
Combined Reinforcement Learning via Abstract Representations
Vincent François-Lavet

McGill University, Mila
vincent.francois-lavet@mcgill.ca

Doina Precup
McGill University, Mila, DeepMind

dprecup@cs.mcgill.ca

Yoshua Bengio
Universit de Montreal, Mila
yoshua.bengio@mila.quebec

Joelle Pineau
McGill University, Mila, Facebook

jpineau@cs.mcgill.ca

Abstract
In the quest for efficient and robust reinforcement learning
methods, both model-free and model-based approaches offer
advantages. In this paper we propose a new way of explicitly
bridging both approaches via a shared low-dimensional
learned encoding of the environment, meant to capture
summarizing abstractions. We show that the modularity
brought by this approach leads to good generalization while
being computationally efficient, with planning happening in a
smaller latent state space. In addition, this approach recovers a
sufficient low-dimensional representation of the environment,
which opens up new strategies for interpretable AI, exploration
and transfer learning.

1 Introduction
In reinforcement learning (RL), there are two main ap-
proaches to learn how to perform sequential decision-making
tasks from experience. The first approach is the model-based
approach where the agent learns a model of the environment
(the dynamics and the rewards) and then makes use of a plan-
ning algorithm to choose the action at each time step. The
second approach, so-called model-free, builds directly a pol-
icy or an action-value function (from which an action choice
is straightforward). For some tasks, the structure of the policy
(or action-value function) offers more regularity and thus a
model-free approach would be more efficient, whereas in
other tasks it may be easier to learn the dynamics directly
due to some structure of the environment in which case a
model-based approach would be preferable. In practice, it is
possible to develop a combined approach that incorporates
both strategies.

We present a novel deep RL architecture, which we call
CRAR (Combined Reinforcement via Abstract Representa-
tions). The CRAR agent combines model-based and model-
free components, with the additional specificity that the pro-
posed model forces both components to jointly infer a suf-
ficient abstract representation of the environment. This is
achieved by explicitly training both the model-based and
the model-free components end-to-end, including the joint
abstract representation. To ensure the expressiveness of the
abstract state, we also introduce an approximate entropy max-
imization penalty in the objective function, at the output

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the encoder. As compared to previous works that build
implicitly an abstract representation through model-free ob-
jectives (see Section 5 for details), the CRAR agent creates a
low-dimensional representation that captures meaningful dy-
namics, even in the absence of any reward (thus without the
model-free part). In addition, our approach is modular thanks
to the explicit learning of the model-based and model-free
components. The main elements of the CRAR architecture
are illustrated in Figure 1.

s0 s1 s2environment environment

a0 a1

encoder encoder encoder

model-based model-based

transition
model

transition
model

reward
model

reward
model

abstract
state

abstract
state

abstract
state

r0 r1

model-
free

model-
free

model-
free

Q Q Q

. . .

Figure 1: Illustration of the integration of model-based
and model-free RL in the CRAR architecture, with a low-
dimensional abstract state over which transitions and rewards
are modeled. The elements related to the actual environment
dynamics are in red (the state st, the action at and the reward
rt). The model-free elements are depicted in green (value
function Q(s, a)) while the model-based elements (transition
model and reward model) are in blue. The encoder and the
abstract state are shared for both the model-based and model-
free approaches and are depicted in light cyan. Note that the
CRAR agent can learn from any off-policy data (red circles).

Learning everything through the abstract representation
has the following advantages:
• it ensures that the features inferred in the abstract state

provide good generalization, since they must be effective
for both the model-free and the model-based predictions;

• it enables computationally efficient planning within the
model-based module since planning is done over the
abstract state space;

• it facilitates interpretation of the decisions taken by the
agent by expressing dynamics and rewards over the
abstract state;

• it allows developing new exploration strategies based on
this low-dimensional representation of the environment.
In the experimental section, we show for two contrasting

domains that the CRAR agent is able to build an interpretable
low-dimensional representation of the task and that it can
use it for efficient planning. We also show that the CRAR
agent leads to effective multi-task generalization and that it
can efficiently be used for transfer learning.

2 Formal setting
We consider an agent interacting with its environment
over discrete time steps. The environment is modeled as
an MDP (Bellman 1957), defined by (i) a state space S
that is discrete or continuous; (ii) a discrete action space
A = {1, . . . , NA}; (iii) the environment’s transition function
T : S ⇥ A ! S, which we assume to be deterministic in
this paper (although it can be extended to the stochastic case
as discussed in Section 6); (iv) the environment’s reward
function R : S ⇥ A ! R where R is a continuous set of
possible rewards in a range Rmax 2 R+ (e.g., [0, Rmax]); and
(v) a general discount factor G : S ⇥ A ⇥ S ! [0, 1),
similarly to White (2016)1. This setting encompasses the
partially observable case if we consider that the state is a
history of actions, rewards and observations.

The environment starts in a distribution of initial states
b(s0). At time step t, the agent chooses an action based
on the state of the system st 2 S according to a policy
⇡ : S ⇥ A ! [0, 1]. After taking action at ⇠ ⇡(st, ·), the
agent then observes a new state st+1 2 S as well as a reward
signal rt 2 R and a discount �t 2 G. The objective is to
optimize an expected return V ⇡(s) : S ! R such that

V ⇡(s) = E
"
rt +

X1

k=1

⇣ k�1Y

i=0

�t+i

⌘
rt+k | st = s,⇡

#
, (1)

where rt = E
a⇠⇡(st,·)

R
�
st, a

�
, �t = E

a⇠⇡(st,·)
G
�
st, a, st+1

�
,

and st+1 = T (st, at).

