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Abstract

One of the first steps in the utterance interpretation pipeline of many task-oriented
conversational AI systems is to identify user intents and the corresponding slots.
Neural sequence labeling models have achieved very high accuracy on these tasks
when trained on large amounts of training data. However, collecting this data is
very time-consuming and therefore it is unfeasible to collect large amounts of data
for many languages. For this reason, it is desirable to make use of existing data in
a high-resource language to train models in low-resource languages. In this paper,
we investigate the performance of three different methods for cross-lingual transfer
learning, namely (1) translating the training data, (2) using cross-lingual pre-trained
embeddings, and (3) a novel method of using a multilingual machine translation
encoder as contextual word representations. We find that given several hundred
training examples in the the target language, the latter two methods outperform
translating the training data. Further, in very low-resource settings, we find that
multilingual contextual word representations give better results than using cross-
lingual static embeddings. We release the new data set and plan to release our
implementation of the NLU models in the near future.

1 Introduction

One of the first steps in many conversational AI systems that are used to parse utterances in personal
assistants is the identification of what the user intends to do (the intent) as well as the arguments of
the intent (the slots) [23, 19]. For example, for a request such as Set an alarm for tomorrow at 7am a
first step in fulfilling such a request is to identify that the user’s intent is to set an alarm and that the
required time argument of the request is expressed by the phrase tomorrow at 7am.

Given these properties of the task, the problem can be stated as a joint sentence classification (for
intent classification) and sequence labeling (for slot detection) task and therefore naturally lend
themselves to using a biLSTM-CRF sequence labeling model [14, 28] where the biLSTM layer is
also used as the input for a projection layer for intent detection.

These models are very powerful and given enough training data, they achieve very high accuracy on
the intent classification as well as the slot detection task. However, given the requirement of large
amounts of labeled training data, expanding a conversational AI system to many new languages is a
very resource-intensive task and clearly not feasible to be done for the more than 8,000 languages
that are currently spoken around the world.

∗Work carried out during an internship at Facebook.



Number of utterances Intent types Slot typesDomain English Spanish Thai
Alarm 9,282/1,309/2,621 1,184/691/1,011 777/439/597 6 2
Reminder 6,900/943/1,960 1,207/647/1,005 578/336/442 3 6
Weather 14,339/1,929/4,040 1,226/645/1,027 801/460/653 3 5

Total 30,521/4,181/8,621 3,617/1,983/3,043 2,156/1,235/1,692 12 11

Table 1: Summary statistics of the data set. The three values for the number of utterances correspond
to the number of utterances in the training, development, and test splits. Note that the slot type
datetime is shared across all three domains and therefore the total number of slot types is only 11.

In this work, we explore different strategies to make use of existing English training data to improve
intent and slot detection models for other languages. Concretely, we are considering two target
languages: Spanish, an Indo-European language with the same writing system as English, and Thai, a
Kra-Dai language with a different writing system than English. We investigate two existing strategies
for cross-lingual transfer, namely using cross-lingual pre-trained embeddings (XLU embeddings) as
well as automatically translating the English training data to the target language. Further, we present
a novel technique that uses a bidirectional neural machine translation encoder as contextual word
representations.

We evaluate our models on a novel data set with English, Spanish, and Thai utterances and we find
for both languages that contextual cross-lingual embeddings as well as XLU embeddings consistently
outperform the translation approach. Further, for extremely low-resource cases, contextual cross-
lingual embeddings give additional improvements over using the static XLU embeddings.

We release the data at http://url.to.data and plan to release our implementation of the NLU
models in the near future.

2 Data

We originally collected a data set of around 43,000 English utterances across the domains ALARM,
REMINDER, and WEATHER. Data collection proceeded in three steps. First, native English speakers
were asked to produce utterances for each intent, e.g., provide examples of how they would ask for
the weather. In a second step, two annotators would label the intent and the spans corresponding to
slots for each utterances. As a third step, if annotators disagreed on the annotation of an utterance, a
third annotator who corresponded with the authors of the guidelines adjudicated between the two
annotations.

