for the other agent so that it has overlapping items
with the recipe of the first agent. This ensures that the agents



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

0.0 2.0 4.0 6.0 8.0
Episode (106)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Co
in

 C
ou

nt
s

TOG

0.0 2.0 4.0 6.0 8.0
Episode (106)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Co
in

 C
ou

nt
s

SOM

0.0 2.0 4.0 6.0 8.0
Episode (106)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Co
in

 C
ou

nt
s

NOM

Self Coins
Other Coins
Neither Coins

0.0 2.0 4.0 6.0 8.0
Episode (106)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Co
in

 C
ou

nt
s

IPP

0.0 2.0 4.0 6.0 8.0
Episode (106)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Co
in

 C
ou

nt
s

SPP

Figure 2. Coin Strategy: Average number of collected coins per episode corresponding to the color of the Self (blue), Other (red), or
Neither (green) by the agents using TOG (left), SOM (center-left), NOM (center), IPP (center-right), and SPP (right). The optimal strategy
is to pick up as many Self as Other coins on average, across a number of episodes, and no Neither coins. Being able to collect more Other
than Neither coins indicates that the agent is able to accurately infer the other agent’s color early enough during some of the episodes and
uses this information to collect more Other, instead of Neither coins, which increases its reward. The TOG model learns to collect just as
many Self as Other coins, while all the baselines only learn to collect more Self coins, but cannot distinguish between the Other and
Neither coins. SOM learns to collect significantly more Other coins than Neither. This shows that SOM converges to a closer-to-optimal
strategy using its guess of the other’s goal.

0.0 2.0 4.0 6.0 8.0
Episode (106)

2
4
6
8

10
12
14
16

Re
wa

rd

TOG
NOM
SOM
IPP
SPP

Figure 3. Coin Performance: Average reward obtained on the
Coin game by SOM (green), TOG (blue), NOM (red), IPP (ma-
genta), and SPP (orange). SOM performs better than all the base-
lines.

are competing for resources within each episode. At the
end of the episode, each agent receives a reward of +1 for
crafting its own recipe and a penalty of -0.1 for each item it
picked up not needed for making its recipe.

We designed the layout of the grid so that neither agent has
an initial advantage by being closer to the scarce resource.
At the beginning of each episode, one of the agents starts
on the left-most column of the grid, while the other one
starts on the right-most column, at the same y-coordinate.
Their initial y-coordinate as well as which agent starts on
the left/right is randomized. Similarly, one item of each of
the 4 different types is placed at random in the grid formed

Figure 4. Illustration of the Coin (left), Recipe (center), and Door
(right) games Above each ones we show the agents’ goals (not
visible to one another).

by the second and third columns of the maze, from left to
right. The rest of the items are placed in the forth and fifth
columns, so that the symmetry with respect to the vertical
axis is preserved (i.e. items of the same type are placed at
the same y-coordinate, and symmetric x-coordinates).

Agents have six actions to choose from: pass, go up, down,
left, right, or pick (for picking an item, which then disap-
pears from the grid). The first agent to take an action is
randomized. The game ends after 50 steps.

We pretrain all the baselines on a version of the game which
does not have overlapping recipes, in order to ensure that
all the models learn to pick up the corresponding items,
given a recipe as goal. All of the models learn to craft their
assigned recipes ∼ 90% of the time on this simpler task.
Then, we continue training the models on the adversarial
task in which their recipes overlap in each episode. SOM is



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

0.2 0.4 0.6 0.8 1.0 1.2
Episode (106)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

W
in

 F
ra

ct
io

n

SOM
NOM

0.2 0.4 0.6 0.8 1.0 1.2
Episode (106)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

W
in

 F
ra

ct
io

n

IPP
SOM

0.2 0.4 0.6 0.8 1.0 1.2
Episode (106)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

W
in

 F
ra

ct
io

n

SPP
SOM

0.2 0.4 0.6 0.8 1.0 1.2
Episode (106)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

W
in

 F
ra

ct
io

n

TOG
SOM

0.2 0.4 0.6 0.8 1.0 1.2
Episode (106)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

W
in

 F
ra

ct
io

n

SPP
NOM

Figure 5. Recipe Performance: Average fraction of success in the Recipe game by SOM-NOM (left), SOM-IPP (center-left), SOM-SPP
(center-center), SOM-TOG (center-right), NOM-AcrPredSep (right). The plots show the performance of SOM with 5 optimization updates
of z̃other at each step in the game.

initialized with a pretrained NOM network.