3 The CRAR agent
We now describe in more detail the proposed CRAR approach
illustrated in Figure 1.

3.1 CRAR components and notations
We define an abstract state as x 2 X where X = RnX and
nX 2 N is the dimension of the continuous abstract state
space. We define an encoder e : S ! X as a function
parametrized by ✓e, which maps the raw state s to the
abstract state x. We also define the internal (or model)
transition dynamics ⌧ : X ⇥ A ! X , parametrized by ✓⌧ :
x0 = x+ ⌧(x, a; ✓⌧). In addition, we define the internal (or

1The dependence of the discount factor on the transition is used
for terminal states, where G = 0. This is necessary so that the agent
captures properly the implication of the end of an episode when
planning (the cumulative future rewards equal to 0 in a terminal
state). Note that a biased discount factor � : S ⇥A⇥ S ! [0, 1)
is used during the training phase with � G, 8(s, a, s0) 2
(S ⇥A⇥ S).

model) reward function ⇢ : X ⇥ A ! R, parametrized by
✓⇢. For planning, we also need to fit the expected discount
factor thanks to g : X ⇥A ! [0, 1), parametrized by ✓g .

In this paper, we investigate a model-free architecture
with a Q-network Q : X ⇥ A ! R, parametrized by
✓Q: Q(x, a; ✓Q), which estimates the expected value of
discounted future returns.

3.2 Learning the model
Ideally a model-free learner uses an off-policy algorithm
that can use past experience (with a replay memory) that is
not necessarily obtained under the current policy. We use
a variant of the DQN algorithm (Mnih et al. 2015), called
the double DQN algorithm (van Hasselt, Guez, and Silver
2016). The current Q-value Q(x, a; ✓k) (for the abstract state
x relative to state s, when action a is performed) is updated
from a set of tuples (s, a, r, �, s0) (with r and s0 the observed
reward and next-state), at every iteration, towards a target
value:

Y DDQN
k = r+�Q

✓
e(s0; ✓�e), argmax

a2A
Q(e(s0; ✓e), a; ✓k); ✓

�
Q

◆
,

(2)
where, at any step k, ✓k are the parameters of the Q-network
and ✓�e , ✓�Q are the parameters of an earlier (buffered) encoder
and Q-network, which together are called the target network.
The training is done by minimizing the loss

Lmf(✓e, ✓Q) =
⇣
Q(e(s; ✓e), a; ✓Q)� Y DDQN

k

⌘2
. (3)

These losses are back-propagated into the weights of both
the encoder and the Q-network. The model-free component
of the CRAR agent could benefit in a straightforward way
from using any other existing variant of DQN (Hessel et al.
2017) or actor-critic architectures (Mnih et al. 2016), where
the latter would be able to deal with continuous action space
or stochastic policies.

The model-based part is trained using data from the
sequence of tuples (s, a, r, �, s0). We have one loss for
learning the reward, one for the discount factor2, and one
for learning the transition3:

L⇢(✓e, ✓⇢) =| r � ⇢(e(s; ✓e), a; ✓⇢) |2, (4)

Lg(✓e, ✓g) =| � � g(e(s; ✓e), a; ✓g) |2, (5)
L⌧ (✓e, ✓⌧) =| (e(s; ✓e) + ⌧(e(s; ✓e), a; ✓⌧)� e(s0; ✓e)) |2 .

(6)
These losses train the weights of both the encoder and the
model-based components. These different components force
the abstract state to represent the important low-dimensional
features of the environment. The model-based and the model-
free approaches are complementary and both contribute to
the abstract state representation.

In practice, the problem that may appear is that a local
minimum is found where too much information is lost in
the representation x = e(s; ✓e). Keep in mind that if only

2This could be extended to the current option in an option-critic
architecture.

3This loss is not applied when � = 0.

the transition loss was considered, the optimal representation
function would be a constant function (leading to 0 error in
predicting the next abstract representation and a collapse of
the representation). In practice the other loss terms prevent
this but there is still a pressure to decrease the amount of
information being represented (this will be clearly shown for
the experiment described in Section 4.1 and in the ablation
study in Appendix B.1). This loss of information mainly
happens for states that are far (temporally) from any reward
as the loss L⌧ (✓e, ✓⌧) then tends to keep the transitions trivial
in the abstract state space. In order to prevent that contraction,
a loss that encourages some form of entropy maximization in
the state representation can be added. In our model, we use:

Ld1(✓e) = exp(�Cdke(s1; ✓e)� e(s2; ✓e)k2), (7)

where s1 and s2 are random states stored in the replay
memory and Cd is a constant. As the successive states are less
easily distinguished, we also introduce the same loss but with
a particular sampling such that s1 and s2 are the successive
states and we call it L0

d1. Both losses are minimized.
The risk of obtaining very large values for the features of

the state representation is avoided by the following loss that
penalizes abstract states that are out of an L1 ball of radius 1
(other choices are possible):

Ld2(✓e) = max(ke(s1; ✓e)k21)� 1, 0). (8)

The loss Ld = Ld1+�L0
d1+Ld2 is called the representation

loss and � is a scalar hyper-parameter that defines the
proportion of resampling of successive states for the loss
Ld1.

At each iteration, a sum of the aforementioned losses are
minimized using gradient descent4:

L = ↵
�
Lmf(✓e, ✓Q) + L⇢(✓e, ✓⇢) + Lg(✓e, ✓g)+

L⌧ (✓e, ✓⌧) + Ld(✓e)
�
,

(9)

where ↵ is the learning rate. Details for the architecture and
hyper-parameters used in the experiments are given in the
appendix A5. In the experiments, we will show the effect of
the different terms, in particular how it is possible to learn an
abstract state representation only from L⌧ (✓e, ✓⌧) and Ld in a
case where there is no reward, we will discuss the importance
of the representation loss Ld as well as the effect of ↵ and �.

