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Abstract

We present AssemblyHands, a large-scale benchmark
dataset with accurate 3D hand pose annotations, to facili-
tate the study of egocentric activities with challenging hand-
object interactions. The dataset includes synchronized ego-
centric and exocentric images sampled from the recent As-
sembly101 dataset, in which participants assemble and dis-
assemble take-apart toys. To obtain high-quality 3D hand
pose annotations for the egocentric images, we develop an
efficient pipeline, where we use an initial set of manual an-
notations to train a model to automatically annotate a much
larger dataset. Our annotation model uses multi-view fea-
ture fusion and an iterative refinement scheme, and achieves
an average keypoint error of 4.20 mm, which is 85% lower
than the error of the original annotations in Assembly101.
AssemblyHands provides 3.0M annotated images, includ-
ing 490K egocentric images, making it the largest existing
benchmark dataset for egocentric 3D hand pose estimation.
Using this data, we develop a strong single-view baseline of
3D hand pose estimation from egocentric images. Further-
more, we design a novel action classification task to evalu-
ate predicted 3D hand poses. Our study shows that having
higher-quality hand poses directly improves the ability to
recognize actions.

1. Introduction

Recognizing human activities is a decades-old problem
in computer vision [17]. With recent advancements in user-
assistive augmented reality and virtual reality (AR/VR) sys-
tems, there is an increasing demand for recognizing ac-
tions from the egocentric (first-person) viewpoint. Popu-
lar AR/VR headsets such as Microsoft HoloLens, Magic
Leap, and Meta Quest are typically equipped with egocen-
tric cameras to capture a user’s interactions with the real or
virtual world. In these scenarios, the user’s hands manip-
ulating objects is a very important modality of interaction.
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Figure 1. High-quality 3D hand pose annotations for egocen-
tric activity understanding. The original Assembly101 [28] rec-
ognized actions based on predicted hand poses from the egocentric
images; however, suboptimal pose estimation (PE) (e.g., due to the
occlusion on the left hand in the top figure) can degrade the per-
formance of action recognition (AR). In contrast, our Assembly-
Hands benchmark generates 3D hand pose annotations computed
from multi-view exocentric images, which are used to train an ego-
centric pose estimator. As we experimentally demonstrate with an
action classification task, having access to more accurate 3D hand
pose annotations is critical for better egocentric action recognition.

In particular, hand poses (e.g., 3D joint locations) play a
central role in understanding and enabling hand-object in-
teraction [3, 18], pose-based action recognition [7, 20, 28],
and interactive interfaces [10, 11].

Recently, several large-scale datasets for understanding
egocentric activities have been proposed, such as EPIC-
KITCHENS [5], Ego4D [8], and Assembly101 [28]. In par-
ticular, Assembly101 highlights the importance of 3D hand
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Figure 2. Construction of AssemblyHands dataset and a benchmark task for egocentric 3D hand pose estimation. We first use
manual annotations and an automatic annotation network (MVExoNet) to generate accurate 3D hand poses for multi-view images sampled
from the Assembly101 dataset [28]. These annotations are used to train a single-view 3D hand pose estimation network (SVEgoNet) from
egocentric images. Finally, the predicted hand poses are evaluated by the action classification task.

poses in recognizing procedural activities such as assem-
bling toys. 3D hand poses are compact representations, and
are highly indicative of actions and even the objects that are
interacted with– for example, the “screwing” hand motion is
a strong cue for the presence of a screwdriver. Notably, the
authors of Assembly101 found that, for classifying assem-
bly actions, learning from 3D hand poses is more effective
than solely using video features. However, a drawback of
this study is that the 3D hand pose annotations in Assem-
bly101 are not always accurate, as they are computed from
an off-the-shelf egocentric hand tracker [11]. We observed
that the provided poses are often inaccurate (see Fig. 1), es-
pecially when hands are occluded by objects from the ego-
centric perspective. Thus, the prior work has left us with
an unresolved question: How does the quality of 3D hand
poses affect action recognition performance?

