
Pay Better Attention to Attention: Head Selection in
Multilingual and Multi-Domain Sequence Modeling

Hongyu Gong, Yun Tang, Juan Miguel Pino, Xian Li
Facebook AI Research

{hygong,yuntang,juancarabina,xianl}@fb.com

Abstract

Multi-head attention has each of the attention heads collect salient information
from different parts of an input sequence, making it a powerful mechanism for
sequence modeling. Multilingual and multi-domain learning are common scenarios
for sequence modeling, where the key challenge is to maximize positive transfer
and mitigate negative interference across languages and domains. In this paper, we
find that non-selective attention sharing is sub-optimal for achieving good gener-
alization across all languages and domains. We further propose attention sharing
strategies to facilitate parameter sharing and specialization in multilingual and
multi-domain sequence modeling. Our approach automatically learns shared and
specialized attention heads for different languages and domains. Evaluated in vari-
ous tasks including speech recognition, text-to-text and speech-to-text translation,
the proposed attention sharing strategies consistently bring gains to sequence mod-
els built upon multi-head attention. For speech-to-text translation, our approach
yields an average of +2.0 BLEU over 13 language directions in multilingual setting
and +2.0 BLEU over 3 domains in multi-domain setting.

1 Introduction

Recent progress on deep learning models, in particular multi-head attention, has brought significant
gains to sequence modeling tasks including speech recognition (Moritz et al., 2020), text-to-text
translation (Vaswani et al., 2017), and speech-to-text translation (Vila et al., 2018; Gangi et al., 2019).
Attention mechanism allows a model to focus on informative parts of the inputs, and multi-head
attention computes attention over inputs by multiple heads independently. With each head attending
to different information, multi-head attention potentially captures more complicated data patterns and
extracts sophisticated knowledge.

Sequence modeling has attracted a lot of research interest in multilingual and multi-domain settings,
where a model is trained on data in multiple language directions and data from different domains
respectively. Key advantages of these settings are better data efficiency and the support of knowledge
transfer among languages or domains. This is critical for resource-limited scenarios. For example,
multilingual translation enhances the performance of low-resource languages via knowledge transfer
from high-resource languages (Gu et al., 2018; Inaguma et al., 2019b). Given the data scarcity in
individual domains, a common practice is to combine the data from various domains to augment the
training set (Wang et al., 2020d). Another appealing aspect of multilingual or multi-domain models is
their low deployment and maintenance costs compared with numerous models trained for individual
language pairs or domains.

Despite the positive knowledge transfer, negative interference has also been observed in multilingual
(or multi-domain) training especially when languages (or domains) are dissimilar. Recent studies
reveal from the optimization perspective that conflicting gradients in shared parameters is one cause of
interference between languages (or domains) (Yu et al., 2020). A promising direction for interference
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mitigation is to design better strategies of parameter sharing. In some previous works, sharing is based
on the similarity between languages (or domains), which require expert knowledge or pre-computed
relatedness (Wu et al., 2019). Recent studies also propose branches and components specific to
languages (or domains) in addition to shared modules (Bapna and Firat, 2019; Guo et al., 2020).

In this work, we bring the mitigation of language and domain interference under a common umbrella,
and tackle it by improving parameter sharing within multi-head attention. We propose strategies
to select attention heads for different languages or domains. Instead of sharing everything across
languages or domains, our model automatically learns to share heads among a subset of languages
or domains. It encourages positive transfer within the subset and preserves their specificity without
interference from outside the subset. The major contributions of this work are summarized below:

1. We propose attention head selection to mitigate language or domain interference;

2. The parameter sharing strategies are lightweight and preserve inference efficiency;

3. We extensively evaluate attention sharing strategies on various sequence modeling tasks including
speech recognition, text-to-text and speech-to-text translation. Consistent gains are achieved across
multiple benchmark datasets.

The paper is structured as follows. Section 2 discusses related works on sequence modeling in
multilingual and multi-domain setting. In Section 3, we introduce the proposed strategies of head
selection in multi-head attention. Section 4 describes the empirical evaluation, followed by a
discussion in Section 5. We conclude this paper in Section 6.

2 Related Work

Multilingual learning. Multilingual modeling has the potential to improve low-resource language
performance through knowledge transfer from high-resource languages, and it draws great interest
from researchers in speech recognition and translation (Pratap et al., 2020; Heigold et al., 2013;
Johnson et al., 2017; Dabre et al., 2020; Liu et al., 2020; Inaguma et al., 2019a; Li et al., 2020).
Although impressive progress has been made for low-resource or zero-shot tasks, it is also found the
multilingual model has inferior performance on high-resource tasks due to multilingual interference.
In order to address this issue, some works focus on multilingual models with task-specific parameters.
Different parameter sharing strategies are examined on Transformer (Sachan and Neubig, 2018).
Attention dependent on target languages is proposed to enhance multilingual translation (Blackwood
et al., 2018). Treating multilingual modeling as an adaptation problem, Bapna and Firat (2019) first
build a universal multilingual model for all languages and then finetune newly added adapters for
each language pair. Another thread of work is to increase the model capacity to compensate the
performance loss in high-resource languages (Pratap et al., 2020). Shazeer et al. (2017) propose
mixture-of-experts and select RNN cells based on input tokens. Lepikhin et al. (2020) integrate a
mixture of FFN experts in the GShard model, and later Fedus et al. (2021) propose Switch Transformer
to route tokens to different FFN sub-layers. Different from previous works, we propose strategies of
attention sharing among languages in the level of attention heads for multilingual modeling.

