
Sliced Multi-Marginal Optimal Transport

Samuel Cohen, Alexander Terenin, Yannik Pitcan, Brandon Amos, Marc Peter Deisenroth, K S Sesh Kumar

Abstract

Multi-marginal optimal transport enables one to compare multiple probability
measures, which increasingly finds application in multi-task learning problems.
One practical limitation of multi-marginal transport is computational scalability
in the number of measures, samples and dimensionality. In this work, we propose
a multi-marginal optimal transport paradigm based on random one-dimensional
projections, whose (generalized) distance we term the sliced multi-marginal Wasser-
stein distance. To construct this distance, we introduce a characterization of the
one-dimensional multi-marginal Kantorovich problem and use it to highlight a num-
ber of properties of the sliced multi-marginal Wasserstein distance. In particular,
we show that (i) the sliced multi-marginal Wasserstein distance is a (generalized)
metric that induces the same topology as the standard Wasserstein distance, (ii)
it admits a dimension-free sample complexity, (iii) it is tightly connected with
the problem of barycentric averaging under the sliced-Wasserstein metric. We
conclude by illustrating the sliced multi-marginal Wasserstein on multi-task density
estimation and multi-dynamics reinforcement learning problems.

1 Introduction

Optimal transport is a framework for defining meaningful metrics between probability measures
[25, 31]. These metrics find a wide range of applications, such as generative modeling [11, 18],
Bayesian inference [28], imitation learning [15], graph matching and averaging [32, 33]. Multi-
marginal optimal transport [17] studies ways of comparing more than two probability measures in a
geometrically meaningful way. Multi-marginal distances defined using this paradigm are often useful
in settings where sharing geometric structure is useful, such as multi-task learning. In particular, they
have been applied for training multi-modal generative adversarial networks [12], clustering [7], and
computing barycenters of measures [4].

Following the establishment of key theoretical results, including by Agueh and Carlier [1], Gangbo
and Święch [17], and Pass [24], research is shifting toward applications. This motivates a need
for practical algorithms for the multi-marginal setting [20]. Standard approaches based on linear
programming and entropic regularization scale exponentially with the number of measures, and/or
the dimension of the space [6, 29]. A number of recent works have therefore studied settings, where
multi-marginal transport problems can be efficiently solved via low-rank structures on the underlying
cost function [4], but exponential cost in the dimension remains [2, 3].

In parallel, a number of works on sliced transport [9] developed techniques for scalable transport,
which (i) derive a closed form for a problem in a single dimension, and (ii) extend it into higher
dimensions via random linear projections (slicing) and thereby inherit the complexity of the one-
dimensional problem. This strategy has been shown effective in the classical Wasserstein [8, 9, 16,
19, 23, 27] and Gromov–Wasserstein [30] settings between pairs of measures, but has not yet been
applied to settings with more than two measures.

In this paper, we address this gap and propose sliced multi-marginal transport, providing a scalable
analog of the multi-marginal Wasserstein distance. To do so, we derive a closed-form expression for
multi-marginal Wasserstein transport in one dimension, which lifts to a higher-dimensional analog
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Figure 1: Illustration of the optimal coupling’s structure on R between discrete measures µ1, µ2 and
µ3. Points are samples of each measures, with weights next to them. Left: histogram of measures
(horizontal); joint samples are obtained by sampling a (black) line uniformly (drawn vertically), and
picking points that are associated with the bin intersected by that line. Right: Corresponding triples
of points that are aligned according to the coupling are linked by a pair of lines.

via slicing. This one-dimensional closed-form expression can be computed with a complexity of
O(PN logN), where P is the number of measures and N is the number of samples per measure.
Sliced multi-marginal Wasserstein (SMW) can be estimated by Monte Carlo in O(KPN logN),
where K is the number of Monte Carlo samples.

Furthermore, we study SMW’s theoretical properties. We prove that (i) it is a generalized metric,
whose associated topology is the topology of weak convergence, (ii) its sample complexity is
dimension free, just like the sliced Wasserstein case involving two measures, and (iii) sliced multi-
marginal transport is closely connected with the problem of barycentric averaging under the sliced
Wasserstein metric. We also showcase applications, where we focus on multi-task learning on
probability spaces, where sharing knowledge across tasks can be beneficial and sliced multi-marginal
Wasserstein can be used as a regularizer between task-specific models.

2 Background

Multi-marginal optimal transport [17] is a class of optimization problems for comparing multiple
measures µ1, . . . , µP ∈M(Rd), all supported on the metric space (Rd, || · ||2). The most common
such problem is computing the multi-marginal Wasserstein distance, defined as

MW2(µ1, . . . , µP ) = min
π∈Π(µ1,...,µP )

∫
(Rd)P

c(x1, . . . ,xP ) dπ(x1, . . . ,xP ), (1)

where c : Rd× . . .×Rd → R is a cost function and Π(µ1, . . . , µP ) is the set of probability measures
inM((Rd)P ) with marginals µ1, . . . , µP . We focus on the barycentric cost of Agueh and Carlier [1]
and Gangbo and Święch [17], given by

c(x1, . . . ,xP ) =

P∑
p=1

βp

∥∥∥xp − P∑
j=1

βjxj

∥∥∥2

, β1, . . . , βP ≥ 0,

P∑
p=1

βp = 1. (2)

This cost was originally motivated from an economics-inspired perspective, but is also often preferable
because it leads to connections with barycentric averaging [1], giving it a simple interpretation. It also
recovers the Wasserstein distance with squared 2-Euclidean cost in the case P = 2 (up to constants),
referred to asW . Algorithms for estimating (1) from a set of samples scale exponentially with the
number of measures P and/or the dimension d of the ground space [2, 4, 6].

MW is useful in multi-task settings for regularizing measures µ1, . . . , µP by adding
MW(µ1, . . . , µP ) to a multi-task loss. It can also be used in a setting, where we aim for a model
output µ to be close to a given set of measures ν1, . . . , νP , which can be done by introducing a loss
of the formMW(µ, ν1, . . . , νP ) and minimizing it with respect to µ.

Sliced transport. With the usual Euclidean-type cost structures, the Wasserstein distance be-
tween pairs of one-dimensional discrete measures can be computed efficiently using sorting with
O(N logN) complexity. More generally, we can consider the average distance between measures
projected onto R along random axis, which gives [8, 9]

SW2(µ, ν) =

∫
Sd−1

W2
(
Mθ

#(µ),Mθ
#(ν)

)
dΘ(θ), (3)
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where Mθ(x) = xTθ, (·)# denotes the push-forward of measures, and Θ is the uniform distribution
on the unit sphere Sd−1. We sample from Mθ

#(µ) by sampling from µ and projecting onto θ.