To systematically answer this question, we propose a
new benchmark dataset named AssemblyHands. It in-
cludes a total of 3.0M images sampled from Assembly101,
annotated with high-quality 3D hand poses. We not only
acquire manual annotations, but also use them to train an
accurate automatic annotation model that uses multi-view
feature fusion from exocentric (i.e., third-person) images;
please see Fig. 2 for an illustration. Our model achieves
4.20 mm average keypoint error, which is 85% lower than
the original annotations provided in Assembly101. This au-
tomatic pipeline enables us to efficiently scale annotations
to 490K egocentric images from 34 subjects, making As-
semblyHands the largest egocentric hand pose dataset to
date, both in terms of scale and subject diversity. Compared
to recent hand-object pose datasets, such as DexYCB [3]
and H2O [18], our AssemblyHands features significantly
more hand-object combinations, as each multi-part toy can
be disassembled and assembled at will,

Given the annotated dataset, we first develop a strong
baseline for egocentric 3D hand pose estimation, using
2.5D heatmap optimization and hand identity classification.
Then, to evaluate the effectiveness of predicted hand poses,
we propose a novel evaluation scheme: action classification
from hand poses. Unlike prior benchmarks on egocentric
hand pose estimation [7, 18, 24], we offer detailed analysis
of the quality of 3D hand pose annotation, its influence on
the performance of an egocentric pose estimator, and the
utility of predicted poses for action classification.

Our contributions are summarized as follows:
• We offer a large-scale benchmark dataset, dubbed

AssemblyHands, with 3D hand pose annotations for
3.0M images sampled from the Assembly101 dataset,
including 490K egocentric images.

• We propose an automatic annotation pipeline with
multi-view feature fusion and iterative refinement,
leading to 85% error reduction in the hand pose an-
notations.

• We define a benchmark task for egocentric 3D hand
pose estimation with the evaluation from action classi-
fication. We provide a strong single-view baseline that
optimizes 2.5D keypoint heatmaps and classifies hand
identity. Our results confirm that having high-quality
3D hand poses significantly improves egocentric ac-
tion recognition performance.

2. Related work

Recognizing actions from pose. The general framework
for recognizing people’s actions involves extracting low-
level states from sensor observations, such as image fea-
tures or body/hand motion, and then feeding a temporal se-



Dataset Modality #img #ego img #views #subj Annotation approach

EgoDexter [24] RGB-D 3K 3K 1 (ego) 4 Manual
Panoptic Studio [30] RGB 15K - 31 N/A 2D + triangulation
FPHA [7] RGB-D 105K 105K 1 (ego) 6 Magnetic sensor
FreiHAND [37] RGB 37K - 8 32 Manual + 3D volume + template fitting
HO3D [9] RGB-D 103K - 5 10 2D + template fitting
InterHand2.6M [23] RGB 2.59M - 80-140 27 Manual + 2D + triangulation
DexYCB [3] RGB-D 508K - 8 10 Manual + template fitting
H2O [18] RGB-D 571K 114K 4 + 1 (ego) 4 2D + template fitting + smoothing
AssemblyHands (M)

RGB/Mono
227K 22K

8 + 4 (ego)
14

Manual + 3D volume + refinementAssemblyHands (A) 2.81M 468K 20
AssemblyHands (M + A) 3.03M 490K 34

Table 1. Comparison of AssemblyHands with existing 3D hand pose datasets 1. “M” and “A” stand for manual and automatic annotation,
respectively. AssemblyHands is the largest existing benchmark for egocentric 3D hand pose estimation.

quence of states into a recognition model. There is a long
history of using full body pose as the state representation in
recognizing actions [4, 14, 29, 33, 34], since poses are com-
pact representations that contain discriminative information
about actions. Also, in the context of AR/VR, pose infor-
mation carries the benefit that its availability is less affected
by privacy concerns, unlike image/video data. On the mod-
eling side, graph convolutional networks, which treat joints
as nodes and bones as edges, have been commonly used in
skeleton-based action recognition [20, 35].