Multi-domain learning. Similar to multilingual learning, multi-domain learning (MDL) can ef-
fectively utilize data from different domains but also suffers from interference due to inter-domain
heterogeneity (Saunders, 2021; Pham et al., 2021). Previous works address this issue from two
perspectives: optimization and model architecture. In the optimization aspect, attempts have been
made to synchronize the learning speed of different tasks (Chen et al., 2018), adjust the gradients of
individual tasks to alleviate gradient conflicts (Yu et al., 2020) and apply regularization to achieve
better generalization in different domains (Dakwale and Monz, 2017; Khayrallah et al., 2018; Thomp-
son et al., 2019). In terms of model architecture, domain-specific labels (Kobus et al., 2017), word
embedding (Zeng et al., 2018a), sub-networks (Wang et al., 2020d) are adopted to address the issue of
domain divergence. The architecture can be specified during the general training with the mixed data
from multiple domains (Wang et al., 2020d) or during the finetuning in individual domains (Bapna
and Firat, 2019). In this work, we deal with domain interference by leveraging domain-specific
attention heads in multi-head attention.

Attention selection. Selective self-attention networks propose to apply masking to the inputs and pay
more attention to content words (Geng et al., 2020). Liu et al. (2021) select text-related image regions
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with attention in multi-modality translation. Compared to these methods, we conduct automatic
attention head selection for different tasks and focus on mitigating task interference.

3 Model

In this section, we start with preliminaries of multi-head attention, and introduce our approach
to attention interference mitigation. We put multilingual and multi-domain sequence modeling
under the same umbrella in this study. For the simplicity of the following discussions, we refer to
the two settings as multi-task modeling, where a task is one language or one domain. Different
from the standard multi-head attention, our model provides more attention heads than those used in
computation. Different subsets of heads are assigned to each task so that partial attention sharing
enables knowledge transfer and meanwhile mitigates interference. We introduce latent variables to
modulate head selection, and propose strategies to learn the head assignment to different tasks.

3.1 Preliminary

Multi-head attention. As a core component of Transformer, multi-head attention parameterizes
each head with key, query and value transformation matrices (Vaswani et al., 2017). The token
representation is transformed into key, query and value vectors via these transformations. Each
head assigns the attention of this token over the input sequence based on the matching between its
query vector and key vectors of other tokens. The value vectors are weighted by the attention as
the contextualized token representation. It is passed through linear projection as the output of the
attention head. Suppose that head h has output x(h). Multi-head attention with H heads yields an
output x for the given token, which is the concatenation of all head outputs.

x = x(1) ⊕ · · · ⊕ x(h) ⊕ · · · ⊕ x(H), (1)
where ⊕ is the vector concatenation.

Interference. Maximal parameter sharing aims to learn universal knowledge across languages (Wang
et al., 2020e) and domains (Zeng et al., 2018b). To capture the task specificity, different languages or
domains compete for model capacity, which is observed as the interference in previous studies. The
interference results in degraded performance in jointly trained models. However, few works look
into the improvement of parameter sharing within multi-head attention. This study explores head
selection strategies to mitigate the interference in multilingual and multi-domain models.

3.2 Latent Variable for Head Selection

First, we outline our approach to learn a more general-purpose multi-head attention in Transformer
from the Bayesian neural network perspective. Suppose that the input sequence is x and the output
sequence is y. For conditional sequence modeling tasks such as machine translation, the posterior of
p(y | x) can be computed by marginalizing over the posterior of latent variable z, which modulates
parameters Θ in the standard Transformer architecture:

p(y | x,Θ) = Ep(z|Θ)[p(y | x, z)] =

∫
p(y | x, z)p(z|Θ) dz (2)

Parameterization of zt. In this work, we define zt as modulating the selection of attention heads
by task t. We have zt = {z(h)

t }h where z(h)
t is a discrete latent variable from Bernoulli distribution

indicating whether task t selects attention head h. This modeling choice allows us to prune attention
heads, which preserves computation efficiency as well as regularizes training.

Marginalizing over zt is intractable given numerous heads in neural models. Therefore, we use
variational inference to derive an approximate solution. Suppose that (xt, yt) is from task t. Specifi-
cally, we learn an inference network qφ(zt), which is paramterized with φ, to approximate the true
distribution p(zt) and optimize the evidence lower bound (ELBO) of p(y|x):

log p(y | x) ≥
∑
t

(
Eqφ(zt)[log pθ(yt | xt, zt)]− KL(qφ(zt) ‖ p(zt))

)
, (3)

where KL is the KL-divergence between two distributions. In our work, we assume identical
probability of each head being selected. Therefore, we have p(zt = 1) = H

H′ , where H and H ′ are
numbers of selected attention heads and all head candidates.
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Training and interference. We use the Gumbel-Softmax reparameterization (Jang et al., 2017)
to draw samples of z(h)

t from the posterior qφ(z
(h)
t ). It makes the model end-to-end differentiable,

while learning discrete policies of head selection without resorting to policy gradients. We adopt a
lightweight estimator of qφ(z

(h)
t ) by directly learning the logit parameters {φ(h)

t }:

qφ(z
(h)
t ) =

exp((φ
(h)
t (1) + ε(1))/τ)∑

j∈{0,1} exp((φ
(h)
t (j) + ε(j))/τ)

, ε ∼ G(0, 1) (4)

where G(0, 1) is the Gumbel distribution, and τ is a temperature hyperparameter which increases the
discreteness of samples when τ → 0.