A fundamental result by Bonnotte [9] is that SW is a metric that metrizes the topology of weak
convergence—the exact same topology asW . SW can be estimated via Monte Carlo and preserves
the computational complexity of estimatingW on R, which is O(N logN). Owing to the Monte
Carlo nature, the sample complexity of SW is dimension free [9, 22], in contrast with the exponential
dependency of the Wasserstein distance on dimension. The combination of good computational and
statistical properties makes SW an attractive choice for minimization problems on measure spaces,
including generative modeling and imitation learning [15, 16]. This immediately raises the question
whether SW extends to the multi-marginal case so that it preserves its key appealing properties.

3 Sliced Multi-Marginal Transport

To proceed toward a suitable notion of sliced multi-marginal optimal transport, we begin by developing
a probabilistic analogy to understand the coupling structure that arises in one-dimensional transport
when considering multiple measures. This enables us to derive suitably-closed-form expressions
from which sliced multi-marginal Wasserstein distances can be built.

3.1 One-dimensional Multi-Marginal Transport

In optimal transport, couplings between probability measures form one of the standard objects of
study. One way to understand the structure of a coupling is to introduce a set of random variables
yi : Ω → R on a probability space (Ω,F ,P) whose joint distribution is the coupling of interest.
Consider the one-dimensional Wasserstein formula

W2(µ1, µ2) =

∫ 1

0

|C−1
µ1

(x)− C−1
µ2

(x)|2 dx, (4)

where C−1
µ1
, C−1

µ2
are the generalized quantile functions of µ1, µ2. If we define y1 = C−1

µ1
(x) and

y2 = C−1
µ2

(x), taking
(
[0, 1],B(0, 1),U(0, 1)

)
as our probability space, we can write (4) as

W2(µ1, µ2) = Ey1,y2∼Π

[
|y1 − y2|2

]
Π = (C−1

µ1
, C−1

µ2
)# U(0, 1). (5)

This reveals that the optimal coupling admits a very specific structure: it is the pushforward measure
induced by an underlying uniform random variable. The one-dimensional Wasserstein distance is thus
simply the average squared distance of a pair of random variables y1 and y2, where (a) we sample
both y1 and y2 by the generalized quantile method, and (b) we share the underlying uniform random
numbers used in the sampling. We prove that this view is general and extends to the multi-marginal
case, even in the case of the more elaborate cost structure introduced in Section 2.
Proposition 1. If µ1, . . . , µP ∈M(R) and U(0, 1) is the uniform measure, then

MW2(µ1, . . . , µP ) =

∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x)

∣∣∣2 dx, (6)

and the optimal coupling solving (1) is of the form

π? = (C−1
µ1
, . . . , C−1

µP )# U(0, 1). (7)

Proposition 1 shows the optimal coupling is the push-forward of a uniform distribution through the
generalized quantiles of each measure. Obtaining joint samples from the coupling can hence be
done by sampling from the uniform distribution and mapping through each quantile function. This
extends the result by Carlier et al. [13] to the setting where absolute continuity is not assumed. In the
discrete case, we can simplify this further by introducing the sorting idea used in the one-dimensional
Wasserstein case, to deduce the following.
Corollary 2. If measures µ1, . . . , µP ∈ M(R) are discrete and uniform with N atoms, i.e., µp =
1
N

∑N
i=1 δx̃(p)

i
, with x̃(p)

1 ≤ . . . ≤ x̃(p)
N , for p = 1, . . . , P , then

MW2(µ1, . . . , µP ) =
1

N

N,P∑
i,p=1

βp

∣∣∣x̃(p)
i −

P∑
j=1

βj x̃
(j)
i

∣∣∣2. (8)
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In particular, this means that the complexity of computing the multi-marginal Wasserstein in one
dimension in the discrete uniform case is O(PN logN)—the cost of sorting. This establishes the
necessary results in one dimension, and we generalize them to the higher-dimensional case via slicing.

3.2 Sliced Multi-Marginal Wasserstein Distance

To define the sliced multi-marginal Wasserstein distance, we average the expressions given in (6)
along one-dimensional random projections, which gives

SMW2(µ1, . . . , µP ) =

∫
Sd−1

∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µθ
p

(x)−
P∑
j=1

βjC
−1
µθ
j

(x)
∣∣∣2 dxdΘ(θ), (9)

where µθj = Mθ#(µj) for j = 1, . . . , P . SMW in (9) can be estimated via Monte Carlo in
O(KPN logN), where K is the number of Monte Carlo samples (projections).

Topological properties We now study SMW’s topological properties. We first show that SMW
is the weighted mean of sliced Wasserstein distances between pairs of measures.
Proposition 3. Let µ1, . . . , µP ∈M(Rd). We have that

SMW2(µ1, . . . , µP ) =
1

2

P∑
i,j=1

βiβjSW2(µi, µj). (10)

Proposition 3 is useful in deriving statistical and topological properties of SMW . It is however
more efficient to estimate it via our closed-form formula for multi-marginal transport – see (9).
This leads to a computational complexity of O(KPN logN), whereas naively implementing (10)
scales in O(KP 2N logN). Furthermore, as the sliced-Wasserstein metric is upper-bounded by the
Wasserstein [9], an immediate consequence of Proposition 3 is that

SMW2(µ1, . . . , µP )
(10)
=

1

2

P∑
i,j=1

βiβjSW2(µi, µj) ≤
1

2

P∑
i,j=1

βiβjW2(µi, µj). (11)

A reverse inequality also follows directly (see corollary 12), which shows that SMW gives rise to
the topology of weak convergence—one of the key properties that made SW an attractive choice in
the first place. We now study metric properties of SMW .
Proposition 4. SMW is a generalized metric.

In particular, this means that SMW is (i) non-negative, (ii) zero if and only if all measures are
identical, (iii) permutation-equivariant, and (iv) satisfies a generalized triangle inequality involving
multiple measures. Hence, SMW is well-behaved topologically-wise as it is a generalized metric
inducing weak convergence. We continue by studying SMW’s statistical properties.

Statistical Properties In the following proposition, we assess the impact of the number of samples
and random projections used to estimate SMW .
Proposition 5. If µ1, . . . , µP ∈M(Rd), and assumingW2 has sample complexity ρ(N) on R, then,

E[SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P )]2 ≤ 1

2
ρ(N), (12)

where µ̂p refers to empirical measures with N samples.