In the exocentric setting, action recognition from hand
poses is less explored compared to using full body pose,
and is only studied on rather small datasets [18]. Instead,
hand poses are much more relevant in the egocentric set-
ting. Recently, a large-scale dataset, Assembly101 [28],
was proposed to investigate action recognition using 3D
hand poses. For Assembly101, 3D hand poses were found
to be strong predictors of action; in particular, using hand
poses was shown to give higher action classification accu-
racy compared to using video-based features [19].

Datasets for 3D hand pose estimation. Table 1 shows
statistics on existing RGB-based 3D hand pose datasets and
our AssemblyHands. Prior works on egocentric hand pose
estimation annotate 2D keypoints on a depth image [24] or
use magnetic markers attached to hands [7]. Due to the
noise from these sensors, as well as the annotation cost,
the accuracy and amount of annotation in these benchmarks
are not sufficient. Thus, most 3D hand pose estimation
works focus on using inputs from static exocentric cam-
eras [3, 9, 12, 23, 30, 31, 36, 37] or utilize such an exocentric
dataset to improve egocentric hand pose prediction [26].

Setups with multiple static cameras have several advan-
tages and have been widely used in the literature [25]. First,
the total number of available images proportionately in-
creases with the number of cameras. For instance, Inter-

1We do not include Assembly101 in Table 1 because it was not intended
as a 3D hand pose dataset.

Hand2.6M [23] features numerous camera views (80+), re-
sulting in the largest existing hand pose estimation dataset
(non-egocentric) with a moderate amount of distinct frames.
Second, 3D keypoint coordinates can be reliably annotated
from multiple 2D keypoints by using triangulation [23, 30]
or hand template fitting [3, 9, 18, 37] (e.g., MANO [27]).

Recently, a few egocentric activity datasets have in-
stalled synchronized egocentric cameras along with exocen-
tric cameras, e.g., Assembly101 [28] and H2O [18]. The
availability of exocentric images can significantly reduce
the amount of annotation effort required for egocentric im-
ages. Compared to the H2O dataset, AssemblyHands pro-
vides more than four times egocentric images with accurate
ground truth and eight times the number of subjects. Due to
the goal-oriented nature of assembly actions, the hand poses
in our benchmark are totally natural and unscripted.

For automatic annotation, we utilize a volumetric convo-
lution network similar to the one used by Zimmermann et
al. [37]. We further augment this model with an iterative
refinement scheme that does not require additional training.

3. AssemblyHands dataset generation

The input data in our proposed benchmark comes from
the recently introduced Assembly101 [28], a large-scale
multi-view video dataset designed for understanding proce-
dural activities, in particular, the assembly and disassembly
of take-apart toys. It is recorded with a static rig of 8 RGB
cameras, plus 4 monochrome cameras on a synchronized
headset worn by the human subject.

The initial hand pose annotations for Assembly101 are
generated using an off-the-shelf hand tracker specifically
designed for monochrome egocentric images [11]. While it
can estimate 3D hand poses with reasonable accuracy, there
are several limitations. For example, since the stereo area
of the egocentric cameras is relatively narrow, depth esti-
mates become inaccurate as hands move further away from
the image center. Also, egocentric-only tracking is prone to
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Figure 3. Architecture of the hand pose annotation model. We
use an EfficientNet encoder [32] to extract 2D features from multi-
view images, then aggregate them into a 3D feature volume, and
apply volumetric convolution with V2V-Posenet [22]. We apply
soft-argmax to extract hand joint locations from 3D heatmaps.

severe failure modes due to heavy occlusion during hand-
object interaction. These motivate us to develop a multi-
view annotation method using exocentric RGB cameras.