We will discuss different head selection strategies in Section 3.3, which make binary selection
decisions based on real-valued posterior qφ(z

(h)
t ).

3.3 Attention Selection Strategies

...

...

H’ heads

H heads

(a) Subset strategy.

... ... ......

...

Group 1 Group 2 Group H

r heads

(b) Group strategy.

Figure 1: Attention sharing strategies. The blue heads are selected while the grey heads are not.

Suppose that the output dimension of multi-head attention is d, and the dimension of each attention
head is d

H . We provide a large pool of H ′ (H ′ > H) attention head candidates in every Transformer
layer, and H ′ is a hyperparameter controlling the search space size of attention selection strategies.
The model requires attention outputs to have a consistent dimension d, so each task needs to select
exact H heads among H ′ candidates. We introduce two strategies for the attention head selection:
subset strategy and group strategy.

Subset strategy. The subset strategy is straightforward, and we compare the posterior {qφ(z
(h)
t ) :

h ∈ [1, H ′]} of all H ′ heads given a task t. A subset of H heads with the highest posterior are
selected by the task, and there are CH

′

H subset choices. The subset strategy is described in Fig. 1(a).
The binary mask s(h)

t indicates whether an attention head h is assigned to task t.

s
(h)
t =

{
1, h ∈ TopH({qφ(z

(h)
t )}),

0, otherwise,
(5)

where TopH(·) returns the top H heads with the highest values.

The outputs of the selected heads are concatenated as the attention output. Note that the subset
strategy does not consider the order of the attention heads. For example, when head 2 and 3 are
selected, head 2 contributes to the beginning part of attention output. With head 1 and 2 selected, the
output of head 2 goes to the last part of the attention output.

Group strategy. We further propose group strategy to preserve the order of attention heads during
head selection. Different from the subset strategy, the group strategy first divides H ′ heads into
H groups. As is shown in Fig. 1(b), each group contains r = H′

H candidates. Each task could
choose one attention head from each group, and has access to H heads per layer. There are rH
possible combinations of heads. The group strategy keeps the head order in that heads from group g
only contribute to g’s corresponding dimensions in the attention output. The head with the highest
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posterior in its group would be selected by a given task t. We use the binary mask s(h)
t to indicate the

selection of head h in group g.

s
(h)
t =

{
1, h = argmax({qφ(z

(h′)
t ) : h′ ∈ g}),

0, otherwise.
(6)

The output of group g is:

x(g) =
∑
h∈g

s
(h)
t · x(h). (7)

The outputs of H groups are concatenated as the output of the attention module for task t.

With either subset or group strategy, the sequence model is trained to assign attention heads to
different tasks to maximize the lower bound in inequality (3). The number of additional parameters
{φ(h)

t } introduced by our attention selection is only O(T × H ′ × L), where T is the number of
tasks, H ′ is the number of head candidates per layer, and L is the number of layers. It is small
compared with the total parameter size of the model, and head selection is thus lightweight and
memory efficient. Moreover, the head selection is inherently a pruning process. Regardless of the
size of head candidates, only a fixed number of attention heads are involved in computation for a
given task. Hence our approach is also computationally efficient in model inference.

4 Experiments

We evaluate sequence models in multilingual and multi-domain settings respectively. Various
applications are considered including multilingual machine translation (MT), automatic speech
recognition (ASR) and speech translation (ST) in both multilingual and multi-domain settings. We
integrate attention selection strategies into the self-attention1 module. Our implementation is based
on the FAIRSEQ toolkit (Ott et al., 2019; Wang et al., 2020b). We include widely used sequence
models built on multi-head attention as strong baselines below.

1.Transformer (Vaswani et al., 2017). It is a state-of-the-art model in machine translation, which
takes texts in source languages as inputs and generates texts in target languages.

2. S2T Transformer (Wang et al., 2020a). As a variant of Transformer for speech processing,
S2T Transformer is a stack of a convolutional subsampler and Transformer, where the subsampler
processes audio log mel-filter features and sends them to Transformer for text generation.

3. Adapter model (Bapna and Firat, 2019). Adapters have been shown as an effective approach to
language and domain adaptation. Task-specific layers are added on top of each Transformer layer in
a well-trained (S2T) Transformer. A typical adapter layer consists of two feed-forward sub-layers.

4. Static strategy of head selection. A static strategy assigns each task with a fixed subset of attention
heads based on the task similarity (Standley et al., 2020; Sen et al., 2019). In the multilingual setting,
we group languages into linguistic families, and each family is assigned with an exclusive set of
heads. As for the multi-domain setting, each domain has its own set of attention heads.