3.3 Interpretable AI
In several domains it may be useful to recover an interpretable
solution, which has sufficient structure to be meaningful
to a human. Interpretability in this context could mean
that some (few) features of the state representation are
distinctly affected by some actions. To achieve this, we add
the following optional loss (which will be used in some of
the experiments) to make the predicted abstract state change
aligned with the chosen embedding vector v(a):

Linterpr(✓e, ✓⌧) = cos
⇣
⌧(e(s; ✓e), a; ✓⌧)0:n, v(a)

⌘
, (10)

4In practice, each term is minimized by mini-batch gradient
descent (RMSprop in our case).

5The source code for all experiments is available at
https://github.com/VinF/deer/

where cos stands for the cosine similarity6 and where the
n-dimensional vector v(a) (n 2 N nX) provides the
direction that is softly encouraged for the n first features of
the transition in the abstract domain (when taking action a).
The learning rate associated with that loss is denoted ↵interpr.
The CRAR framework is sufficiently modular to incorporate
other notions of interpretability; one could for instance think
about maximizing the mutual information between the action
a and the direction of the transitions ⌧(e(s; ✓e), a; ✓⌧), with
techniques such as MINE (Belghazi et al. 2018).

3.4 Planning
The agent uses both the model-based and the model-free
approaches to estimate the optimal action at each time step.
The planning is divided into an expansion step and a backup
step, similarly to Oh, Singh, and Lee (2017). One starts
from the estimated abstract state x̂t and consider a number
bd NA of best actions based on Q(x̂t, a; ✓Q) (bd is a
hyper-parameter that simply depends on the planning depth
d in our setting). By simulating these bd actions with the
model-based components, the agent reaches bd new different
x̂t+1. For each of these x̂t+1, the expansion continues for
a number bd�1 of best actions, based on Q(x̂t+1, a; ✓Q).
This expansion continues overall for a depth of d expansion
steps. During the backup step, the agent then compares the
simulated trajectories to select the next action.

We now formalize this process. The dynamics for some
sequence of actions is estimated recursively as follows for
any t0:

x̂t0 =

⇢
e(st; ✓e), if t0 = t
x̂t0�1 + ⌧(x̂t0�1, at0�1; ✓⌧), if t0 > t (11)

We define recursively the depth-d estimated expected return
as

Q̂d(x̂t, a) =

8
<

:

⇢(x̂t, a) + g(x̂t, a) max
a02A⇤

Q̂d�1(x̂t+1, a0),

if d > 0
Q(x̂t, a; ✓k), if d = 0

(12)
where A⇤ is the set of bd best actions based on Q(x̂t, a; ✓Q)
(A⇤ ✓ A). To obtain the action selected at time t, we use a
hyper-parameter D 2 N which quantify the depth of planning.
We then use a simple sum of the Q-values obtained with
planning up to a depth D:

QD
plan(x̂t, a) =

DX

d=0

Q̂d(x̂t, a). (13)

The optimal action is given by argmax
a2A

QD
plan(x̂t, a). Note

that, using only bd-best options at each expansion step is
important for computational reasons. Indeed, planning has
a computational complexity that grows with the number of
potential trajectories tested. In addition, it is also important
to avoid overfitting to the model-based approach. Indeed,

6Given two vectors a and b, the cosine similarity is computed
by a·b

(kakkbk)+✏ where ✏ is a small real number used to avoid division
by 0 when kak = 0 or kbk = 0.

with a long planning horizon, the errors on the abstract states
will usually grow due to the model approximation. When the
internal model is accurate, a longer planning horizon and less
pruning is beneficial, while if the model is inaccurate, one
should rely less on planning.

4 Experiments
4.1 Labyrinth task

Figure 2: Representation of
one state for a labyrinth
task (without any reward).

First, we consider a
labyrinth MDP with
four actions illustrated
in Figure 2. The agent
moves in the four cardinal
directions (by 6 pixels)
thanks to the four possible
actions, except when
the agent reaches a wall
(block of 6 ⇥ 6 black
pixels). This simple
labyrinth MDP has no reward — r = 0, 8(s, a) 2 (S,A) —
and no terminal state — � = 1, 8(s, a) 2 (S,A)7.

−100 −50 0 50 100 150

−100

−50

0

50

100

Figure 3: Two-dimensional representation of the simple
labyrinth environment using t-SNE (blue represents states
where the agent is on the left part, green on the right part and
orange in the junction). This plot is obtained by running the
t-SNE algorithm from a dataset containing all possible states
of the labyrinth task. The perplexity used is 20.

As can be seen in Fig 3, using techniques such as t-
SNE (Maaten and Hinton 2008) are inefficient to represent a
meaningful low-dimensional representation of this task8. This
is because methods such as t-SNE or auto-encoders do not
make use of the dynamics and only provide a representation
based on the similarity between the visual inputs. As opposed
to this type of methods, we show in Figure 4a that the
CRAR agent is able to build a disentangled 2D abstract
representation of the states. The dataset used is made up
of 5000 transitions obtained with a purely random policy.
Details, hyper-parameters along with an ablation study are
provided in Appendix B. This ablation study shows the
importance of the representation loss Ld and it also shows
that replacing the representation loss Ld by a reconstruction

7As a consequence, the reward loss L⇢, the discount loss Lg and
the model-free loss Lmf are trivially learned and can be removed
without any noticeable change.