Proposition 5 shows that the sample complexity of SMW is dimension-free—this stands in contrast
to the sample complexity of the multi-marginal Wasserstein, which is exponential in the dimension.
In practice, we use Monte Carlo sampling to compute SMW , which introduces additional error. To
understand this error, we examine SMW’s projection complexity.
Proposition 6. Let µ1, . . . , µP ∈ M(Rd), and define SMW the approximation obtained by uni-
formly picking L projections on Sd−1, then

E
[
SMW2

(µ1, . . . , µP )− SMW2(µ1, . . . , µP )
]2
≤ L−1/2 Varθ

[
MW2

(
µθ1 , . . . , µ

θ
P )
]
, (13)

where θ follows the uniform distribution on Sd−1 and µθp = Mθ
#(µp).
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Figure 2: Gradient flow ∂µt = −∇SMW2(µt, ν1, . . . , νP ) starting from a randomly initialized
Gaussian µ0. It is solved iteratively following Bonneel et al. [8].

This shows that the quality of Monte Carlo estimates of SMW is controlled by number of projections
and the variance of evaluations of the base multi-marginal Wasserstein in 1D.

Connection to Barycenters We now study connections of SMW to the problem of barycentric
averaging, which extends the notion of a mean to more general settings. LetD :M(Rd)×M(Rd)→
R be a discrepancy on the space of probability measures. Recall that the barycenter of P measures
µ1, . . . , µP is defined as

µ? = arg min
µ∈M(Rd)

F(µ), F(µ) =

P∑
p=1

D(µp, µ). (14)

Barycentric averaging is well-studied from theoretical and computational view-points, notably under
the squared Wasserstein [14], sliced Wasserstein [8] and Gromov–Wasserstein [26] metrics.

Proposition 7. Let µ1, . . . , µP ∈M(Rd),
∑P
p=1 βp = 1. Furthermore, let β̂p be augmented multi-

marginal weights, so that for m ∈ [0, 1] it holds that β̂p = mβp for p = 1, . . . , P ,
∑P+1
p=1 β̂p = 1,

and D = SW2. Then

arg min
µ∈M(Rd)

SMW2(µ1, . . . , µP , µ) = arg min
µ∈M(Rd)

F(µ), (15)

where β is the weight vector of F and β̂ is the weight vector of SMW .

Proposition 7 reveals a connection between sliced multi-marginal transport and barycenters under the
sliced-Wasserstein: the measure that is closest to µ1, . . . , µP in SMW is actually the barycenter of
such measures under SW . We continue by studying smoothness of SMW as a loss function.

Differentiability Sliced Wasserstein variants are desirable candidate losses for learning on proba-
bility spaces thanks to their smoothness properties. We show SMW inherits these properties.
Proposition 8. Let µ1, . . . , µP ∈M(Rd) be discrete measures with N atoms, which we gather into
matrices {X(p)}Pp=1, and similarly define µX with atoms X. Assume X has distinct points. Then
SMW2 is smooth with gradient

∇XSMW2(µ1, . . . , µP , µX) = βP+1

P∑
p=1

βp

∫
Sd−1

Xθ −
(
X

(p)
θ ◦ σXθ

◦ σ−1

X
(p)
θ

)
dΘ(θ), (16)

where σX is the permutation that sorts atoms of X.

Proposition 8 shows that SMW2 is smooth almost everywhere, and is hence well-suited for multi-task
learning, as it allows to compare multiple task-representative probability measures. We illustrate this
in Figure 2. Here, we consider the problem minµ SMW2(µ, ν1, . . . , ν4), amounting to estimating
the sliced barycenter of µ1, . . . , µ4 (see Proposition 7), and solve it iteratively via the gradient flow
∂µt = −∇SMW2(µt, ν1, . . . , νP ), following Bonneel et al. [8] in the pairwise case.

4 Multi-Task Learning with Sliced Multi-marginal Optimal Transport

In the previous section, we proposed a multi-marginal metric between probability measures, which
avoids exponential computational and statistical complexities and is thus practical for applications
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where a large number of samples N , number of measures P , or dimension d is of interest. SMW
allows us to evaluate the closeness of probability measures µ1, . . . , µP , which makes it a good
candidate regularizer in multi-task learning settings over probability spaces, by encouraging shared
global structure across tasks through closeness in sliced multi-marginal geometry. We now sketch
potential areas of applications of SMW in the context of multi-task learning on spaces of probability
measures, and illustrate examples in density estimation and multi-dynamics reinforcement learning.

4.1 Density Estimation with Shared Structure

Consider P target measures µ1, . . . , µP , which we aim to approximate by parametric models
ν
1
, . . . , νP , such as for instance generative adversarial networks. In applications, it is often the

case that these measures are affected by issues related to distributional shift [5], which prevents
us from obtaining accurate empirical samples of µ1, . . . , µP . One way to counteract these issues
is to introduce a shared structure between the measures, which can be enforced through SMW
regularization.

For example, consider empirical estimates µ̂1, . . . , µ̂P of µ1, . . . , µP , which are corrupted because
no data is available in certain regions of each measure’s support. Here, reconstruction of µ1, . . . , µP
is only possible through the use of shared structure on the generative models ν1, . . . , νP , which we
can enforce by using SMW(ν1, . . . , νP ) as a regularizer. This results in the optimization problem

arg min
ν1,...,νP

P∑
p=1

SW2(µp, νp)

local loss

+γ SMW2(ν1, . . . , νP )

global loss (shared)

, (17)

where SW2(µp, νp) ensures that the respective generative models (νp)
P
p=1 approximates targets

(µp)
P
p=1, and SMW2(ν1 , . . . , νP ) ensures shared structure is present in the loss.

4.2 Multi-Dynamics Reinforcement Learning with Shared Structure

We now consider the problem of reinforcement learning in settings where the dynamics change. In
order to speed up learning, we use SMW to share structure across different environments in this
multi-dynamics reinforcement learning problem. Sharing knowledge is not only useful to bias (and
thereby speed up) learning, but it is also useful in settings, where agents are ill informed, e.g., due
to sparse reward signals. With a shared structure, these agents can learn from other agents. Here,
the challenge is in effectively utilizing information from other agents in spite of differences in their
respective environments. In the following, we focus on this setting.

Consider P identical-task agents in finite-horizon Markov decision processes (S,A, Tp, renv
p ), where

S is the state space and A is the action space, both shared by all agents, Tp(x
(p)
t ,a

(p)
t ) = x

(p)
t+1 is the

transition model of agent p, which varies across agents, and renv
p is the environment’s reward function.