For the Spanish and Thai data, native speakers of the target language translated a sample of the English
utterances. These translated utterances were then also annotated by two annotators. For Spanish, if
annotators disagreed, a third annotator who was bilingual in Spanish and English adjudicated these
disagreements in communication with the guideline authors. Unfortunately, for Thai, we did not have
a bilingual speaker available and hence we decided to discard all utterances for which the annotators
disagreed.

Despite this potential limitation of the Thai data, we believe this data presents a great opportunity to
investigate cross-lingual semantic models and to the best of our knowledge, this is the first parallel
data set for a sequence labeling task that has been annotated according to the same guidelines across
multiple languages.

Table 1 contains several summary statistics of the data set. Note that the percentage of training
examples as compared to development and test examples is much higher for the English data than for
the Thai and Spanish data. We decided for a more even split for the latter two languages so that we
had a sufficiently large data set for model selection and evaluation.
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Set an alarm for tomorrow at 7 am 

Embedding

BiLSTM

CRF

Predicted slots NONE NONE NONE NONE DATETTIME DATETTIME DATETTIME DATETTIME

Self-attention

Intent:  ALARM/SET_ALARM

Figure 1: Slot and intent model architecture. Word embeddings are passed through a biLSTM layer
which is shared across the slot detection and intent prediction tasks.

3 Approach

The intent detection and slot-filling model consists of two parts: It first uses a sentence classification
model to identify the domain of the user utterance (in our case, ALARM, REMINDER, or WEATHER),
and then uses a domain-specific model to jointly predict the intent and slots. Figure 1 shows the
basic architecture of the joint intent-slot prediction model. It first embeds the utterance using an
embedding matrix and then passes the word vectors to a biLSTM layer. For intent classification, we
use a self-attention layer [17] over the hidden states of the biLSTM input to a softmax projection
layer; for slot detection, we pass for each word the concatenation of the forward and backward hidden
states through a softmax layer, and then pass the resulting label probability vectors through a CRF
layer for final predictions.

In our experiments, we vary how the tokens are embedded:

• Zero embeddings: We train the parameters of a 0-initialized embedding matrix2 that
contains each word that appears in the training data.

• XLU embeddings: We embed the tokens through lookup in a pre-trained cross-lingual
embedding matrix and concatenate these embeddings with tuned zero embeddings. Here,
we follow Dozat et al. [7] by having a fixed pre-trained embedding matrix combined with
tuneable zero-embeddings.

• Encoder embeddings: We embed tokens by passing the entire utterance through a pre-
trained biLSTM sentence encoder and using the hidden states of the top layer as input. We
keep the parameters of the pre-trained encoder fixed and concatenate them with tuneable
zero-embeddings. (See Section 4 for a detailed description of the encoder.)

4 Encoder models

As mentioned in the previous section, some of our models use a pre-trained biLSTM encoder to
generate contextual word embeddings. In all our experiments, we are using a bidirectional LSTM
encoder with two layers. Overall, we compared three strategies for training these encoders:

• CoVe: Following McCann et al. [21], we train a neural machine translation model to
translate from the low-resource language (Spanish or Thai) to English.

2In early experiments we found that this strategy gives as good results as using pre-trained embeddings and
since using pre-trained embeddings would have introduced additional variables (e.g., the vocabulary and the
training data), we decided to use this embedding strategy as a baseline.
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• bidirectional MT: We train a neural machine translation model to translate from the low-
resource language to English and from English to the low-resource language. We encode the
translation direction using target language-specific start tokens in the decoder [31]. In this
model, the encoder does not have access to the target language and therefore we anticipate
that it will learn to encode phrases with similar meanings into similar vector spaces across
languages.