Figure 5 shows the winning fraction for different pairs
played against each other in the Recipe game. For the first
100k episodes, the models are not being trained. We can
see that SOM significantly outperfroms NOM, IPP, and SPP,
winning ∼ 75 − 80% of the time, while the baselines can
only win ∼ 15− 20% of the games. SPP ties against NOM,
and TOG outperforms SOM by a large margin. We also
played the same types of agents against each other and they
all win ∼ 40− 50% of the games.

4.4. Door Game.

In this section, we show that on a collaborative task with
asymmetric roles and multiple possible partners, the agents
can learn to figure out what role they should be playing in
each game based on their partners actions.

0.4 0.8 1.2 1.6 2.0
Episode (107)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 F
ra

ct
io

n

TOG
NOM
SOM
IPP
SPP

Figure 6. Door Performance: Average fraction of success on the
Door game by SOM (green), TOG (blue), NOM (red), IPP (ma-
genta), and SPP (orange). On average, SOM performs better than
all the baselines.

In the Door game, two agents are located in a 5 × 9 grid,

with 5 goals behind 5 doors on the left wall, and 5 switches
on the right wall of the grid. The game starts with the two
players in random squares on the grid, except for the ones
occupied by the goals, doors, or switches, we illustrated in
Figure 4. Agents can take any of the five actions: go up,
down, left, right or pass. An action is invalid if it moves the
player outside of the border or to a square occupied by a
block or closed door. Both agents receive +3 reward when
either one of them steps on its goal and they are penalized
-0.1 for each step they take. The game ends when one of
them gets to its goal or after 22 steps. All the goals are
behind doors which are open only as long as one of the
agents sits on the corresponding switch for that door.

At the beginning of an episode, each of the two players is
randomly selected from a pool of 5 agents and receives as
input a random number from 1 to 5 corresponding to its goal.
Each of the 5 agents has its own policy which gets updated
at the end of each episode they play. Note that the agents’
identities are not visible (i.e. there is no indication in the
state features that specifies the id’s of the agents playing
during a given episode). This restriction is important in
order to ensure that the agents cannot gain advantage by
specializing into the two roles needed to win (i.e. goal-goer
and switch-puller) and identifying the specialization of the
other player by simply observing its unique id.

The agents need to cooperate in order to receive reward. In
contrast to our previous tasks, the two players must take
different roles. In fact, the player who sits on the switch
should ignore its own goal and instead infer the other’s goal,
while the player who goes to its goal does not need to infer
the other’s goal, but only use its own. In order to sit on
the correct switch, an agent has to infer the other player’s
goal from their observed actions. The only way in which an
agent can use its own policy to model the other player is if
each agent learns to play both roles of the game, i.e. go to
its own goal and also open its collaborator’s door by sitting
on the corresponding switch. Indeed, we see that the agents
learn to play both roles and they are able to use their own
policies to infer the other player’s goals when needed.



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

Fig 6 shows the mean and standard deviation of the winning
fraction obtained by one of the agents on the Door game.
While our model is still able to outperform the three base-
lines, the gap between the performance of our model and
that of IPP or SPP (an approximate version of (He et al.,
2016)) is smaller than in the previous tasks. However, this is
a more difficult task for our model since it needs the agents
to learn performing both roles before effectively use its own
policy to infer the other agent’s goal. Nevertheless, we see
that SOM training allows the agents to play both roles in an
asymmetric cooperative game, and to infer the goal and role
of the other player.

4.5. Analyzing the goal inference

In this section we further analyze the ability of the SOM
models to infer other’s intended goals.

0.0 0.1 0.2 0.3 0.4 0.5
Episode (107)

0.4

0.5

0.6

0.7

0.8

0.9

%
 C

or
re

ct
ly

 In
fe

rre
d 

Go
al

Coin Game

Agent 1
Agent 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Episode (106)

0.4

0.5

0.6

0.7

0.8

0.9

Co
rre

ct
 G

oa
l F

ra
ct

io
n

Recipe Game

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Episode (106)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
rre

ct
 G

oa
l F

ra
ct

io
n

Door Game

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Figure 7. Inference Accuracy during Training: The mean frac-
tion of episodes in which the agent correctly infers the other’s goal
for the Coin (left), Recipe (center), and Door (right) games, as
a function of training epoch. The estimate of the other’s goal is
considered correct if it remains accurate during all the following
steps in the game.