Since different agents’ tasks are identical, sharing structure can be beneficial. We consider the case,
where some agents receive rewards renv

p = 0. These agents are uninformed and can only learn via a
shared structure that allows to transfer knowledge from other agents. Structure sharing is done by
augmenting the agent-specific reward function with a global multi-task reward term. In particular,
define the augmented reward Rp as

Rp(x
(p)
t ) = renv

p (x
(p)
t )

agent specific
(local)

+γ rmul(x
(p)
t ,X)

multi-task reward
(shared/global)

, (18)

where X = {x(p)
t }P,Tp,t=1 is the collection of all states of every agent at all time steps, renv

p (x
(p)
t ) is

the single-task reward of the pth environment and rmul(x
(p)
t ,X) is a (multi-task) reward signal. The

former provides task-specific information about the task to be solved by agent p, while the latter
allows for agents to share structure through the history of their state trajectories. If renv

p = 0 for a
given agent, then this agent can only learn through the shared structure arising from the shared reward
rmul. Finally, γ is a regularizer that controls the influence of shared structure on the overall learning.
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Figure 3: Properties of the sliced multi-marginal distance. (a) computational time as a function of the
number of samples; (b) computational time as a function of the number of measures; (c) accuracy as
a function of the number of projections

We now describe the shared reward rmul. Denote µp = 1
T

∑T
t=1 δx(p)

t
, which allows us to interpret

the rollout of agent p as a discrete probability measure supported on the state space. Then,

rmul(x
(p)
t ,X) = −βp

K

K∑
k=1

∣∣∣〈x(p)
t −

P∑
j=1

βjx
(j)
ηp,j,k(t),θk〉

∣∣∣2, (19)

where ηp,j,k returns the index of the atom in µj that is aligned with state x(p)
t after projecting

on (Monte Carlo-sampled) (θk)Kk=1 and sorting all projected states. Intuitively, the reward signal
attributed to the state x(p)

t of agent p at time t is computed by projecting all measures onto K vectors,
gathering all states that are aligned with x(p)

t for each projection θk, and summing squared distances
between them.
Remark. The barycentric cost structure with non-uniform weights β is particularly attractive in this
setting, as it allows to give more weight to the communication arising from agents that perform well
in their own environment. For instance, we can use Boltzmann weights

βp ∝ exp
(
α

T∑
t=1

renv
p (x

(p)
t )
)
, (20)

where α is a temperature. It gives more weight in the reward to agents performing best.

We train all agents simultaneously by maximizing

Eπ1,...,πP

[ P∑
p=1

T∑
t=1

Rp(x
(p)
t )
]

= Eπ1,...,πP

[ P∑
p=1

T∑
t=1

renv
p (x

(p)
t )− γSMW2(µ1, . . . , µP )

=Rp(x
(p)
t )

]
(21)

with respect to the parameters of policies πp, p = 1, . . . , P . Note that the extra term in the augmented
reward regularizes the objective via the sliced multi-marginal Wasserstein distance. SMW thus
enforces closeness of agents’ trajectories which allows to share structure across agents.

5 Experiments

We now illustrate the behavior of sliced multi-marginal transport in simple multi-task learning setups.

5.1 Scalability

Number of Samples (N ). We study the impact of the number of samples on the computational time
to compute the sliced multi-marginal distance in (9). In particular, we compute SMW between

7



(a) γ = 0 (b) γ = 0.3 (c) γ = 25 (d) Corrupted Targets

Figure 4: Multi-task density estimation experiment applied on corrupted nested ellipses (plotted in
orange), using SW2 as pairwise loss and SMW2 as regularizer. Learned models are plotted in blue.
We use regularization coefficients γ = 0 in (a), γ = 0.3 in (b), γ = 25 in (c).

P = 3, 10, 20 measures in R10, µp ∼ N (mp, η
2I), where p = 1, . . . , P for a fixed number of

projectionsK = 10. Figure 3(a) shows theO(N logN) scaling of SMW . This enables computation
of multi-marginal distances with over 107 samples and a large number of measures.

Number of Measures (P ). We now examine scaling with respect to the number of measures P .
Figure 3(b) shows the time required to compute SMW against N = 500, 5000, 50000 measures.
We observe the expected linear scaling of SMW .

Number of Projections (K). Finally, we consider the impact of the number of projections on the
estimation of SMW for dimensions d = 2, 5, 20. We set N = 250, and P = 5. Monte Carlo
estimation is used to estimate SMW . Figure 3(c) shows the expected variance shrinkage as the
number of projection grows, while the estimated mean converges to SMW with rate O( 1√

K
) and

constant factors depending on dimension.

5.2 Multi-Task Density Estimation

We consider the multi-task density estimation setting of Section 4.1. Each target measures consist
of a nested ellipse with corrupted samples. In particular, parts of each individual ellipse have
been removed from each measure’s support. Using the multi-task learning setup allows for sharing
knowledge of the structure of the target tasks across problems—namely, that all target measures have
the overall shape of nested ellipses. Figures 4(a)–4(c) show the models obtained by multi-task training
with regularization coefficients γ = 0, 0.3, 25. When γ = 0, measures are learned individually
without any structure sharing. ν1, . . . , νP hence collapse to the corrupted measures µ1, . . . , µP .
When structure is introduced (γ > 0) knowledge of the inherent nested ellipse structure is shared
across tasks, which leads to solutions that have such structure (holes are filled), but that still preserve
the task-specific orientations and ellipse width/height as long as the structure coefficient η is not too
large. The latter causes the learned measures to be too close to each other. These effects can be seen
in Figure 4(c). When this happens, all learned measures collapse to the barycenter.

5.3 Multi-Dynamics Reinforcement Learning

We consider a multi-task RL application in the setting of Section 4.2. In particular, we consider
P = 5 pendulum swing-up tasks with different dynamics (gravities g ∈ {8, 9, 10, 11, 12}m/s2).
States consist of angle and angular velocities, and actions of are torques. Environment rewards are
dense as implemented in OpenAI Gym [10], and following Dadashi et al. [15], we transform the
shared reward rmul via f(y) = e−5y. Two out of five agents do not receive any reward. All other
agents share the same reward function. We consider agents trained with and without SMW-based
regularization, and consider the uniform and non-uniform barycentric weights β; see Section 4.2 for
more details. To facilitate learning, we lower-bound the weights of agents without reward. Policies
are learned using Q-learning with function approximation on state observations.