8The implementation used in Figure 3 can be found at the address
https://lvdmaaten.github.io/tsne/

loss (via an auto-encoder) is not suitable to ensure a sufficient
diversity in the low-dimensional abstract space.

(a) Without using the inter-
pretability loss Linterpr .

(b) With enforcing Linterpr

and v(a0) = [1, 0], the action 0
is forced to correspond to an in-
creasing feature X1.

Figure 4: The CRAR agent is able to reconstruct a sensible
representation of its environment in 2 dimensions.

In addition, when adding Linterpr, it is shown in Figure 4b
how forcing some features can be used for interpretable AI.

4.2 Catcher

Figure 5: Representation
of one state for the
”catcher” environment.

The state representation is
a two-dimensional array of
36 ⇥ 36 pixels 2 [�1, 1].
This is illustrated in Figure 5
and details are provided in
Appendix C. This environ-
ment has only a few low-
dimensional underlying im-
portant features for the state
representation: (i) the posi-
tion of the paddle (one feature) and (ii) the position of the
blocks (two features). These features are sufficient to fully
define the environment at any given time. This environment
illustrates that the CRAR agent is not limited to navigation
tasks and the difference with the previous example is that it
has an actual reward function and model-free objective.

We show in Figure 6 that all the losses behave well during
training and that they can all together decrease to low values
with a decreasing learning rate ↵. Note that all losses are
learned through the abstract representation.

In Figure 7, it is shown that the CRAR agent is able to build
a three dimensional abstract representation of its environment.
Note that the CRAR agent is also able to catch the ball all the
time (after 50k training steps and when following a greedy
policy).

4.3 Meta-learning with limited off-policy data
The CRAR architecture can also be used in a meta-learning
setting. We consider a distribution of labyrinth tasks (over
reward locations, and wall configurations)9, where one
sample is illustrated in Figure 8. The reward obtained by
the agent is equal to 1 when it reaches a key and it is equal

9Overall, the empirical probability that two labyrinths taken
randomly are the same is lower than 10�7; see details in the
appendix.

103 104

1umber of traiQiQg steps

0.00

0.02

0.04

0.06

0.08

0.10 traQsitioQ loss τ(θe, θτ)
reward loss ρ(θe, θρ)
discouQt factor loss g(θe, θg)
4-value loss mf(θe, θQ)
eQtropy maximisatioQ loss d1(θe)

Figure 6: Representation of model-based and model-free
losses through training in ”catcher”. ↵ = 5 ⇥ 10�4, � =
0.2 and decreasing ↵ by 10% every 2000 training steps.
All results obtained are qualitatively similar and robust to
different learning rates as long as the initial learning rate ↵
was not initialized to a too large value.

to �0.1 for any other transition. We consider the batch RL
setting where the agent has to build a policy offline from
experience gathered following a purely random policy on
a training set of 2 ⇥ 105 steps10. This setting makes up
a more challenging task as compared to an online setting
with (tens/hundreds of) millions of steps since the agent has
to build a policy from a limited off-policy experience and
requires strong generalization. In addition, it allows removing
the exploration/exploitation influence from the experiment,
thus easing the interpretation of the results.

Figure 8: Representation of
one state for one sample
labyrinth with rewards.

In this context, we use
a CRAR agent with an
abstract state space made
up of 3 channels, each
of size 8 ⇥ 8 and the
encoder is made up of
CNNs only. It is shown in
Figure 9 that the CRAR
agent is able to achieve
better data efficiency by
using planning (with depth
D = 1, 3, 6) as compared
to pure model-free or pure
model-based approaches.

The model-free DDQN baseline uses the same neural
architecture but is trained only with the loss Lmf . As
baselines, the pure model-based approach (represented as
dotted lines) performs planning similarly to the CRAR agent,
but selects the branches randomly and has a constant estimate
of the value function at the leafs (when d=0 in Equation 12).
Note that, for a fair comparison, the model-based baselines
have similar computational cost to take a decision than the
CRAR agent for a given depth d; however, they have a worse
performance due to the ablation of the model-free component.

This experiment is, to the best of our knowledge, the first
that is successfully able to learn efficiently from a small set
of off-policy data in a complex distribution of tasks, while

10This is equivalent to the set of transitions required in expec-
tation to obtain the three keys by a random policy on about 500
different labyrinths (depending on the random seed).

(a) Without interpretability loss

(b) We use v(a(1)) = (1, 1) and v(a(2)) = (�1, 1) such
that the first feature is forced to either increase or decrease
depending on the action and the second feature is forced to
increase with time (for both actions).

Figure 7: Abstract representation of the domain by the CRAR
agent after 50k training steps (details in the appendix). The
blue and orange crosses represent respectively all possible
reachable states for the ball starting respectively on the right
and on the left. The trajectory is represented by the blue-
purple curve (at the beginning a ball has just appeared). The
colored dots represent the estimated expected return provided
by Q(x, a; ✓Q). The actions taken are represented by the
black/grey dots. The estimated transition are represented by
straight lines (black for right, grey for left).

using planning in an abstract state space. A discussion of
other similar works are provided in Section 5.2.

4.4 Illustration of transfer learning
The CRAR architecture has the advantage of explicitly
training its different components, and hence can be used
for transfer learning by retraining/replacing some of its
components to adjust to new tasks. In particular, one could
enforce that states related to the same underlying task but with
different renderings (e.g. real and simulation) are mapped
into an abstract state that is close. In that case, an agent can be

0 50 100 150 200 250
1umber of epochs

−5

−4

−3

−2

−1

0

1
Av
er
Dg
e
sc
or
e
pe
r e
pi
so
de
 D
t t
es
t t
im
e

D 1
D 3
D 6
DD41

Figure 9: Meta-learning score on a distribution of labyrinths
where the training is done with a limited number of tran-
sitions obtained off-line by a random policy. An epoch is
considered to be every 2000 gradient descent steps (on all
the losses). Every epoch, 200 steps on new labyrinths from
the distribution are taken using different planning depths and
the considered score is the running average of 10 such scores.
The reported score is the mean of that running average along
with the standard deviation (10 independent runs). Dotted
lines represent policies without the model-free component.

trained in simulation and then deployed in a realistic setting
with limited retraining.