Figure 7 shows the fraction of episodes in which the goal
of the other agent is correctly inferred. We consider that
the goal is correctly inferred only when the estimate of the
other’s goal remains accurate until the end of the game,
so that we avoid counting the episodes in which the agent
might infer the correct goal by chance at some intermediate
step in the game. In all the games, the SOM agent learns to
infer the other player’s goal with a mean accuracy ranging
from ∼ 60− 80%. Comparing the second plot in Figure 2
with the left plot in Figure 7, one can observe that the SOM
agent starts distinguishing Other from Neither coins after
approximately 2M training epochs, which coincides with the
time when the mean accuracy of the inferred goal converges
to ∼ 75%. The Door Game (right) presents higher variance
since the agents learn to use and infer the other’s goal at
different stages during training.

Figure 8 shows the cumulative distribution of the step at
which the goal of the other player is correctly inferred (and
remains the same until the end of the game). The cumulative
distribution is computed over the episodes in which the goal
is correctly inferred before the end of the game. In the

0 2 4 6 8 10 12 14 16 18 20
Step

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ly

 In
fe

rre
d 

Go
al

Coin Game

0 5 10 15 20 25 30 35 40 45 50
Step

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ly

 In
fe

rre
d 

Go
al

Recipe Game

0 2 4 6 8 10 12 14 16 18 20 22
Step

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ly

 In
fe

rre
d 

Go
al

Door Game

Figure 8. Inference Step Distribution: Cumulative distribution
of the step tinf at which the goal of the other player is correctly
inferred (i.e. z̃tother = zother, ∀t ≥ tinf ) for the Coin (left),
Recipe (center) and Door (right) games. We define this step so
that z̃other = zother for all the remaining steps in the game. The
distribution is computed over the subset of runs in which the goal
is correctly inferred before the end of the game (∼ 70− 80% of
all runs). A total of 1000 runs with trained SOM models were used
to compute this distribution.

Coin (blue) and Recipe (red) games, 80% of the times the
agent correctly infers the goal of the other, it does so in
the first five steps. The distribution for the Door (green)
game indicates that the agent needs more steps on average
to correctly infer the goal. This explains in part why the
SOM agent only slightly outperforms the SPP baseline. If
the agent does not infer the other’s goal early enough in the
episode, it cannot efficiently use it to maximize its reward.

1 3 5 10 20
Number of Inference Steps

10

11

12

13

14

Re
wa

rd

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

ct
 G

oa
l F

ra
ct

io
n

Coin Game

1 3 5 10 20
Number of Inference Steps

0.76

0.77

0.78

0.79

0.80

0.81

0.82

Re
wa

rd

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

ct
 G

oa
l F

ra
ct

io
n

Recipe Game

1 3 5 10 20
Number of Inference Steps

0.65

0.70

0.75

0.80

0.85

0.90

W
in

 F
ra

ct
io

n
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

ct
 G

oa
l F

ra
ct

io
n

Door Game

Figure 9. Performance Variation with Number of Inference
Steps: Average reward (blue) and average fraction of episodes
in which the goal of the other agent is correctly inferred (red)
obtained by the SOM agent as a function of the number of infer-
ence steps used for estimating the other’s goal for the Coin (left),
Recipe (center), and Door (right) games. The error bars represent
1 standard deviation.

Figure 9 shows how the performance of the agent varies with
the number of optimization updates performed on z̃other at
each step in the game. As expected, the agent’s reward
(blue) generally increases with the number of inference
steps, as does the fraction of episodes in which the goal
is correctly inferred. One should note that increasing the
number of inference steps from 10 to 20 only translates
into less than 0.45% performance gain, while increasing it
from 1 to 5 translates into a performance gain of 6.9% on
the Coin game, suggesting that there is a certain threshold



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

above which increasing the number of inference steps will
not significantly improve performance.

5. Discussion
In this paper, we introduced a new approach for inferring
other agents’ hidden states from their behavior and using
those estimates to choose actions. We demonstrated that the
agents are able to estimate the other players’ hidden goals
in both cooperative and competitive settings, which enables
them to converge to better policies and gain higher rewards.
In the proposed tasks, using an explicit model of the other
player led to better performance than simply considering the
other agent to be part of the environment. One limitation of
SOM is that it requires a longer training time than the other
baselines, since we back-propagate through the network
at each step. However, their online nature is essential in
adapting to the behavior of other agents in the environment.