While several existing datasets use off-the-shelf RGB-
based models (e.g., OpenPose [2]) to annotate hand poses,
we have observed their accuracy is not satisfactory in As-
sembly101 (see the supplement for details). Since the
OpenPose is trained on images with less hand-object occlu-
sions [30], its predictions are often noisy when novel real-
world objects (take-apart toys) and higher levels of occlu-
sion are presented in Assembly101. Thus, it is necessary to
develop an annotation method tailored to our novel setup.

3.1. Automatic annotation pipeline

We present our proposed automatic annotation pipeline
using multi-view exocentric RGB images. We first prepare
manual annotation for the frames sampled from the subset
of Assembly101 at 1 Hz. Since obtaining manual annota-
tions is laborious, we use them for training an annotation
network that can automatically provide reasonable 3D hand
pose annotation. We then introduce the detail of our anno-
tation network: (1) an annotation network using volumet-
ric feature fusion (MVExoNet), and (2) iterative refinement
during inference of the network. Compared to the manual
annotation, this automatic annotation scheme allows us to
assign 21 times more labels in another subset of Assem-
bly101 sampled at 30 Hz.

Manual annotation. First, we obtain manual annotations
of the 3D locations of 21 joints on both hands in the world
coordinate space. We use a setup similar to that of [6, 23],
where 2D keypoints are annotated from multiple views and
triangulated into 3D. In total, we annotated 62 video se-
quences from Assembly101 at a sampling rate of 1 Hz, re-
sulting in an annotated set of 22K frames, each having 8
RGB views. We further split it into 54 sequences for train-
ing and 8 sequences for testing.

Volumetric annotation network. We next design a neu-
ral network model for 3D keypoint annotation. With multi-
camera setups, a standard approach is to triangulate 2D key-
point detections; we call this the “2D + Triangulation” base-
line. For instance, in InterHand2.6M [23] this approach can
achieve an accuracy of 2.78 mm, owing to the high num-
ber of cameras (80 to 140). However, for Assembly101,
2D + Triangulation only achieves 7.97 mm given the lim-
ited number of 8 RGB cameras (see Table 2). On the other
hand, end-to-end “learnable triangulation” methods [1, 16]
are known to outperform standard triangulation for human
pose estimation in this regime. We thus adopt this princi-
ple and design a multi-view hand pose estimation network
based on 3D volumetric feature aggregation.

We name our volumetric network MVExoNet, and show
its design in Fig. 3. First, a feature encoder extracts 2D key-
point features for each view. We then project the features to
a single 3D volume, using the softmax-based weighted av-
erage proposed in [16]. Later, an encoder-decoder network
based on 3D convolutions refines the volumetric features
and outputs 3D heatmaps. We obtain 3D joint coordinates
with soft-argmax operation on the heatmaps.

For the architecture, we use EfficientNet [32] as an en-
coder to extract compact 2D features before volumetric ag-
gregation, in order to save GPU memory. We use V2V-
PoseNet [22] as the 3D convolutional network. During
training, we generate 2D hand crops by slightly expanding
the region enclosing the manually annotated 2D keypoints.
The 3D volume is 300 mm long on each side, centered on
the bottom of the middle finger (i.e., the third MCP joint).
We also augment the volume’s root position by adding ran-
dom noise to each axis, which prevents the model from al-
ways predicting the origin of the volume as the third MCP.
At test time, we crop hand regions based on the output of a
hand detector, and use the predicted third MCP from the 2D
+ Triangulation baseline as the volume root.

Iterative refinement. During the inference of MVExoNet,
we propose a simple iterative refinement heuristic that im-
proves the model’s input over several rounds. As mentioned
above, MVExoNet requires hand bounding boxes to crop
input images and the root position to construct the 3D vol-
ume. At test time, the bounding box and volume root come
from a hand detector and triangulation of initial 2D key-
point predictions, respectively, which may contain inaccu-
racies. We found that MVExoNet performs worse than the
hypothetical upper bound of having the manually annotated
crops and root positions as input.