Figure 5 shows the results. Training without regularization (γ = 0, blue curve) does not allow the
two agents without environment rewards (renv

p = 0) to solve their respective tasks. By contrast, with
regularization, all agents (even those with no environment reward) solve their respective tasks (green,
blue) as well as if all agents were receiving environmental rewards (orange). Agents with non-uniform
regularization significantly outperform agents with uniform weights, showing that giving more weight
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Figure 5: Multi-task (P = 5) RL experiment. Environments have different dynamics (different
gravities), and 2/5 agents have no environmental reward. Without shared structure, these agents do
not solve their respective tasks (orange). By contrast, with shared structure, all agents learn accurate
policies (green, blue), on par with agents trained without corrupted rewards (blue). Left: training
curves (mean ± standard deviation averaged over 5 runs), Right: states of agents for each task at the
end of training (left to right refers to time t from 0 to 200).

in the regularizer to stronger agents is helpful. Overall, this demonstrates that knowledge transfer via
the shared reward structure can be effective. In particular, the regularization-based rewards encourage
the state trajectories of all agents to be close under the sliced multi-marginal geometry. Hence,
agents without environment rewards learn to follow agents trained with environment rewards. This
is possible because of similarity of environments and of agent goals, so that agent rollouts share
geometric structure.

6 Conclusion

In this work, we proposed a scalable multi-marginal optimal transport distance. Our main idea is
to derive a closed-form formula for multi-marginal optimal transport in 1D in the general case and
to extend it into a higher-dimensional metric via slicing. We show it is well-behaved topologically,
and in particular that it is a generalized metric. We also show it is well-behaved statistically with
dimension-free sample complexity (modulo a caveat arising from projection complexity). We derive a
range of other results illustrating the simple and intuitive geometric structure of sliced multi-marginal
transport. Finally, we propose areas of applications of sliced multi-marginal transport in the context
of multi-task learning on probability spaces, and concrete instantiations in density estimation, and
reinforcement learning. We hope these contributions enable practitioners in reinforcement learning,
generative modeling and other areas to share structure across tasks in a geometrically-motivated way.
Our work relies on the assumption that tasks live on the same space, and share structure. Future work
extends our approach to allow for multi-task learning on incomparable spaces, enabling structure
sharing in more general set-ups, for instance via Gromov–Wasserstein-like techniques.
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A Proofs

A.1 Closed-form Formulas for Multimarginal Optimal Transport

For a measure µ ∈M(R), define its CDF Cµ : R→ [0, 1] as

Cµ(x) =

∫ x

−∞
dµ(y) ∀x. (22)

Also, define its pseudo-inverse C−1
µ : [0, 1]→ R ∪ {−∞} as

C−1
µ (r) = min

x
{x ∈ R ∪ {−∞} : Cµ(x) ≥ r}. (23)

This function is a generalization of the quantile function.

1D Multi-Marginal
Proposition 1. If µ1, . . . , µP ∈M(R) and U(0, 1) is the uniform measure, then

MW2(µ1, . . . , µP ) =

∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x)

∣∣∣2 dx, (24)

and the optimal coupling solving (1) is of the form

π? = (C−1
µ1
, . . . , C−1

µP )# U(0, 1). (25)

Proof. Our aim is to provide a closed form formula for

MW2(µ1, . . . , µP ) = min
π∈Π(µ1,...,µP )

∫
(Rd)P

P∑
p=1

βp|xp −
∑
j

βjxj |2dπ(x1, . . . , xP ), (26)

where Π(µ1, . . . , µP ) is the set of probability measures inM((Rd)P ) with marginals µ1, . . . , µP .

First, notice ∫
(Rd)P

P∑
p=1

βp‖xp −
∑
j

βjxj‖2dπ(x1, . . . , xP ) (27)

=

P∑
p=1

βp

∫
Rd
|xp|2dµp − 2

P∑
p,j=1

βpβj

∫
(Rd)2

xpxj dπpj(xp, xj), (28)

where πpj corresponds to marginalizing π onto all components but p, j. This can be formalized by
defining the map Lpj(x1, . . . , xP ) = (xp, xj) and πpj = Lpj#π.

Now define π? = (C−1
µ1
, . . . , C−1

µP )#U(0, 1)

Claim: π? is optimal

First observe Lpj#π? = (C−1
µp , C

−1
µj )#U(0, 1) by marginalization. Note this is the optimal cou-

pling between pairs µp, µj , see [25] (this can easily be obtained by observing that plugging in
(C−1

µp , C
−1
µj )#U(0, 1) into the Wasserstein objective achieves the minimum – it is also a valid cou-

pling, thus it has to be the optimal coupling.)

Now, note that

arg max
γ∈Π(µp,µj)

∫
(Rd)2

xpxj dγ = arg min
γ∈Π(µp,µj)

∫
(Rd)2

|xp − xj |2 dγ, (29)

and also that for any multimarginal coupling π ∈ Π(µ1, . . . , µP ), πpj is a pairwise coupling in
Π(µp, µj) by the transfer lemma.
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We can hence deduce that ∀π ∈ Π(µ1, . . . , µP )∫
(Rd)2

xpxjdπpj ≤
∫

(Rd)2
xpxjdπ

?
pj ∀p, j = 1, . . . , P, (30)

because both πpj and π?pj are couplings of µp, µj and π?pj is optimal.

Therefore, it holds that∫
(Rd)P

P∑
p=1

βp‖xp −
∑
j

βjxj‖2 dπ?(x1, . . . , xP ) (31)

=

P∑
p=1

βp

∫
Rd
|xp|2dµp − 2

P∑
p,j=1

βpβj

∫
(Rd)2

xpxj dπ?pj(xp, xj) (32)

≤
P∑
p=1

βp

∫
Rd
|xp|2dµp − 2

P∑
p,j=1

βpβj

∫
(Rd)2

xpxj dπpj(xp, xj) (33)

=

∫
(Rd)P

P∑
p=1

βp‖xp −
∑
j

βjxj‖2 dπ(x1, . . . , xP ), (34)

which proves the claim that π? is the optimal multi-marginal coupling. We now compute the distance
by plugging in the optimal coupling:

MW2(µ1, . . . , µP ) =

∫
(Rd)P

P∑
p=1

βp|xp −
∑
j

βjxj |2 dπ?(x1, . . . , xP ) (35)

=

∫
(Rd)P

P∑
p=1

βp|xp −
∑
j

βjxj |2 d(C−1
µ1
, . . . , C−1

µp )#U(0, 1) (36)

=

∫ 1

0

P∑
p=1

βp|C−1
µp (x)−

∑
j

βjC
−1
µj (x)|2 dx. (37)

A.2 Generalized Metric Properties

Definition 9. Assume µp ∈M(Rd), where p = 1, . . . , P , and letD :M(Rd)×. . .×M(Rd)→ R
be a multi-marginal Wasserstein metric with barycentric weights β. Then, D is a generalized metric
if the following properties hold:

1. D(µ1, . . . , µP ) ≥ 0

2. D(µ1, . . . , µP ) = 0⇔ µ1 = . . . = µP

3. D(µ1, . . . , µP ) = Dσ(µσ(1), . . . , µσ(P )), ∀σ ∈ SP where Dσ denotes that the barycentric
weights β are permuted by σ and SP is the group of permutations of order P .