Some of the main advantages of our method are its simplic-
ity and flexibility. This method does not require any extra
parameters to model the other agents in the environment,
can be trained with any reinforcement learning algorithm,
and can be easily integrated with any policy parametrization
or network architecture. The SOM concept can be adapted
to settings with more than two players, since the agent can
use its own policy to model the behavior of any number
of agents and infer their goals. Moreover, it can be easily
generalized to many different environments and tasks.

We plan to extend this work by evaluating the models on
more complex environments with more than two players,
mixed strategies, a more diverse set of agent types (e.g.
agents with different action spaces, reward functions, roles
or strategies), and to model deviations from the assumption
that the other player is just like the self.

Other important avenues for future research are to design
models that can adapt to non-stationary strategies of others
in the environment, handle tasks with hierarchical goals,
and perform well when playing with new agents at test time.

Finally, many research areas could benefit from having a
model of other agents that allows reasoning about their in-
tentions and predicting their behavior. Such models might
be useful in human-robot or teacher-student interactions
(Dragan et al., 2013; Fisac et al., 2017), as well as for value
alignment problems (Hadfield-Menell et al., 2016). Addi-
tionally, these methods could be useful for model-based
reinforcement learning in multi-agent settings, since the ac-
curacy of the forward model strongly depends on the ability
of predicting others’ behavior.

Acknowledgements
We would like to thank the people who provided feedback
along the way: Ilya Kostrikov, William Whitney, Alexander
Rives, and Sainbayar Sukhbaatar.

References
Abbeel, Pieter and Ng, Andrew Y. Apprenticeship learn-

ing via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Machine
learning, pp. 1. ACM, 2004.

Axelrod, Robert. Agent-based modeling as a bridge between
disciplines. Handbook of computational economics, 2:
1565–1584, 2006.

Chandrasekaran, Arjun, Yadav, Deshraj, Chattopadhyay,
Prithvijit, Prabhu, Viraj, and Parikh, Devi. It takes two
to tango: Towards theory of ai’s mind. arXiv preprint
arXiv:1704.00717, 2017.

Clevert, Djork-Arné, Unterthiner, Thomas, and Hochre-
iter, Sepp. Fast and accurate deep network learn-
ing by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

Das, Abhishek, Kottur, Satwik, Moura, José MF, Lee, Ste-
fan, and Batra, Dhruv. Learning cooperative visual dialog
agents with deep reinforcement learning. arXiv preprint
arXiv:1703.06585, 2017.

Davidson, Aaron. Using artificial neural networks to model
opponents in texas holdem. Unpublished manuscript,
1999.

Dragan, Anca D, Lee, Kenton CT, and Srinivasa, Sid-
dhartha S. Legibility and predictability of robot motion.
In Human-Robot Interaction (HRI), 2013 8th ACM/IEEE
International Conference on, pp. 301–308. IEEE, 2013.

Fisac, Jaime F, Gates, Monica A, Hamrick, Jessica B, Liu,
Chang, Hadfield-Menell, Dylan, Palaniappan, Malayandi,
Malik, Dhruv, Sastry, S Shankar, Griffiths, Thomas L, and
Dragan, Anca D. Pragmatic-pedagogic value alignment.
arXiv preprint arXiv:1707.06354, 2017.

Foerster, Jakob, Assael, Yannis M, de Freitas, Nando, and
Whiteson, Shimon. Learning to communicate with deep
multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 2137–2145,
2016a.

Foerster, Jakob N, Assael, Yannis M, de Freitas, Nando, and
Whiteson, Shimon. Learning to communicate to solve
riddles with deep distributed recurrent q-networks. arXiv
preprint arXiv:1602.02672, 2016b.



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

Foerster, Jakob N, Chen, Richard Y, Al-Shedivat, Maruan,
Whiteson, Shimon, Abbeel, Pieter, and Mordatch, Igor.
Learning with opponent-learning awareness. arXiv
preprint arXiv:1709.04326, 2017.

Gallese, Vittorio and Goldman, Alvin. Mirror neurons and
the simulation theory of mind-reading. Trends in cogni-
tive sciences, 2(12):493–501, 1998.

Gopnik, Alison and Wellman, Henry M. Why the child’s
theory of mind really is a theory. Mind & Language, 7
(1-2):145–171, 1992.

Gordon, Robert M. Folk psychology as simulation. Mind &
Language, 1(2):158–171, 1986.

Hadfield-Menell, Dylan, Russell, Stuart J, Abbeel, Pieter,
and Dragan, Anca. Cooperative inverse reinforcement
learning. In Advances in neural information processing
systems, pp. 3909–3917, 2016.