Our iterative refinement is motivated by this observa-
tion: since MVExoNet already generates reasonable pre-
dictions, we can use its output to re-initialize the hand crops
and volume root position. This gives the network better in-
puts with each successive round. We call the original model
MVExoNet-R1 (the first round of inference), and name the



Figure 4. Example visualization of iterative refinement on AssemblyHands and Desktop Activities [21]. Over the refinement iterations,
the cropped image progressively becomes better centered on the hand, and the predicted hand pose becomes more accurate.

Annotation method MPJPE PCK-AUC
Egocentric-only [28] 27.55 29.4
2D + Triangulation 7.97 63.8
MVExoNet-R1 (Ours) 5.42 79.2
MVExoNet-R2 (Ours) 4.30 83.1
MVExoNet-R3 (Ours) 4.20 83.4

Table 2. Evaluation of hand pose annotation on manually an-
notated subset of AssemblyHands. We use MPJPE (mm) and
PCK-AUC (%) as the evaluation metrics.

following rounds as MVExoNet-R2, etc. In each additional
round, we define input hand crops from projected 2D key-
points generated by the MVExoNetin the previous round,
and center the 3D volume on the predicted root position.
Note that we freeze MVExoNet during the iterative refine-
ment inference and only update the input (i.e., bounding box
and volume root) to the model.

3.2. Evaluation of annotated 3D hand poses

We now compare the accuracy of our proposed annota-
tion method to several baselines, including egocentric hand
tracker [11] used in the original Assembly101. First, to
evaluate in-distribution generalization, we use the manu-
ally annotated test set from Assembly101, which contains
frames sampled from 8 sequences at 1 Hz. We also con-
sider the generalization to unseen multi-camera setups; for
this purpose, we use the Desktop Activities subset from the
recently released Aria Pilot Dataset [21].

Comparison to egocentric hand pose annotation. We
compare the accuracy of annotation methods on a manually-
annotated evaluation set in Table 2. The original hand anno-
tations in Assembly101 [28] are computed by an egocentric
hand pose estimator, UmeTrack [11], using monochrome
images from egocentric cameras. The egocentric annota-

tion (Egocentric-only) achieved a error of 27.55mm, which
is significant higher than methods using exocentric cameras,
namely 2D + Triangulation and our proposed method. We
found that the annotation from egocentric cameras becomes
inaccurate when in-hand objects block the user’s perspec-
tive. For these cases, the keypoint predictions from multiple
exocentric cameras help localize the occluded keypoints.
By fusing volumetric features from multi-view exocentric
images, our MVExoNet performs much better than the stan-
dard 2D + Triangulation baseline.

Ablation study of MVExoNet. As shown in Table 2, our
initial inference result (MVExoNet-R1) achieved reason-
able performance with 5.42 mm error. The iterative re-
finement further boosts in reducing annotation errors from
5.42 mm to 4.20 mm (22.5% reduction) after two rounds.

In Fig. 4, we visualize the transition of the hand crops
and MVExoNet’s predictions over the rounds on both As-
sembly101 and Desktop Activities. Hand crops in the first
round are not optimal for both datasets. For example, the
model cannot distinguish which hand to annotate because
both hands are centered on the image in Assembly101 (left).
Also, the hand moves above in the image (top right) and
appears to be tiny (bottom right). Given these suboptimal
hand crops, the prediction becomes noisy, such as keypoint
predictions going to the other hand and detaching from the
hand position. However, in the later rounds, the hand crops
gradually focus on the target hand (e.g., left hand on the top
left figure), which improves the keypoint localization.

Generalization to novel camera configurations. To evalu-
ate the cross-dataset generalization ability of our annotation
method, we use the Desktop Activities dataset, which also
features hand-object interactions in a multi-camera setup.
It is recorded with a multi-view camera rig similar to that
of Assembly101, but with 12 exocentric RGB cameras and
different camera placements. The objects are from the YCB



Annotation method MPJPE PCK-AUC
2D + Triangulation 49.21 23.9
MVExoNet-R1 (Ours) 21.20 51.3
MVExoNet-R2 (Ours) 14.57 67.2
MVExoNet-R3 (Ours) 13.38 70.4

Table 3. Evaluation of multi-view annotation on the Desktop
Activities dataset [21]. We use MPJPE (mm) and PCK-AUC (%)
as the evaluation metrics.

benchmark [3], which are also unseen in Assembly101. To
our knowledge, there are no existing hand pose annotations
for Desktop Activities. We use the same manual annotation
approach to construct an evaluation set with 1105 annotated
frames from three different sequences.