We report parameter size and decoding speed as memory and computation efficiency metrics respec-
tively. Decoding speed is measured by the number of tokens decoded per second by one GPU.

4.1 Machine Translation

The task of machine translation is to translate a text from one language to another. The metric BLEU
measures the overlap between model translations and the ground truth (Papineni et al., 2002).

Dataset. We experiment with public multilingual machine translation datasets collected by WMT
shared tasks as used by (Liu et al., 2020). The dataset consists of parallel sentences between English
and other 14 languages2. Its data statistics are summarized in Appendix A.1. We evaluate models on

1We also tried head selection in the encoder-decoder attention but did not observe big improvements when
using it alone or in combination with self-attention head selection.

2The 14 languages are: Chinese (zh), Czech (cs), Estonian (et), Finnish (fi), French (fr), German (de),
Gujarati (gu), Kazakh (kk), Latvian (lv), Lithuanian (lt), Romanian (ro), Russian (ru), Spanish (es), Turkish (tr).
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both one-to-many (O2M) and many-to-one (M2O) translations, which are translation from English to
14 languages and from 14 languages to English respectively.

Model configurations. The attention selection is based on the source language on the encoder side
for M2O translation, and is based on the target language in the decoder part for O2M translation.
For both subset and group strategies, the number of attention head candidates is set as 8 in each
layer (i.e., H’=8), and only 4 heads (i.e., H=4) are selected for computation. We will discuss how the
hyperparameter H ′ affects model performance in Section 5. For static strategy, we group languages
into 5 linguistic families3. Each family is assigned with 4 attention heads which are shared by all
languages in this family. Therefore, a total of 20 attention heads are used in the static strategy.

Other baselines have 4 attention heads in each Transformer layer. We also include a Transformer
baseline with 8 attention heads, which measures the effect of increased attention heads. All models
have 6 encoder layers and 6 decoder layers, the embedding dimension is 512 and the feed-forward
dimension is 1024. They are trained with a batch size of 131k tokens and a learning rate of 0.0007.
For O2M translation, attention selection models and Transformer are trained for 140k steps. As for
M2O translation, they are trained for 100k steps. The adapter model is initialized with parameters
from the trained Transformer, and tunes adapter layer parameters for 40k steps with Transformer
parameters frozen. Adapter layers are added to Transformer for each language direction, and they
have an intermediate dimension of 256. The dimension is selected so that the number of parameters
(460M) in the adapter model is close to the parameter size (420M) in attention selection models.

Table 1: BLEU (↑) of Machine Translation on WMT Datasets (#Params: the number (Million) of
model parameters. Speed: the number of tokens decoded per second. AVG-A: average BLEU over
14 directions, High and Low are average BLEU over high- and low-resource languages respectively.)

O2M M2O
#Params

(M)
Speed
(tok/s)

BLEU #Params
(M)

Speed
(tok/s)

BLEU
AVG-A High Low AVG-A High Low

Transformer (H=4) 416 1140 20.1 25.7 16.0 416 1252 22.8 27.9 19.0
Transformer (H=8) 416 1089 20.6 26.7 16.1 416 1156 23.7 29.0 19.7

Adapter 460 1021 20.9 26.7 16.6 460 1117 23.3 28.7 19.3
Static strategy 434 1133 20.9 27.1 16.3 434 1250 23.6 29.0 19.5
Group strategy 420 1137 21.0 27.1 16.4 420 1245 23.5 28.8 19.6
Subset strategy 420 1133 20.9 27.0 16.4 420 1250 23.3 28.7 19.4

Results. We group 14 language directions based on their amount of training data. We have 6
high-resource languages with more than 10M parallel sentences, and 8 low-resource languages with
fewer than 10M sentence pairs. Table 1 shows model performance on WMT datasets. More attention
heads improve Transformer performance while hurting the decoding speed. In comparison with
Transformer with 4 heads, group strategy achieves +0.9 and +0.7 BLEU on average of 14 language
directions in O2M and M2O translations respectively at a comparable decoding speed. Transformer
with 8 heads and adapter achieve BLEU scores comparable to both group and subset strategies but
fall behind in inference efficiency. Static strategy demonstrates comparable performance to group
and subset strategies in all metrics except the parameter size.

4.2 Speech Recognition

The task of Automatic Speech Recognition (ASR) is to transcribe source audios in the same language.
Word error rate (WER) is ASR evaluation metric, which measures the difference of model outputs
from the ground truth (Klakow and Peters, 2002). Lower WER indicates better recognition.

Model configuration. Models included in the experiments of speech recognition are S2T Trans-
former, S2T Transformer with adapter layers, S2T Transformer with static, group and subset strategies.
With static strategy, we group 8 languages into 2 families4, and each family has an exclusive set of
4 attention heads. Following the setup of (Salesky et al., 2021), all models have 1024 channels in
the input convolutional subsampler, 12 encoder layers and 6 decoder layers with 4 attention heads
per layer. Again we include the S2T Transformer baseline with 8 heads. The embedding dimension
is 256 and the feed-forward dimension is 2048. We set a batch size of 320k tokens and a learning

3(1) Indo-European family: cs, de, es, fr, gu, lt, lv, ro and ru; (2) Estonian family: et; (3) Uralic family: fi; (4)
Turkic family: kk and tr; (5) Sino-Tibetan family: zh.