4. ∀µ ∈M(Rd) : D(µ1, . . . , µP ) ≤
P∑
p=1

D(µ1, . . . , µp−1, µ, µp+1, . . . µP )

Proposition 10. MW is a generalized metric on the restrictionM(R).

Proof. Property (1), i.e., positivity is clear because

MW2(µ1, . . . , µP ) =

∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x)

∣∣∣2 dx ≥ 0 (38)

Next, we prove property (2).
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We begin by proving the forward implication (⇒).
MW(µ1, . . . , µP ) = 0 (39)

⇒
(∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x)

∣∣∣2 dx
) 1

2

= 0 (40)

⇒
∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x)

∣∣∣2 dx = 0 (41)

⇒ C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x) = 0 ∀p = 1, . . . , P, ∀x ∈ [0, 1] (42)

Now assume for contradiction that ∃m,n, x : C−1
µm(x) 6= C−1

µn (x), then:

C−1
µm(x) =

P∑
j=1

βjC
−1
µj (x), C−1

µn (x) =

P∑
j=1

βjC
−1
µj (x) (43)

⇔ C−1
µm(x)− C−1

µn (x) =

P∑
j=1

βjC
−1
µj (x)−

P∑
j=1

βjC
−1
µj (x) = 0 (44)

which is a contradiction, therefore C−1
µm(x) = C−1

µn (x) ∀m,n, x, thus µ1 = . . . = µP

We continue by proving the backward implication (⇐).

If µ1 = . . . = µP , then C−1
µp (x) = C−1

µp′
(x) ∀x, ∀p, p′ = 1, . . . , P .

Therefore, C−1
µp (x)−∑P

j=1 βjC
−1
µj (x) = 0 ∀p = 1, . . . , P, ∀x ∈ [0, 1]. Thus,

MW(µ1, . . . , µP ) =
(∫ 1

0

P∑
p=1

βp|C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x)|2dx

) 1
2

= 0. (45)

We continue with permutation invariance (3),

MW(µ1, . . . , µP ) =
(∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x)

∣∣∣2 dx
) 1

2

(46)

=
(∫ 1

0

P∑
p=1

βp

∣∣∣C−1
µp (x)−

P∑
j=1

βσ(j)C
−1
µσ(j)

(x)
∣∣∣2 dx

) 1
2

(47)

=
(∫ 1

0

P∑
p=1

βσ(p)

∣∣∣C−1
µσ(p)

(x)−
P∑
j=1

βjC
−1
µσ(j)

(x)
∣∣∣2 dx

) 1
2

(48)

=MWσ(µσ(1), . . . , µσ(P )) (49)
Equalities holds because sums are invariant under any permutation σ.

We finally prove the generalized triangle inequality (4). Note the slight abuse of notation that p+ 1
component does not exist when p = P .

We begin by proving the case P ≥ 3. Firstly, we rewrite the multi-marginal functional in the
following way:

MW2(µ1, . . . , µP ) =

P∑
p=1

βp

∫ 1

0

∣∣∣C−1
µp (x)−

P∑
j=1

βjC
−1
µj (x)

∣∣∣2 dx (50)

=
1

2

P∑
p,p′=1

βpβp′

∫ 1

0

∣∣∣C−1
µp (x)− C−1

µp′
(x)
∣∣∣2 dx (51)

=
1

2

P∑
p,p′=1

βpβp′

∫ 1

0

f2
p,p′(x) dx (52)
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where fp,p′(x) =
∣∣∣C−1
µp (x)− C−1

µp′
(x)
∣∣∣. The results holds because

P∑
m,n=1

βmβn|C−1
µm(x)− C−1

µn (x)|2 =

P∑
m=1

βm

∣∣∣C−1
µm(x)−

P∑
n=1

βnC
−1
µj (x)

∣∣∣2, (53)

which holds because
P∑

m=1

βm

∣∣∣xm − P∑
n=1

βnxn

∣∣∣2 (54)

=

P∑
m=1

βm

[
|xm|2 + |

P∑
n=1

βnxn|2 − 2

P∑
n=1

βnxmxn

]
(55)

=

P∑
m=1

βm|xm|2 +
∑
m,n=1

βmβnxmxn − 2

P∑
m,n=1

βmβnxmxn (56)

=

P∑
m=1

βm|xm|2 −
∑
m,n=1

βmβnxmxn (57)

=

P∑
m,n=1

βmβn|xm|2 −
∑
m,n=1

βmβnxmxn (58)

=

P∑
m,n=1

βmβn(
1

2
|xm|2 +

1

2
|xn|2 − xmxn) (59)

=
1

2

P∑
m,n=1

βmβn|xm − xn|2. (60)

Therefore, we have
P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) =
1

2

P∑
p=1

P∑
m,n6=p

βmβn

∫ 1

0

f2
n,m(x)dx+ C, (61)

where C > 0.

We now show that
∫ 1

0

∑P
p=1

∑P
m,n6=p βmβnf

2
n,m(x)dx ≥∑P

p,p′=1 βpβp′
∫ 1

0
f2
p,p′(x) dx. This can

be observed by noting that all
∫ 1

0
f2
p,p′(x) dx terms on the RHS appear on the LHS. Indeed, for any

m′, n′,
∫ 1

0
f2
m′,n′(x) dx appears in the p 6= m′, n′ summation, which always holds for some p as

P ≥ 3.

Therefore, we have shown that

MW2(µ1, . . . , µP ) ≤
P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (62)

Also,

MW2(µ1, . . . , µP ) ≤
P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (63)

⇒MW(µ1, . . . , µP ) ≤

√√√√ P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (64)

≤
P∑
p=1

√
MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (65)

=

P∑
p=1

MW(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (66)
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which proves the result. The case P = 2 has been proved via different approaches (e.g. [25]).

Proposition 4. SMW is a generalized metric on the restrictionM(Rd).

Proof. Property (1) holds by definition due to positivity ofMW on R and the definition of the sliced
multi-marginal distance.

Property (2) is more delicate. We begin with the forward direction (⇒).