To illustrate the possibility of using the CRAR agent for
transfer, we consider the setting where after 250 epochs, the
high-dimensional state representations is now the negative of
the previous representations11. The experience available to
the agent is the same as previously, except that all the (high-
dimensional) state representations in the replay memory are
converted to the negative images. The transfer procedure
consists in forcing, by supervised learning (with a MSE error
and a learning rate of 5⇥ 10�4), the encoder to fit the same
abstract representation for 100 negative images than for the
positive images (80 images are used as training set and 20
are used as validation set).

It can be seen in Figure 10a that, with the transfer
procedure, no retraining is necessary in contrast to Figure 10b.
Several other approaches exist to achieve this type of transfer;
but this experiment demonstrates the flexibility of replacing
some of the components of the CRAR agent to achieve
transfer.

5 Related work
5.1 Building an abstract representation
The idea of building an abstract representation with a low-
dimensional representation of the important features for the
task at hand is key in the whole field of deep learning and also
highly prevalent in reinforcement learning. One of the key
advantages of using a small but rich abstract representation
is to allow for improved generalization.

11We define the negative of an image as the image where all
pixels have the opposite value.

0 100 200 300 400 500
1umber of epochs

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Av
er
ag
e
sc
or
e
pe
r e
pi
so
de
 a
t t
es
t t
im
e

D 1
D 3
D 6

(a) with transfer procedure at epoch 250.

0 100 200 300 400 500
1umber of epochs

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Av
er
ag
e
sc
or
e
pe
r e
pi
so
de
 a
t t
es
t t
im
e

D 1
D 3
D 6

(b) without transfer procedure at epoch 250.

Figure 10: The reported score is the mean of the running
average along with the standard deviation (5 independent
runs). On the first 250 epochs, training and test are done
on the original distribution of labyrinths while for the
remaining 250 epochs, training and test are done on the same
distribution of tasks but where the states are negative images
as compared to the original labyrinths.

One approach is to first infer a factorized set of generative
factors from the observations (e.g., with an encoder-decoder
architecture variant (Zhang, Satija, and Pineau 2018), varia-
tional auto-encoder (Higgins et al. 2017) or using for instance
t-SNE (Maaten and Hinton 2008)). Then these features can
be used as input to a reinforcement learning algorithm. The
learned representation can, in some contexts, greatly help for
generalization as it provides a more succinct representation
that is less prone to overfitting. In our setting, using an auto-
encoder loss instead of the representation loss Ld does not
ensure a sufficient diversity in the low-dimensional abstract
space. This problem is illustrated in Appendix B.1. In addi-
tion, an auto-encoder is often too strong of a constraint. On
the one hand, some features may be kept in the abstract rep-
resentation because they are important for the reconstruction
of the observations, while they are otherwise irrelevant for
the task at hand (e.g., the color of the cars in a self-driving
car context). On the other hand, crucial information about
the scene may also be discarded in the latent representation,
particularly if that information takes up a small proportion of
the observations x in pixel space (Higgins et al. 2017).

Another approach to build a set of relevant features is to
share a common representation for solving a set of tasks. The
reason is that learning related tasks introduce an inductive

bias that causes a model to build low level features in the
neural network that can be useful for the range of tasks
(Jaderberg et al. 2016).

The idea of an abstract representation can be found in neu-
roscience where the phenomenon of access consciousness can
be seen as the formation of a low-dimensional combination
of a few concepts which condition planning, communica-
tion and the interpretation of upcoming observations. In this
context, the abstract state could be formed using an atten-
tion mechanism able to select specific relevant variables in a
context-dependent manner (Bengio 2017).

In this work, we focus on building an abstract state
that provides sufficient information to simultaneously fit an
internal meaningful dynamics as well as the estimation of the
expected value of an optimal policy. The CRAR agent does
not make use of any reconstruction loss, but instead learns
both the model-free and model-based components through
the state representation. By learning these components along
with an approximate entropy maximization penalty, we have
shown that the CRAR agent ensures that the low-dimensional
representation of the task is meaningful.

5.2 Integrating model-free and model-based
Several recent works incorporate model-based and model-
free RL and achieve improved sample efficiency. The
closest works to CRAR include the value iteration network
(VIN) (Tamar et al. 2016), the predictron (Silver et al. 2016)
and the value prediction network (VPN) architecture (Oh,
Singh, and Lee 2017). VIN is a fully differentiable neural
network with a planning module that learns to plan from
model-free objectives. As compared to CRAR, VIN has
only been shown to work for navigation tasks from one
initial position to one goal position. In addition, it does
not work in a smaller abstract state space. The predictron
is aimed at developing an algorithm that is effective in the
context of planning. It works by implicitly learning an internal
model in an abstract state space which is used for policy
evaluation. The predictron is trained end-to-end to learn,
from the abstract state space, (i) the immediate reward and
(ii) value functions over multiple planning depths. The initial
predictron architecture was limited to policy evaluation; it
was then extended to learn an optimal policy through the
VPN model. Since VPN relies on n-step Q-learning, it can
not directly make use of off-policy data and is limited to
the online setting. As compared to these works, we show
how it is possible to explicitly learn both the model and
a value function from off-policy data while ensuring that
they are based on a shared sufficient state representation.
In addition, our algorithm ensures a disentanglement of the
low-dimensional abstract features, which opens up many
possibilities. In particular, the obtained low-dimensional
representation is still effective even in the absence of any
reward (thus without the model-free part).