4(1) Afro-Asiatic family: ar; (2) Indo-European family: de, el, es, fr, it, pt and ru.
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rate of 0.0005 during training. Attention selection models and S2T Transformer are trained for 250
epochs. Adapter model is initialized with parameters of the trained S2T Transformer, and is then
trained for another 200 epochs with only adapter layer parameters tuned. The intermediate dimension
of adapter layers is again set as 256. To prevent over-fitting, we stop the model training when the
model does not improve on the validation set for 10 epochs. To reduce the performance variance, we
average checkpoints of the last 10 epochs, and use the averaged model for evaluation.

4.2.1 Multilingual Speech Recognition

Dataset. We use the multilingual TEDx (mTEDx) dataset for speech recognition (Salesky et al.,
2021). It collects audio recordings from TEDx talks. Eight languages are covered including Arabic
(ar), German (de), Greek (el), Spanish (es), French (fr), Italian (it), Portuguese (pt) and Russian (ru).

Table 2: WER (↓) of Speech Recognition on mTEDx Dataset
#Params

(M)
Speed
(tok/s)

BLEU
AVG ar de el es fr it pt ru

S2T Transformer (H=4) 31M 1118 49.0 109.5 72.3 43.3 23.9 27.8 28.6 31.0 55.3
S2T Transformer (H=8) 31M 1052 46.0 103.3 69.7 40.5 21.5 25.4 25.7 28.0 53.5

Adapter 50M 1016 41.1 93.4 57.2 33.0 21.4 25.3 24.3 27.2 46.7
Static strategy 35M 1108 49.4 110.1 72.9 43.8 24.1 27.9 29.4 31.4 55.8
Group strategy 35M 1107 40.0 94.2 59.8 33.5 18.2 22.0 21.9 24.6 45.5
Subset strategy 35M 1114 44.7 97.3 65.3 38.7 22.4 25.8 26.4 29.0 52.4

Results. S2T transformer share all parameters among languages. Attention selection models select
attention heads based on the source and target languages. Adapter adds adapter layers based on
the language directions. We report the ASR results in Table 2. It brings down 6.1% WER for S2T
Transformer to increase from 4 to 8 attention heads. Compared to S2T Transformer with 4 heads,
adapter model reduces the WER by 16.1% and subset strategy by 8.8%, while static strategy does not
change the performance too much. Group strategy achieves the largest drop of 18.4% in WER of S2T
Transformer (H=4) with comparable decoding speed. Moreover, it outperforms S2T Transformer
with 8 heads in both speed and WER.

4.2.2 Multi-Domain Speech Recognition

Dataset. Besides mTEDx data, we include two other public datasets, CoVoST 2 and EuroParl, which
are commonly used for speech translation. Since source audios are accompanied by transcripts, we
could use their source audio-text data for speech recognition tasks. We investigate multi-domain
modeling with these three datasets.

1. CoVoST 2 (Wang et al., 2020c). With Common Voice as the audio source, CoVoST 2 covers
speech-to-text translations from 21 languages to English and from English to 15 languages.
2. EuroParl (Iranzo-Sánchez et al., 2020). It provides paired audio-text instances from and into 6
European languages, which are compiled from the debates in European Parliament.

Table 3: WER (↓) of Speech Recognition on mTEDx, CoVoST 2 and EuroParl Dataset
#Params

(M)
Speed
(tok/s)

BLEU
mTEDx CoVoST 2 EuroParl

Separate S2T Transformers (H=4) 32M 1378 49.0 41.9 115.0
Separate S2T Transformers (H=8) 32M 1280 46.0 40.7 94.0

Joint S2T Transformer (H=4) 32M 1409 42.7 38.3 25.6
Joint S2T Transformer (H=8) 32M 1299 43.3 38.6 25.9

Adapter 39M 1274 41.7 37.0 24.0
Static strategy 39M 1402 46.3 41.6 30.0
Group strategy 36M 1400 41.0 36.4 24.3
Subset strategy 36M 1403 41.8 37.0 25.0

Results. In the multi-domain setting, attention selection models assign different heads to each
domain. The static selection strategy provides each domain with an exclusive subset of attention
heads. Adapter model adds domain-specific adapter layers to S2T Transformer. Table 3 reports WER
of models trained for 400 epochs in three domains: mTEDx, CoVoST 2 and EuroParl respectively.
The S2T Transformer jointly trained on multi-domain data (in the row of “Joint S2T Transformer
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(H=4)”) reduces WER by 12.9%, 8.6% and 77.7% in three domains respectively, when compared
with the models separately trained in individual domains (in the row of “Separate S2T Transformer
(H=4)”). This demonstrates the benefits of positive transfer between domains.

The performance of speech recognition could be further improved by the mitigation of the domain
interference. Attention selection with group and subset strategies outperform that with the static strat-
egy. Both attention selection and adapter model achieve lower WER than the joint S2T Transformer
with both 4 and 8 attention heads. Attention selection with group strategy has the lowest WER on
both mTEDx and CoVoST 2 datasets, decreasing WER by 4.0% and 5.0% respectively in comparison
with joint S2T Transformer (H=4). The best system on EuroParl is adapter model, yielding a WER
reduction by 6.3% than the joint S2T Transformer (H=4).