As shown in Table 3, due to the new camera configura-
tion and the presence of novel objects, all methods obtain
higher errors than in the Assembly101 setting. In particu-
lar, the baseline annotation method 2D + Triangulation de-
grades significantly when applied to Desktop Activities, to
nearly 50 mm MPJPE. In contrast, our MVExoNet is quite
robust to the new setting, achieving an initial MPJPE of
21.20 mm, and 13.38 mm after two rounds of iterative re-
finement (a 36.9% error reduction).

4. Egocentric 3D hand pose estimation

To build hand pose estimators for egocentric views, we
train models on egocentric images with annotations gener-
ated in Section 3. Training on egocentric images is nec-
essary because existing exocentric datasets do not fully
capture egocentric-specific biases in terms of the view-
point, camera characteristics (egocentric cameras are typ-
ically fisheye), and blur from the head motion. Hence, the
generalization of exocentric models to egocentric data tends
to be limited: for example, in [26], the model trained on
DexYCB [3] (exocentric) achieves 14% PCK on FPHA [7]
(egocentric), compared to 63% when fine-tuned on FPHA.

We conduct an evaluation of 3D hand pose estimation
from egocentric views. Given a single egocentric image, the
task aims to predict the 3D coordinates of 21 joints in the
wrist-relative space. We split both the manually annotated
and the automatically annotated datasets (M/A) into train-
ing and evaluation. Manually annotated training and eval-
uation sets contain 19.2K and 3.0K images, respectively,
which are sampled at 1 Hz from 62 video sequences with
14 subjects. Automatically annotated sets include 405K and
63K images, respectively, which are sampled at 30 Hz from
a disjoint set of 20 sequences with 20 subjects.
Single-view baseline. Following standard heatmap-based
hand pose estimators [15, 23], we build a single-view net-
work (SVEgoNet) trained on monochrome egocentric im-
ages. The model consists of 2.5D heatmap optimization and

Subsets Eval-M Eval-A Eval-M+A
Train-M 24.38 28.58 28.35
Train-A 25.18 22.29 22.45
Train-M+A 23.46 21.84 21.92

Table 4. Effect of automatic annotation for the training of
SVEgoNet. We use egocentric image sets with manual (M), au-
tomatic (A), and manual and automatic (M + A) annotation for
training and evaluation. We report MPJPE (mm) as the evaluation
metric (lower is better).

hand identity classification. The 2.5D heatmaps represent
2D keypoint heatmaps in x-y axis and the wrist-relative dis-
tance from the camera in z axis. We use the ResNet-50 [13]
backbone. The 3D joint coordinates are computed by ap-
plying the argmax operation on the 2.5D heatmaps.

In addition, we observe that learning the correlations be-
tween hand poses and the identity of hand is effective in
our task. For instance, during the “screw” motion, partici-
pants in Assembly101 are more likely to hold the toy with
their left hand and turn the screwdriver with their right hand.
When handling small parts, both hands tend to be closer and
appear in the same hand crop. To capture such correlations,
we add a hand identity classification branch to SVEgoNet,
inspired by [23]. We let the branch classify whether left,
right, or both hands appear in a given hand crop.
Evaluation. We compare the predictions from our model
and UmeTrack [11] with the ground truth in wrist-relative
coordinates. We use two standard metrics: mean per joint
position error (MPJPE) in millimeters, and area under curve
of percentage of correct keypoints (PCK-AUC).