As compared to (Kansky et al. 2017), our approach relies
directly on raw features (e.g. raw images) instead of an input
of entity states. As compared to I2A (Weber et al. 2017) and
many model-based approaches, our approach allows to build
a model in an abstract low-dimensional space. This is more
computationally efficient because planning can happen in

the low-dimensional abstract state space. As compared to
treeQn (Farquhar et al. 2017), the learning of the model is
explicit and we show how that approach allows recovering a
sufficient interpretable low-dimensional representation of the
environment, even in the absence of model-free objectives.

6 Discussion
In this paper, we have shown that it is possible to learn an
abstract state representation thanks to both the model-free
and model-based components as well as the approximate
entropy maximization penalty. In addition, we have shown
that the logical steps that require planning and estimating the
expected return can happen in that low-dimensional abstract
state space.

Our architecture could be extended to the case of stochastic
environments. For the model-based component, one could
use a generative model conditioned on both the abstract state
and the action (e.g., using a GAN (Goodfellow et al. 2014))
and the planning algorithm should take into account the
stochastic nature of the dynamics. Concerning the model-free
components, it would be possible to use the distributional
representation of the value function (Bellemare, Dabney, and
Munos 2017).

Exploration is also one of the most important open
challenges in deep reinforcement learning. The approach
developed in this paper can be used as the basis for new
exploration strategies as the CRAR agent provides a low-
dimensional representation of the states, which can be used
to more efficiently assess novelty. An illustration of this
is shown in Figure 11, in the context of the labyrinth task
described in Section 4.

Figure 11: Abstract representation of the domain when the
top part has not been explored (corresponding to the left
part in this 2D low-dimensional representation). Thanks to
the extrapolation abilities of the internal transition function,
the CRAR agent can find a sequence of actions such that
the expected representation of the new state is as far from
any known abstract state (previously observed) for a given
metric (e.g., L2 distance). Details related to this experiment
are given in Appendix B.

Finally, in this paper, we have only considered a transition
model for one time step. An interesting future direction of
work would be to incorporate temporal abstractions such as
options, see e.g. (Bacon, Harb, and Precup 2017).

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
et al. 2016. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.
Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The option-critic
architecture. In AAAI, 1726–1734.
Belghazi, I.; Rajeswar, S.; Baratin, A.; Hjelm, R. D.; and
Courville, A. 2018. MINE: Mutual information neural
estimation. arXiv preprint arXiv:1801.04062.
Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A
distributional perspective on reinforcement learning. In
International Conference on Machine Learning, 449–458.
Bellman, R. 1957. A markovian decision process. Journal
of Mathematics and Mechanics 679–684.
Bengio, Y. 2017. The consciousness prior. arXiv preprint
arXiv:1709.08568.
Chollet, F. 2015. Keras. https://github.com/
fchollet/keras.
Farquhar, G.; Rocktäschel, T.; Igl, M.; and Whiteson, S.
2017. Treeqn and atreec: Differentiable tree planning for deep
reinforcement learning. arXiv preprint arXiv:1710.11417.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and
Silver, D. 2017. Rainbow: Combining improvements in deep
reinforcement learning. arXiv preprint arXiv:1710.02298.
Higgins, I.; Pal, A.; Rusu, A.; Matthey, L.; Burgess, C.;
Pritzel, A.; Botvinick, M.; Blundell, C.; and Lerchner, A.
2017. Darla: Improving zero-shot transfer in reinforcement
learning. In International Conference on Machine Learning,
1480–1490.
Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.; Leibo,
J. Z.; Silver, D.; and Kavukcuoglu, K. 2016. Reinforcement
learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397.
Kansky, K.; Silver, T.; Mély, D. A.; Eldawy, M.; Lázaro-
Gredilla, M.; Lou, X.; Dorfman, N.; Sidor, S.; Phoenix, S.;
and George, D. 2017. Schema networks: Zero-shot transfer
with a generative causal model of intuitive physics. In
International Conference on Machine Learning, 1809–1818.
Maaten, L. v. d., and Hinton, G. 2008. Visualizing data using
t-sne. Journal of machine learning research 9(Nov):2579–
2605.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature 518(7540):529–
533.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap,
T. P.; Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016.

Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning.
Oh, J.; Singh, S.; and Lee, H. 2017. Value prediction network.
In Advances in Neural Information Processing Systems, 6120–
6130.
Silver, D.; van Hasselt, H.; Hessel, M.; Schaul, T.; Guez, A.;
Harley, T.; Dulac-Arnold, G.; Reichert, D.; Rabinowitz, N.;
Barreto, A.; et al. 2016. The predictron: End-to-end learning
and planning. arXiv preprint arXiv:1612.08810.
Tamar, A.; Levine, S.; Abbeel, P.; WU, Y.; and Thomas, G.
2016. Value iteration networks. In Advances in Neural
Information Processing Systems, 2146–2154.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep
reinforcement learning with double q-learning. In Thirtieth
AAAI Conference on Artificial Intelligence.
Weber, T.; Racanière, S.; Reichert, D. P.; Buesing, L.; Guez,
A.; Rezende, D. J.; Badia, A. P.; Vinyals, O.; Heess, N.; Li,
Y.; et al. 2017. Imagination-augmented agents for deep
reinforcement learning. arXiv preprint arXiv:1707.06203.
White, M. 2016. Unifying task specification in reinforcement
learning. arXiv preprint arXiv:1609.01995.
Zhang, A.; Satija, H.; and Pineau, J. 2018. Decoupling
dynamics and reward for transfer learning. arXiv preprint
arXiv:1804.10689.