4.3 Speech Translation

Now with a focus on the task of speech translation, we again design experiments in multilingual and
multi-domain settings. In the multilingual setup, we train translation models with samples in multiple
languages to investigate language interference. As for the multi-domain setup, the models are trained
with data from multiple domains so that we could look into the domain interference. BLEU serves as
the evaluation metric of speech translation systems.

Baselines. We use the same baselines as in speech recognition. As recommended by (Salesky et al.,
2021), we initialize the encoders in speech translation with the encoders trained in the task of speech
recognition in Section 4.2 for the purpose of improving training efficiency and performance.

Model configurations. All models are trained for up to 400 epochs. Other model configurations in
ST are the same as those in ASR.

4.3.1 Multilingual Speech Translation

To explore language interference, we perform experiments on multilingual speech translation.

Dataset. We again use mTEDx dataset for multilingual speech translation. Besides speech recognition
data, mTEDx also collects speech translation data from TEDx talks. Its test set covers 13 language
directions. The training data is provided in 10 of these directions, so there are 3 zero-shot directions.

Table 4: BLEU (↑) of Speech Translation on mTEDx (AVG-A: average over all directions, AVG-T:
average of 10 training directions, and AVG-Z: average of 3 zero-shot directions)

#Params
(M)

Speed
(tok/s)

BLEU
AVG-A AVG-T AVG-Z

S2T Transformer (H=4) 31M 1038 13.2 14.6 8.5
S2T Transformer (H=8) 31M 968 13.7 15.1 9.0

Adapter 55M 826 - 14.8 -
Static strategy 33M 1030 13.2 14.5 8.8
Group strategy 35M 1024 15.2 16.7 10.4
Subset strategy 35M 1033 13.3 14.7 8.5

Results. Here the static strategy of head selection groups source languages into two families as in
multilingual ASR task, and all target languages fall into the same Indo-European family. Table 4
summarizes the multilingual speech translation results on mTEDx. S2T Transformer has +0.4 BLEU
with heads increased to 8. Since adapter model brings in language-specific layers, it cannot deal
with zero-shot translations. Group strategy, subset strategy and adapter model bring improvements
over S2T Transformer (H=4) which are jointly trained in 13 language directions. It suggests that
multiple languages interfere within S2T Transformer whose parameters are shared by all languages.
Attention selection with group strategy achieves the best translation performance. In comparison with
S2T Transformer (H=4), group strategy achieves an average of +2.1 and +1.9 BLEU in training and
zero-shot directions respectively. It leads to +2.0 BLEU on average of all directions.

4.3.2 Multi-Domain Speech Translation

In this experiment, we investigate interference across domains in the task of speech translation, and
evaluate the effectiveness of different models in multi-domain training. The attention selection now is
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based on the data domain instead of languages, i.e., samples in different domains would choose their
own attention heads. Similarly for adapter model, its adapter layers are domain-specific in this setup.

We again use CoVoST 2 and EuroParl as additional domains. We focus on the 13 language directions
in mTEDx test set, and use the subset of CoVoST 2 and EuroParl corpora in the same directions.
CoVoST 2 has 5 common directions5 and EuroParl has 11 common directions6 as mTEDx. Details
about these datasets are included in Appendix A.1.

Table 5: BLEU (↑) of Speech Translation on mTEDx, CoVoST 2 and EuroParl Dataset
#Params

(M)
Speed
(tok/s)

TEDx CoVoST 2 EuroParl
AVG-A AVG-T AVG-Z AVG AVG

Separate S2T Transformer (H=4) 32M 1105 13.2 14.6 8.5 17.6 19.1
Separate S2T Transformer (H=8) 32M 957 13.7 15.1 9.0 19.0 19.0

Joint S2T Transformer (H=4) 32M 1148 13.7 13.6 13.9 17.3 19.0
Joint S2T Transformer (H=8) 32M 1062 13.7 13.6 13.9 17.4 19.1

Adapter 39M 940 14.0 14.3 13.2 17.9 20.0
Static strategy 39M 1138 11.5 12.0 9.7 14.5 16.9
Group strategy 36M 1141 15.6 15.9 14.8 19.6 20.8
Subset strategy 36M 1145 13.8 14.3 13.1 17.9 19.2

Results. Table 5 shows the average BLEU of speech translation in mTEDx, CoVoST 2 and EuroParl.
We report results in rows of “Joint S2T Transformer” when S2T Transformers are trained with the
mixture of three datasets. The results are included in rows “Separate S2T Transformer” when S2T
Transformers are trained on each dataset independently. Zero-shot translations in mTEDx benefit a
lot from additional data of CoVoST 2 and EuroParl, as the joint S2T Transformer (H=4) shows an
average of +5.4 BLEU over separate S2T Transformer (H=4). However, there is a drop of 1.0 BLEU
in its training directions, brought by the interference from CoVoST 2 and EuroParl domains.