4.1. Results

Effect of automatic annotation. In Table 4, we com-
pare the performance of SVEgoNet trained on datasets with
manual (M), automatic (A), and manual + automatic (M+A)
annotations, respectively. We provide Eval-M results as the
canonical reference and the other results on all evaluation
sets. We observe that using Train-A alone, which is 21 times
larger than Train-M, slightly increases error on Eval-M by
3% relative. On the other hand, the model trained on the
combined annotations, Train-M+A, consistently gives the
lowest error, which validates our efforts in scaling annota-
tions with automatic methods. This study also shows that
having a hybrid of manual and automatic annotations is a
pragmatic solution to improving the model performance.

Qualitative results. Fig. 5 shows qualitative examples
of 3D hand poses generated by UmeTrack [11], our auto-
matic annotation pipeline, and our trained egocentric base-
line SVEgoNet. We visualize the prediction of each model
from different viewpoints. The egocentric baseline Ume-
Track can estimate hand poses reasonably well when seen
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Figure 5. Qualitative examples of 3D hand poses given by our automatic annotation, SVEgoNet, and UmeTrack [11]. We visualize
the 2D projection of 3D poses in one egocentric image and another synchronized exocentric image. We use colored borders to indicate
the source images from which hand poses are computed: exocentric (red, additional views omitted) or egocentric (green). The egocentric-
based UmeTrack exhibits multiple failure modes, such as inaccurate relative depth prediction of keypoints (left) and entire hand (middle),
and completely losing track during occlusion (right). Our multi-view automatic annotation overcomes these failures, resulting in a more
robust SVEgoNet when trained on such annotations.

from the egocentric view; however, visualization in exocen-
tric views reveals that it tends to make errors along the z-
axis. In particular, the accuracy of the prediction degrades
in hard examples with self-occlusion (left example) or hand-
object occlusion (middle and right examples). On the other
hand, our multi-view automatic annotation overcomes these
failures using the cues of multiple exocentric images. Ow-
ing to it, the SVEgoNet trained on the annotation achieves
more robust results to these occlusion cases.

5. Action classification from 3D hand poses

Finally, we revisit our motivating question: How does
the quality of 3D hand poses affect action recognition per-
formance? We answer this question with a novel evaluation
scheme: verb classification with hand poses as input. In As-
sembly101 [28], an action is defined at a fine-grained level
as the combination of a single verb describing a movement
plus an interacting object, e.g., pick up a screwdriver. We
use six verb labels to evaluate predicted hand poses, includ-
ing pick up, position, screw, put down, remove, and unscrew
(see the left figure in Fig. 6). This is because these verbs
heavily depend on the user’s hand movements, which hand
pose estimation aims to encode. For classifying verbs, we
train MS-G3D [20], a graph convolutional network, using
the output of egocentric hand pose estimators. Following
the experiments of Assembly101, for each segment, we in-
put the sequence of 42 keypoints (21 for each hand). We
use the same train/eval split as our automatic annotation,
AssemblyHands-A, sampled at a frequency of 30 Hz (vs. the

original 60 Hz). The model constructs time-series graphs
from 3D hand poses and classifies each segment into verbs.

5.1. Results

In Table 5, we report the verb classification accuracy
given 3D hand poses estimated from the egocentric cam-
eras. First, we establish an empirical upper bound for verb
classification accuracy in AssemblyHands-A using the an-
notated hand poses. We train a verb classifier on our auto-
matic annotations, which achieves 56.5% verb accuracy on
average. We note that the lower sampling rate of 10 Hz
affects the recognition of rapid nonlinear motions; in par-
ticular, the accuracy for unscrew is quite low, mainly due to
confusion with the screw motion.