A Generic algorithm details used in all
experiments

The architecture of the different elements are detailed
hereafter. Except when stated otherwise, all the elements of
the architecture described in this section have been used for
all experiments. ”Conv2D” refers to a 2D convolutional layer
(the stride is 1 and the padding is such that the output layer
has the same dimensions, except the number of channels).
”MaxPooling2D” refers to a pooling operation. ”Dense”
refers to a fully connected layer. The algorithm has used
Keras (Chollet 2015) and Tensorflow (Abadi et al. 2016). Cd

is a constant set to 5. The batch size is 32. The freeze interval
for the target parameters ✓�k is 1000 steps. A sketch of the
learning procedure is provided in Algorithm 1.

Algorithm 1 Learning procedure
1: Initialize network weights ✓e, ✓Q, ✓⇢, ✓g, ✓⌧
2: Initialize target network weights ✓�e = ✓e, ✓�Q = ✓Q
3: In the batch setting, the dataset D is a set of transitions

(s, a, r, s0), otherwise it is initialized as an empty set.
4: while epoch < Nepoch do
5: while t < Ntimesteps do
6: In the online setting, get new (s, a, r, s0) into D.
7: Minimize L by gradient descent on a random

mini-batch (s, a, r, s0) ⇠ D.
8: Estimate performance in a test environment with

policy given by argmax
a2A

QD
plan(x̂t, a)

A.1 Encoder
The encoder is made up of the succession of the following
layers:

• Conv2D (8 channels, (2, 2) kernel, activation=’tanh’),

• Conv2D(16 channels, (2, 2) kernel, activation=’tanh’),

• MaxPooling2D(pool size (2, 2)),

• Conv2D(32 channels, (3, 3) kernel, activation=’tanh’),

• MaxPooling2D(pool size (3, 3)).

For the abstract state made up of na unstructured neurons
(e.g., na = 2 or 3), it is followed by

• Dense(200 neurons, activation=’tanh’),

• Dense(100 neurons, activation=’tanh’),

• Dense(50 neurons, activation=’tanh’),

• Dense(10 neurons, activation=’tanh’),

• Dense(na neurons).

For the abstract state made up of neurons that keeps locality
information, it is followed by the following layer:

• Conv2D(nc, (1, 1)),

where nc is the number of internal channels.

A.2 Transition model
The concatenation of the abstract state and the action is
provided as input. For the unstructured abstract state, the
transition model is made up by
• Dense(10 neurons, activation=’tanh’),
• Dense(30 neurons, activation=’tanh’),
• Dense(30 neurons, activation=’tanh’),
• Dense(10 neurons, activation=’tanh’),
• Dense(na neurons).

Otherwise, the transition model is made up by
• Conv2D(16 channels, (1, 1) kernel, activation=’tanh’),
• Conv2D(32 channels, (2, 2) kernel, activation=’tanh’),
• Conv2D(64 channels, (3, 3) kernel, activation=’tanh’),
• Conv2D(32 channels, (2, 2) kernel, activation=’tanh’),
• Conv2D(16 channels, (1, 1) kernel, activation=’tanh’).

A.3 Reward and discount factor models
The concatenation of the abstract state and the action is
provided as input. For the unstructured abstract state, the
transition model is made up by
• Conv2D(16 channels, (2, 2) kernel, activation=’tanh’),
• Conv2D(32 channels, (3, 3) kernel, activation=’tanh’),
• MaxPooling2D(pool size (2, 2)),
• Conv2D(16 channels, (2, 2) kernel, activation=’tanh’),
• Conv2D(4 channels, (1, 1) kernel, activation=’tanh’).
• Dense(200, activation=’tanh’)(x),
• Dense(50 neurons, activation=’tanh’),
• Dense(20 neurons, activation=’tanh’) ,
• Dense(1 neuron).
Otherwise:
• Dense(10 neurons, activation=’tanh’),
• Dense(50 neurons, activation=’tanh’),
• Dense(20 neurons, activation=’tanh’),
• Dense(1 neuron).

A.4 Q-network
The abstract state is provided as input. For the structured
abstract state, the transition model is made up by
• Conv2D(16 channels, (2, 2) kernel, activation=’tanh’),
• Conv2D(32 channels, (3, 3) kernel, activation=’tanh’),
• MaxPooling2D(pool size (2, 2))
• Conv2D(16 channels, (2, 2) kernel, activation=’tanh’),
• Conv2D(4 channels, (1, 1) kernel, activation=’tanh’),
• Dense(200 neurons, activation=’tanh’),
• Dense(50 neurons, activation=’tanh’),
• Dense(20 neurons, activation=’tanh’),

• Dense(number of actions).
For the unstructured abstract state, the transition model is

made up by
• Dense(20 neurons, activation=’tanh’)
• Dense(50 neurons, activation=’tanh’)
• Dense(20 neurons, activation=’tanh’)
• Dense(number of actions)

B Details on the single labyrinth
environment task

Even though the dynamics happens in a 8⇥ 8 grid, the state
representation is a 2 dimensional array of 48 ⇥ 48 pixels
2 [�1, 1]. For Figures 4a, 4b and 11, the dataset is made up
of 5000 transitions obtained with a purely random policy in
the domain (10 epoch of 500 transitions, where each epoch
starts with the agent in the corridor). The following learning
rates are used: ↵ = 5⇥ 10�4 (decreased by 10% every 2000
training steps such that the losses converge close to zero);
� = 0.2; ↵interpr = ↵/2 (when used). All figures presented
are with 100k training steps (except when stated otherwise).