Again we observe that static strategy falls behind group and subset strategies. Attention selection with
learned strategies and adapter model bring gains to the joint model in individual domains. Compared
with the joint S2T Transformer (H=4), adapter model improves mTEDx translation by 0.3 BLEU,
CoVoST 2 translation by 0.6 BLEU and EuroParl by 1.0 BLEU on average. The attention selection
with group strategy outperforms all other models. Its average BLEU gain over adapter model is 1.6
BLEU in mTEDx, 1.7 BLEU in CoVoST 2 and 0.8 in EuroParl.

5 Discussion

Figure 2: WER of speech recognition on mT-
EDx with different H ′.

Hyperparameter H ′. The attention selection mod-
els set a hyperparameter H ′ as the total number of
attention head candidates in multi-head attention,
which controls the search space of attention shar-
ing strategies. We now explore how the performance
varies with H ′ for group and subset strategies.

Evaluated on the task of multilingual speech recog-
nition, models have the same hyperparameters as
those in multilingual ASR experiments except for
H ′. Attention selection models are configured with
H ′ = 4, 8, 12, 16 respectively, and Figure 2 shows
the change of WER with H ′.

When H ′ = 4, there is no attention selection and all
attention heads are shared by different languages. We
observe a large drop of error rate asH ′ increases from
4 to 8. For the subset strategy, WER keeps decreasing
when the number of head candidates grows from 4
to 16. As for group strategy, H ′ = 8 is the optimal
hyperparameter on the ASR task. As we continue

5{es, fr, it, pt, ru}-en
6es-{en, fr, it, pt}, fr-{en, es, pt}, it-{en, es}, pt-{en, es}
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increasing H ′ to 12 and 16, the error rate increases a bit. The performances of subset and group
strategies are close when H ′ = 16.

The search space of group strategy is a strict subset of the space of subset strategy. However, we
observe that group strategy shows comparable or better performance than subset strategy across tasks,
including MT, ASR and ST. One possible explanation is that group strategy keeps the head order
information while subset strategy does not. With a larger pool of head candidates, there is less sharing
among tasks. The performance of the group strategy degrades a bit due to less positive transfer
dependent on attention sharing. As for the subset strategy, better head assignments are learned in the
enlarged search space.

(a) Encoder with group strategy. (b) Decoder with group strategy.

Figure 3: Heatmap to visualize the sharing between languages in multilingual ASR (The darker a
language pair is, the more attention heads they share.)

Attention Sharing among Languages. We now analyze the attention sharing pattern among lan-
guages. Take the multilingual model on mTEDx speech recognition as an example, whose head
selection is learned with group strategy. We count the number of heads shared by each language pair
in the model, and visualize it with a heatmap in Fig. 3, where the darkness reflects the amount of
sharing. The diagonal cells in the heatmap corresponds to the number of attention heads used by each
language, i.e., the total number of attention heads in all layers.

For European languages including Spanish (es), French (fr), Italian (it) and Portuguese (pt), their
shared attention heads are fewer in decoder than in encoder. This seems contradicted with previous
findings that parameter sharing is beneficial for languages with high linguistic proximity. We note
that they are high-resource languages in mTEDx corpus, which is also justified by their relatively
lower WER. Their data is sufficient to learn good speech recognition, and sharing parameters with
other languages hurt the preservation of the language specificity. This explains why the high-resource
European languages do not share too many heads in the learned group strategy.

Another pattern we observe from Fig. 3 is that low-resource languages tend to share more attention
heads with high-resource languages. For example, Arabic (ar) and Russian (ru) have relatively more
sharing with Italian (it) than other languages. Low-resource languages benefit from the knowledge
transfer from high-resource ones. Due to page limit, we include more discussions in Appendix A.3.

6 Conclusion

Research efforts in multilingual and multi-domain modeling have been driven by the increasing need
to improve data efficiency and model performance. In this work, we propose head selection strategies
to allow attention heads to be shared or specialized for different languages or domains. It effectively
mitigates interference within multi-head attention which is a core part of strong sequence models,
and demonstrates good empirical gains in various text generation tasks.

This work has several limitations left for future research. We did not explore head selection based on
both language and data domain. We did not analyze model fairness and robustness. As a technology
used for text generation, the model might have systemic bias or produce inappropriate outputs.
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A Appendix

A.1 Dataset

Table 6 summarizes the number of parallel sentences for 14 languages in WMT shared tasks. Table 7
covers three datasets, CoVoST 2, EuroParl and mTEDx on ASR task, and reports their number
of utterances in 8 languages. Table 8 shows data sizes of three ST datasets including CoVoST 2,
EuroParl and mTEDx. It reports the number of utterances in 13 language directions.