We then compare our single-view SVEgoNet to the off-
the-shelf egocentric hand pose estimator UmeTrack [11],
which was used to provide the original annotations for As-
sembly101, and uses a feature fusion module from multi-
ple egocentric images. First, we report on the pose estima-
tion metric, where SVEgoNet achieves 22.96 mm MPJPE,
which is 38% lower than UmeTrack. Next, for verb clas-
sification accuracy, using hand poses predicted by SVEg-
oNet also outperforms using UmeTrack by a large margin
(51.7 vs. 41.8). When using the upper bound performance
of 56.5 as a reference, using SVEgoNet poses attains 91.5%
relative performance, which is significantly better than the
73.9% that can be achieved with UmeTrack.

Additionally, we present classification confusion matri-
ces for UmeTrack and SVEgoNet in Fig. 6. Using SVEg-



Method MPJPE pick up position screw put down remove unscrew Avg. Verb Acc.
UmeTrack [11] 32.91 67.2 37.1 53.7 29.8 22.5 10.8 41.8 (73.9%)
SVEgoNet (Ours) 21.92 58.0 59.7 58.5 46.3 51.0 27.0 51.7 (91.5%)
AssemblyHands-A - 63.4 61.3 65.9 59.5 49.0 13.5 56.5 (100%)

Table 5. Evaluation of action classification from hand poses. We train and evaluate a MS-G3D [20] action classification model using
hand pose sequences as input, and report Verb Accuracy (%). AssemblyHands-A represents the empirical upper bound where automatically
annotated hand poses are used as input. Our SVEgoNet predicts more accurate 3D hand poses, which leads to better classification accuracy.

Figure 6. Verb label distribution and confusion matrices of verb classification. We show the distribution of the six verb labels (left)
used in our experiments and confusion matrices of UmeTrack [11] (middle) and our SVEgoNet (right).

oNet predictions significantly reduces the off-diagonal con-
fusions, especially for the challenging verb pairs, (pick up,
put down) and (screw, unscrew). Measuring the perfor-
mance individually per verb, SVEgoNet improves the verb
accuracy from the UmeTrack by 22%, 5%, 16%, 28%, and
17% for position, screw, put down, remove and unscrew, re-
spectively, while dropping the accuracy for pick up by 5%.
For the confusing verb pair (pick up, put down), UmeTrack
tends to predict both verbs as pick up due to the most fre-
quent verb class. Thus, the accuracy of put down is partic-
ularly low (29.8%), while the accuracy of 67.2% for pick
up is slightly higher than SVEgoNet’s 58.0%. Notably, our
model’s improvement on position and remove verbs is sig-
nificant because for these verbs, one hand is most of the
time heavily occluded, and UmeTrack fails to predict accu-
rate poses for the occluded hands.

The fact that we achieve more than 90% relative perfor-
mance compared to the upper bound is very encouraging, as
SVEgoNet only uses a single egocentric image as input, as
opposed to performing complex inference with multi-view
exocentric images. This again speaks to the large poten-
tial in recognizing activities using lightweight egocentric
setups, such as head-mounted monochrome cameras.

6. Conclusion

We present AssemblyHands, a novel benchmark dataset
for studying egocentric activities in the presence of strong
hand-object interactions. We provide accurate 3D hand

pose annotations on a large scale, using an automatic
annotation method based on multi-view feature aggrega-
tion, which far outperforms the egocentric-based annotation
from the original Assembly101. The accurate annotations
allow us to carry out in-depth analysis of how hand pose
estimates inform action recognition. We provide a baseline
for single-view egocentric hand pose estimation, and pro-
pose a novel evaluation scheme based on verb classification.
Our results have confirmed that the quality of 3D hand poses
significantly affects verb recognition performance. We hope
that AssemblyHands inspires new methods and insights for
understanding human activities from the egocentric view.

Limitations and future work. We focus on hand pose an-
notations and action classification from hand poses. While
object cues (e.g., object pose) would further benefit the task,
its annotation creates a bigger challenge due to the presence
of many small object parts in the assembly task. In future
work, we first plan to extend hand pose annotation to the en-
tire Assembly101 at higher sampling rates. We also plan to
obtain object-level annotation, e.g., object bounding boxes.
Finally, we are interested in exploring the interplay between
hands, objects, and actions with multi-task learning.
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