We extend the proof of Nadjahi et al. [21] to the multi-marginal case. Define Θ as the uniform
distribution on Sd−1. Define ‘for (Θ-almost-every) θ’ as ∀Θ-a-e-θ. Firstly, the following holds:

SMW(µ1, . . . , µP ) = 0 (67)

⇒
( 1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP )dΘ(θ)
) 1

2

= 0 (68)

⇒MW(Mθ#µ1, . . . ,Mθ#µP ) ∀Θ-a-e-θ (69)
⇒Mθ#µ1 = . . . = Mθ#µP ∀Θ-a-e-θ (70)

Next, we define the Fourier transform of any measure µ onM(Rs), s ≥ 1 at any w ∈ Rs:

F [µ](w) =

∫
Rs
e−i〈w,x〉 dµ(x). (71)

Therefore, using properties of push-forwards, the following holds:

F [Mθ#µ](t) =

∫
R
e−itudMθ#µ(u) =

∫
Rs
e−it〈θ,x〉dµ(x) = F [µ](tθ). (72)

As ∀Θ-a-e-θ, Mθ#µ1 = . . . = Mθ#µP , then F [Mθ#µ1] = . . . = F [Mθ#µP ], which implies that
F [µ1] = . . . = F [µP ]. By injectivity of the Fourier transform, we conclude that µ1 = . . . = µP .

We continue with the backward direction (⇐).

We assume µ1 = . . . = µP , which implies the following:

µ1 = . . . = µP (73)
⇒Mθ#µ1 = . . . = Mθ#µP ∀Θ-a-e-θ (74)

⇒MW2(Mθ#µ1, . . . ,Mθ#µP ) = 0 ∀Θ-a-e-θ (75)

⇒ SMW(µ1, . . . , µP ) =
( 1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP ) dΘ(θ)
) 1

2

= 0.

(76)

We now prove Property (3)

SMW(µ1, . . . , µP ) =
( 1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP ) dΘ(θ)
) 1

2

(77)

=
( 1

Vol(Sd−1)

∫
Sd−1

MW2
σ(Mθ#µσ(1), . . . ,Mθ#µσ(P ))dΘ(θ)

) 1
2

(78)

= SMWσ(µσ(1), . . . , µσ(P )) (79)

We finally end by proving Property (4), the generalized triangle inequality.

Earlier, we showed that

MW2(µ1, . . . , µP ) ≤
P∑
p=1

MW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ). (80)
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This implies that

SMW2(µ1, . . . , µP ) (81)

=
1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP ) dΘ(θ) (82)

≤
P∑
p=1

1

Vol(Sd−1)

∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µp−1,Mθ#µ,Mθ#µp+1, . . . ,Mθ#µP ) dΘ(θ)

(83)

=

P∑
p=1

SMW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ). (84)

Therefore, we conclude that

SMW2(µ1, . . . , µP ) ≤
P∑
p=1

SMW2(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (85)

⇒ SMW(µ1, . . . , µP ) ≤
P∑
p=1

SMW(µ1, . . . , µp−1, µ, µp+1, . . . , µP ) (86)

directly in the same way as in the proof of Proposition the generalized triangle inequality for
MW .

A.3 Mathematical Properties

Proposition 3.

SMW2(µ1, . . . , µP ) =
1

2

P∑
i,j=1

βiβjSW2(µi, µj) (87)

Proof.

SMW2(µ1, . . . , µP ) =
1

Vol(Sd−1)

∫
Sd−1

∫
Rd

1

2

P∑
i,j=1

βiβj |xi − xj |2 dπ?θ(x1, . . . , xP ) dΘ(θ)

(88)

=
1

2Vol(Sd−1)

P∑
i,j=1

βiβj

∫
Sd−1

∫
R×R
|xi − xj |2 dπ?θij (xi, xj) dΘ(θ) (89)

=
1

2

P∑
i,j=1

βiβj
1

Vol(Sd−1)

∫
Sd−1

W2(Mθ#µi,Mθ#µj) dΘ(θ), (90)

where π?θ is the optimal coupling between Mθ#µ1, . . . ,Mθ#µP and Mθ(x) = 〈x,θ〉. Similarly
to proofs of closed-form formulas for multi-marginal Kantorovich transport, we know that π?θij is the
optimal coupling between Mθ#µi,Mθ#µj . As a result, it holds that

SMW2(µ1, . . . , µP ) =
1

2

P∑
i,j=1

βiβjSW2(µi, µj). (91)

Corollary 11.

SMW2(µ1, . . . , µP ) ≤ 1

2

P∑
i,j=1

βiβjW2(µi, µj) (92)
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Proof. By Proposition 3, it holds that

SMW2(µ1, . . . , µP ) =
1

2

P∑
i,j=1

βiβjSW2(µi, µj). (93)

Also, Bonnotte [9] shows that

SW2(µ, ν) ≤ W2(µ, ν) ∀µ, ν. (94)

The result follows directly.

Corollary 12.

0 ≤ a2(d+1)
P∑

i,j=1

βiβjW4(d+1)(µi, µj) ≤ b2(d+1)SMW2(µ1, ..., µP ). (95)

Proof. Bonnotte [9] has shown that it holds for some positive constants a, b that

0 ≤ aW2(µi, µj) ≤ bSW1/(d+1)(µi, µj), (96)

and that xd+1 is an increasing function for all positive x. Therefore, raising both sides to the power
of 2(d+ 1), we obtain that

0 ≤ a2(d+1)W4(d+1)(µi, µj) ≤ b2(d+1)SW2(µi, µj). (97)

Now summing across i, j, and weighting with the barycentric cost’s weights, we obtain

0 ≤ a2(d+1)
P∑

i,j=1

βiβjW4(d+1)(µi, µj) ≤ b2(d+1)SMW2(µ1, ..., µP ). (98)

It therefore follows that as SMW2(µ1, .., µP ) → 0, we also haveW4(d+1)(µi, µj) → 0 for each
pair of measures, and hence by positivity ofW that

∑P
i,j=1 βiβjW2(µi, µj)→ 0.

A.4 Sample/Projection Complexity

We now study E[SMW2(µ1, . . . , µP ) − SMW2(µ̂1, . . . , µ̂P )]2 where µ̂p’s refers to empirical
measures with n samples. Then the following result holds:

Proposition 5. If µ1, . . . , µP ∈M(Rd), and assumingW2 has sample complexity ρ(N) on R, then

E[SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P )]2 ≤ 1

2
ρ(N). (99)

This result shows the sample complexity is dimension free.

Proof. We conclude from Proposition 3

SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P ) =
1

2

P∑
i,j=1

βiβj

(
SW2(µi, µj)− SW2(µ̂i, µ̂j)

)
.