Hadfield-Menell, Dylan, Milli, Smitha, Abbeel, Pieter, Rus-
sell, Stuart J, and Dragan, Anca. Inverse reward design.
In Advances in Neural Information Processing Systems,
pp. 6768–6777, 2017.

He, He, Boyd-Graber, Jordan, Kwok, Kevin, and Daumé III,
Hal. Opponent modeling in deep reinforcement learning.
In Proceedings of The 33rd International Conference on
Machine Learning, pp. 1804–1813, 2016.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Jang, Eric, Gu, Shixiang, and Poole, Ben. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Kingma, Diederik and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Kleiman-Weiner, Max, Ho, Mark K, Austerweil, Joseph L,
Littman, Michael L, and Tenenbaum, Joshua B. Coor-
dinate to cooperate or compete: abstract goals and joint
intentions in social interaction. In COGSCI, 2016.

Lazaridou, Angeliki, Peysakhovich, Alexander, and Baroni,
Marco. Multi-agent cooperation and the emergence of
(natural) language. arXiv preprint arXiv:1612.07182,
2016.

Leibo, Joel Z, Zambaldi, Vinicius, Lanctot, Marc, Marecki,
Janusz, and Graepel, Thore. Multi-agent reinforcement
learning in sequential social dilemmas. In Proceedings
of the 16th Conference on Autonomous Agents and Multi-
Agent Systems, pp. 464–473. International Foundation for
Autonomous Agents and Multiagent Systems, 2017.

Lerer, Adam and Peysakhovich, Alexander. Maintaining
cooperation in complex social dilemmas using deep re-
inforcement learning. arXiv preprint arXiv:1707.01068,
2017.

Lockett, Alan J, Chen, Charles L, and Miikkulainen, Risto.
Evolving explicit opponent models in game playing. In
Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pp. 2106–2113. ACM, 2007.

Lowe, Ryan, Wu, Yi, Tamar, Aviv, Harb, Jean, Abbeel,
Pieter, and Mordatch, Igor. Multi-agent actor-critic
for mixed cooperative-competitive environments. arXiv
preprint arXiv:1706.02275, 2017.

Maddison, Chris J, Mnih, Andriy, and Teh, Yee Whye. The
concrete distribution: A continuous relaxation of dis-
crete random variables. arXiv preprint arXiv:1611.00712,
2016.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza,
Mehdi, Graves, Alex, Lillicrap, Timothy, Harley, Tim,
Silver, David, and Kavukcuoglu, Koray. Asynchronous
methods for deep reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 1928–1937,
2016.

Mordatch, Igor and Abbeel, Pieter. Emergence of grounded
compositional language in multi-agent populations. arXiv
preprint arXiv:1703.04908, 2017.

Ng, Andrew Y, Russell, Stuart J, et al. Algorithms for
inverse reinforcement learning. In Icml, pp. 663–670,
2000.

Omidshafiei, Shayegan, Pazis, Jason, Amato, Christopher,
How, Jonathan P, and Vian, John. Deep decentralized
multi-task multi-agent rl under partial observability. arXiv
preprint arXiv:1703.06182, 2017.

Premack, David and Woodruff, Guy. Does the chimpanzee
have a theory of mind? Behavioral and brain sciences, 1
(4):515–526, 1978.

Russell, Stuart. Learning agents for uncertain environments.
In Proceedings of the eleventh annual conference on Com-
putational learning theory, pp. 101–103. ACM, 1998.

Saxe, Andrew M, McClelland, James L, and Ganguli,
Surya. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint
arXiv:1312.6120, 2013.

Shapley, L. S. Stochastic games. Proceedings of the
National Academy of Sciences, 39(10):1095–1100, 1953.
ISSN 0027-8424. doi: 10.1073/pnas.39.10.1095. URL
http://www.pnas.org/content/39/10/1095.



Modeling Others using Oneself in Multi-Agent Reinforcement Learning

Sukhbaatar, Sainbayar, Szlam, Arthur, Synnaeve, Gabriel,
Chintala, Soumith, and Fergus, Rob. Mazebase: A
sandbox for learning from games. arXiv preprint
arXiv:1511.07401, 2015.

Sukhbaatar, Sainbayar, Fergus, Rob, et al. Learning mul-
tiagent communication with backpropagation. In Ad-
vances in Neural Information Processing Systems, pp.
2244–2252, 2016.