For Figure 11, the dataset is also made up of 5000
transitions obtained with a purely random policy in the
domain except that all transitions that lead the agent to
transition to the top part are discarded and the agent starts a
new epoch.

B.1 Ablation study and sensitivity study to
hyper-parameters

We conduct in the section a sensitivity analysis and an
ablation study on the simple labyrinth experiment (starting
from the same setting than in Figure 4a).

The CRAR agent can capture a meaningful representation
of the maze environment, even without any particular
resampling of successive states for the entropy loss (see
Figure 12). When a strong entropy between successive states
is enforced, Figure 13 shows that this prevents a more natural
representation. However, one can note that some meaningful
structure is still preserved.

As long as the learning rate is sufficiently small, the
CRAR agent is able to built an accurate representation of the
maze environment (see Figure 14). When the learning rate
is too large, some instabilities prevent the transition function
between abstract states to be accurate (see Figure 15).

In order to illustrate the importance of the representation
loss Ld, we first perform the same experiment as in Figure 4a
but we do not update the weights of the encoder to optimize
the loss Ld. As can be seen in Figure 16. Without the entropy
maximisation at the output of the encoder, all representations
tend to collapse to a constant point in the low-dimensional
abstract space, thus losing the usefulness of the approach.

One can wonder if it’s possible to use an auto-encoder loss
instead of the representation loss Ld. It can be seen in Figure
17 that, in this case, the auto-encoder loss is not sufficient
to ensure a sufficient diversity in the the low-dimensional
abstract space and all abstract representations tend still to
collapse to a constant point (even though less dramatically

Figure 12: � = 0.

Figure 13: � = 0.5.

Figure 14: ↵ fixed at 0.0001.

than in Figure 16). This happens because a sufficiently rich
decoder can reconstruct the input even though the abstract
representations have almost collapsed to a constant point.
Optimizing both an auto-encoder loss and a transition loss
L⌧ (✓e, ✓⌧) does therefore not lead to a robust solution to

Figure 15: ↵ fixed at 0.0005

Figure 16: Ablation of the representation loss Ld.

ensure the diversity in the low-dimensional abstract state
space. This problem is illustrated in Figure 17. For that
experiment, the decoder uses the same architecture than the
encoder (in a reverse order). The loss of the auto-encoder is
the L2 reconstruction loss and the same learning rate is used.

C Details on the ”catcher” environment
The ”catcher” environment considered in this paper is made
up of balls (blocks of dark pixels) that periodically appear
at the top of the frames (at random horizontal positions) and
fall towards the bottom of the frames where a paddle has the
possibility to catch them. The agent has two possible actions:
moving the paddle in the directions left or right (by three
pixels). At each step the ball falls (also by three pixels) and
when the ball reaches the bottom of the screen, the episode
ends and the agent receives a positive reward of +1 for each
ball caught, while it receives a negative reward -1 if the ball
is not caught. Only two possible starting positions for the ball
are considered (either on the far left or the far right of the
screen).

The following learning rates are used: ↵ = 5 ⇥ 10�4

(decreasing by 10% every 2000 training steps); � = 0.2;

Figure 17: Ablation of the representation loss Ld and
replacement by an auto-encoder loss.

↵interpr = ↵ (when used).
The experiments on that domain are obtained in an online

setting context. A new sample is obtained via a random policy
at every step and kept in a replay memory.

D Details on the distribution of labyrinths
The state representation is a 2 dimensional array of 48 ⇥
48 elements 2 [�1, 1] (one channel with grey-levels are
provided as input). For the distribution of labyrinth, the
underlying dynamics happen in a 8 ⇥ 8 grid. The grid has
walls on all its contour and the agent starts in the top left
corner. The walls and the rewards are added randomly:
• 16 walls are placed randomly on the grid (in addition to

the contour), and
• 3 keys are also added randomly on free positions.
A rejection step is performed for all labyrinths for the cases
where the agent has not the possibility of reaching all three
keys.

The discount factor is G(s, a, s0) = 1 for all transitions
from state s to state s0 with action a, except when all
the keys have been gathered by the agent, in which case
G(s, a, s0) = 0. The biased discount factor used for training
is �(s, a, s0) = argmin(G(s, a, s0), 0.9).

When gathering trajectories with the random policy, a
new labyrinth is sampled from the distribution only once all
rewards have been gathered by the agent. In the test phase,
the episode is terminated either once all rewards have been
gathered or when the number of 50 steps has been reached
(thus the lowest score for an episode is -5 in the case where
no reward has been gathered).

The policy follows the optimal action given by
argmax

a2A
QD

plan(x̂t, a) 90% of the time and a random action

10% of the time. When planning to estimate QD
plan(x̂t, a), as

described in Section 3.4, only b-best options are considered.
For the first planning step, all four best actions are kept and
in the following only the two best actions are kept at each
expansion step.

The following hyper-parameters are used: ↵ = 5 ⇥
10�4,� = 1.

D.1 Sensibility study to hyper-parameters
On the one hand, when a high amount of data is available,
planning is not crucial (see Figure 19). On the other hand,
when the amount of data available for the task decreases, the
combination of model-based and model-free becomes more
important (see Figure 18).

Figure 18: Meta-learning score on a distribution of labyrinths.
The setting is the same as in Figure 9, except that training
is done with 105 transitions obtained off-line by a random
policy.

Figure 19: Meta-learning score on a distribution of labyrinths.
The setting is the same as in Figure 9, except that training is
done with 5⇥ 105 transitions obtained off-line by a random
policy.