Table 6: Data Statistics of WMT Datasets
Language Code Size Language Code Size
Gujarati gu 10k Kazakh kk 91k
Turkish tr 207k Romanian ro 608k
Estonian et 1.94M Lithuanian lt 2.11M
Finnish fi 2.66M Latvian lv 4.50M
Czech cs 11M Spanish es 15M

Chinese zh 25M German de 28M
Russian ru 29M French fr 41M

Table 7: Data Statistics of Speech Recognition Task (# of Utterances)
Data CoVoST 2 EuroParl mTEDx
Split Train Dev Test Train Dev Test Train Dev Test

ar 2,283 1,758 1,695 - - - 11,442 1,079 1,066
de 127,577 13,503 13,503 13,099 2,653 2,644 6,659 1,172 1,126
el - - - - - - 12,521 982 1,027
es 78,958 13,203 13,204 7,537 1,951 1,831 99,660 905 1,012
fr 207,286 14,755 14,750 13,006 1,593 1,848 114,488 1,036 1,059
it 31,638 8,877 8,892 11,649 1,414 1,763 48,089 931 999
pt 9,158 3,315 4,021 4,977 1,794 2,292 88,123 1,013 1,020
ru 12,112 6,110 6,300 - - - 28,627 973 1,132

Table 8: Data Statistics of Speech Translation Task (# of Utterances)
Data CoVoST 2 EuroParl mTEDx
Split Train Dev Test Train Dev Test Train Dev Test
el-en - - - - - - 4,215 938 1,024
es-en 78,958 13,203 13,204 7,403 1,947 1,816 35,186 899 1,001
es-fr - - - 4,673 1,115 1,082 3,549 904 1,005
es-it - - - 4,476 1,065 1,079 5,530 16 262
es-pt - - - 4,727 1,141 1,089 20,467 898 1,002
fr-en 207,286 15,560 14,952 12,446 1,481 1,804 29,634 1,035 1,058
fr-es - - - 7,857 1,072 1,098 20,407 1,034 1,057
fr-pt - - - 8,183 1,048 1,100 13,047 1,035 1,058
it-en 31,638 9,095 8,937 11,285 1,400 1,686 - 929 999
it-es - - - 6,614 877 885 - 929 999
pt-en 9,158 3,590 4,254 4,918 1,747 2,286 29,940 1,002 1,019
pt-es - - - 3,132 1,218 1,256 - 1,001 1,018
ru-en 12,112 9,497 8,634 - - - 4,829 970 1,124

Data license. The machine translation data released for WMT shared tasks can be freely used for
research purposes. The multilingual TEDx corpus is released under a CC BY-NC-ND 4.0 license,
and can be freely downloaded. CoVoST 2 data is released under CC0 license. As for EuroParl, it is
released under a Creative Commons license, and it is freely accessible and downloadable.

A.2 Experiment

The experiments were performed in the internal cluster. For machine translation experiments, we
used 32 GPUs and each model was trained for around 3 days. On the task of speech recognition,
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models are trained on 8 GPUs. It took approximately 1 day for models to converge in multilingual
setting, and 2 days in multi-domain setting. On the task of speech translation, the training time was
also 1 day for multilingual models, and 2 days for multi-domain models. Speech translation models
were trained with 8 GPUs.

A.3 Discussion

In this section, we provide insights into learned attention head selection with further result analysis.

(a) Encoder attention with subset strategy. (b) Decoder attention with subset strategy.

(c) Encoder attention with group strategy. (d) Decoder attention with group strategy.

Figure 4: Heatmap to visualize the load of attention heads (The darker a head is, the more languages
it supports).

Load of Attention Heads. To gain an insight into the load of attention heads, we analyze how
many languages an attention head is used by. With both subset and group strategies, we look into
attention heads in encoder and decoder respectively. We study ASR models which learn language
based attention selection on mTEDx data covering 8 languages. The language load of each attention
head is measured by the number of languages sharing the given head. Fig. 4 visualizes the load of
attention heads in each layer with a heatmap. The darkness reflects the load of an attention head.

By comparing encoder heads in Fig. 4(a) and (c), we note that group strategy results in more balanced
load among attention heads than subset strategy, as there is less color variation in the heatmap of
group strategy. Similar pattern could be observed in decoder, and decoder attention heads have more
balanced load with group strategy.

Now we compare the load of attention heads across layers. With subset strategy, the load imbalance is
observed in heads of almost every encoder and decoder layer from the color contrast in the heatmap.
As for group strategy, the load is more balanced in heads of middle layers (i.e., encoder layers 5− 9
and decoder layers 3− 5) than those in bottom and top layers.
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Head Selection in Encoder and Decoder. In our experiments, attention selection is applied to both
encoder and decoder in ASR and ST experiments, considering that both encoder and decoder handle
multiple languages. We want to measure how the model performance is affected by attention selection
in encoder and decoder respectively. Taking the multilingual ASR as an example, Table 9 reports
WER of models which enable attention selection in encoder only, in decoder only as well as in both
encoder and decoder. We set the same hyperparameters as used in the experiment of multilingual
ASR. When the attention selection is applied to encoder (or decoder) only, 4 attention heads are
shared by all languages in each decoder (or encoder) layer.

Table 9: Ablation Study in WER (↓) of Multilingual Speech Recognition on mTEDx

Component with attention selection Encoder only Decoder only Encoder+Decoder
Group strategy 42.2 46.2 40.0
Subset strategy 45.4 47.5 44.7

As is shown in Table 9, attention selection in only encoder (c.f. column “Encoder only”) or decoder
(c.f. column “Decoder only”) would increase WER in comparison with the model with attention
selection in both encoder and decoder (c.f. column “Encoder+Decoder”). We also note that attention
head selection in encoder achieves lower WER than selection in decoder.
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