(100)

IfW2 on R has sample complexity ρ(N), then SW2 on Rd also has sample complexity ρ(N), i.e.,
its sample complexity is dimension free. The proof relies on an application of Jensen’s inequality and
is a special case of Nadjahi et al. [22].
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E
∣∣∣SW2(µ, ν)− SW2(µ̂n, ν̂n)

∣∣∣ = E
∣∣∣ ∫
Sd−1

{W2(θ∗#µ, θ
∗
#ν)−W2(θ∗#µ̂n, θ

∗
#ν̂n)} dΘ(θ)

∣∣∣
(101)

≤ E
{∫

Sd−1

∣∣∣W2(θ∗#µ, θ
∗
#ν)−W2(θ∗#µ̂n, θ

∗
#ν̂n)

∣∣∣ dΘ(θ)

}
(102)

≤
∫
Sd−1

E
∣∣∣W2(θ∗#µ, θ

∗
#ν)−W2(θ∗#µ̂n, θ

∗
#ν̂n)

∣∣∣ dΘ(θ) (103)

≤
∫
Sd−1

ρ(N) dΘ(θ) = ρ(N) (104)

Hence,

E
∣∣∣SMW2(µ1, . . . , µP )− SMW2(µ̂1, . . . , µ̂P )

∣∣∣ (105)

= E
∣∣∣1
2

P∑
i,j=1

βiβj

(
SW2(µi, µj)− SW2(µ̂i, µ̂j)

)∣∣∣ (106)

≤ 1

2

P∑
i,j=1

βiβjE
∣∣∣SW2(µi, µj)− SW2(µ̂i, µ̂j)

∣∣∣ (107)

≤ 1

2

P∑
i,j=1

βiβjρ(N) =
1

2
ρ(N). (108)

Here we also derive similar results to theirs about projection complexity.
Proposition 6. Let µ1, . . . , µP ∈ M(Rd), and define SMW the approximation obtained by uni-
formly picking L projections on Sd−1, then

E
[
SMW2

(µ1, . . . , µP )− SMW2(µ1, . . . , µP )
]2
≤ L−1/2 Varθ

[
MW2

(
µθ1 , . . . , µ

θ
P )
]
,

(109)
where θ follows the uniform distribution on Sd−1 and µθp = Mθ

#(µp).

Proof. We bound the error arising from the Monte Carlo approximation of SMW ,
similarly to Nadjahi et al. [22] in the pairwise case. In particular, define δ =∫
Sd−1

MW2(Mθ#µ1, . . . ,Mθ#µP ) dΘ(θ). Then we have that

Eθ∼σ|SMW
2
(µ1, . . . , µP )− SMW2(µ1, . . . , µP )| (110)

≤
{
Eθ∼σ|SMW

2
(µ1, . . . , µP )− SMW2(µ1, . . . , µP )|2

} 1
2

(111)

≤ L−1/2

∫
Sd−1

{
MW2(Mθ#µ1, . . . ,Mθ#µP )− δ

}2

dΘ(θ) (112)

= L−1/2 Varθ

[
MW2

(
µθ1 , . . . , µ

θ
P )
]
, (113)

which holds due to the same Monte-Carlo concentration inequality as in Nadjahi et al. [22] (Proof of
Theorem 6).

A.5 Equivalence to Sliced Barycenters and Weak Convergence

Proposition 7. Let µ1, . . . , µP ∈M(Rd),
∑P
p=1 βp = 1. Furthermore, let β̂p be augmented multi-

marginal weights, so that for m ∈ [0, 1] it holds that β̂p = mβp for p = 1, . . . , P ,
∑P+1
p=1 β̂p = 1,
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and D = SW2. Then

arg min
µ∈M(Rd)

SMW2(µ1, . . . , µP , µ) = arg min
µ∈M(Rd)

F(µ), (114)

where β is the weight vector of F and β̂ is the weight vector of SMW .

Proof.

arg min
µ∈M(Rd)

SMW2(µ1, . . . , µP , µ) (115)

= arg min
µ∈M(Rd)

P∑
p=1

β̂pβ̂P+1SW2(µ, µp) (116)

= arg min
µ∈M(Rd)

P∑
p=1

βpSW2(µp, µ) (117)

= arg min
µ∈M(Rd)

F(µ). (118)

A.6 Differentiability

Proposition 8. Let µ1, . . . , µP ∈M(Rd) be discrete measures with N atoms, which we gather into
matrices {X(p)}Pp=1, and similarly define µX with atoms X. Assume X has distinct points. Then
SMW2 is smooth with gradient

∇XSMW2(µ1, . . . , µP , µX) = βP+1

P∑
p=1

βp

∫
Sd−1

Xθ −
(
X

(p)
θ ◦ σXθ

◦ σ−1

X
(p)
θ

)
dΘ(θ), (119)

where σX is the permutation that sorts atoms of X.

Proof. Define σY be the permutation of {1, . . . , N} that sorts atoms of Y. Also, define Xθ ∈ RN ,
such that (Xθ)i = 〈xi,θ〉. Then

SMW2(µ1, . . . , µP , µX) =

P∑
p=1

βP+1βpSW2(µX, µp) + C(µ1, . . . , µP ). (120)

Hence,

∇XSMW2(µ1, . . . , µP , µX) = ∇X

P∑
p=1

βP+1βpSW2(µX, µp) (121)

=

P∑
p=1

βP+1βp

∫
Sd−1

Xθ −X
(p)
θ ◦

(
σXθ
◦ σ−1

X
(p)
θ

)
dθ. (122)

The last equality is due to Bonneel et al. [8].
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B Additional Experimental Details

We now provide further experimental details. All experiments ran on CPU, besides the benchmarking
experiments, which ran on a single P100 GPU.

Ellipses - Multi-Task Density Estimation

We set the batch size to 150, and parametrize each measure νp as a discrete measure with 150 atoms
which we optimize over via stochastic gradient descent. We set the number of projections to 20.

Multi-Task Reinforcement Learning

The horizon is set to T = 200. The learning rate is set to 2.5× 10−4, and the batch size to optimize
the Q-function to 32. The Q-network is a 2-layer MLP with tanh activation. We use f(x) = e−5x

to rescale the reward function following Dadashi et al. [15], we set the number of projections to
K = 50 and γ = 1. Also, we set α = 1

30 . Our implementation extends the repository https:
//github.com/xtma/simple-pytorch-rl to the multi-task setting, and leverages OpenAI gym
environments [10].

Gradient Flow experiment

We follow the setup of Bonneel et al. [8]. In particular, we discretize the flow to numerically estimate
it via gradient descent X(l+1) = X(l+1) −∇SMW2(µ1, . . . , µP , µX(l)), and plot the location of
particles for l = 0, . . . , T where T is the number of steps (200), which approximates the gradient flow.
We estimate SMW with 30 projections. Each measure (including the initial measure µ0 consist in
samples from isotropic Gaussians, and the initial measure.
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