• bidirectional MT + autoencoder We train a bidirectional neural machine translation model
and combine it with an auto-encoder objective. For the language pair Spanish-English, that
means given a Spanish input sentence we train the model to generate either an English
translation or to reproduce the Spanish sentence depending on the start token in the decoder.
Likewise, given an English sentence, we train the model to output either a Spanish translation
or to reproduce the English sentence depending on the start token in the decoder. The
motivation for this approach is that using the joint translation and autoencoder objective
might lead to more general representations since the decoder has to be capable to output
sentences in either language independent of what the source language was, and unlike in the
previous model the source language does not determine the target language. We train an
analogous model for the Thai-English language pair.

Note that the CoVe encoder is trained to encode only the low-resource language and is therefore not a
multilingual encoder.

Implementation details We train all models using a wrapper around the fairseq [11, 12] sequence-
to-sequence models. We use 300d randomly initialized word vectors as input to the first embedding
layer. Each direction in each hidden layer has 512 dimensions which results in a total encoder output
dimension of 1024.3 For the machine translation models, we further use dot-product attention [20]
and to improve efficiency, we limit the output space of the softmax to 30 translation candidates as
determined by word alignments as well as the 2,000 most frequent words [15].

Data For the Spanish models, we use two copies4 of Europarl v7 [13], every eighth sentences of
the Paracrawl data5. and the newstest2008-2011 data. For model selection, we use the newstest2012-
2013 data. For the Thai models, we use 10 copies of the IWSTL training data [2] as well as the
OpenSubtitles data [18] for training and the IWSTL development and test data for model selection.
We use the 20,000 common words in the training data as the vocabulary. For the multilingual models,
we take the union of the vocabulary from both languages. We tokenize the data using an in-house
rule-based (for English and Spanish) and dictionary-based (for Thai) tokenizer. We further lowercase
all data and remove all duplicates within a data set. We discard all sentences whose length exceeds
100 tokens.

Training details We train the models using stochastic gradient descent with an initial learning rate
of 0.5. We decrease the learning rate by 1% after an epoch whenever perplexity on the validation
data is higher than for the epoch with the lowest perplexity. We train all models for up to 100 epochs,
except for the Spanish bidirectional MT model with an autoencoder which we trained for 300 epochs
since it took considerably longer to converge. For multilingual models, we choose the model that has
the lowest average perplexity on both translation tasks.

Table 2 shows the perplexities for the different models. In general, the translation perplexities are very
similar independent of whether we train a unidirectional MT system or a bidirectional MT system,
except for the Spanish bidirectional MT model with an autoencoder which even after 300 epochs still
yields higher perplexities on the validation data than the other translation models.6

3In theory, we could have also used a weighted combination of all layers as it is common with ELMo [24].
We opted for the simplest solution of using only the hidden states of the final layer as word representations and
we leave the exploration of more complex combinations of the encoder hidden states to future work.

4We upsample the Europarl (for Spanish) and IWSLT (for Thai) data since these data sets are presumably of
higher quality than the largerly automatically mined Paracrawl and OpenSubtitles data.

5https://paracrawl.eu, the version that was used in the WMT 2018 task
6We hypothesize that the slow convergence as well as the lower performance might be caused by the fact that

the sentences in the Spanish-English parallel data are much longer than in the Thai-English data which might
make it harder to learn good universal sentence representations.
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Spanish Epoch es→en en→es es→es en→en

CoVE (unidirectional) 81 8.50 - - -
bidirectional 98 8.27 6.90 - -
bidirectional + autoencoder 282 9.15 7.29 1.15 1.14

Thai Epoch th→en en→th th→th en→en

CoVE (unidirectional) 12 13.06 - - -
bidirectional 35 12.73 17.00 - -
bidirectional + autoencoder 92 11.76 16.31 1.12 1.13

Table 2: Perplexities on validation set for different encoder models for the Spanish-English and
Thai-English language pairs.

5 Cross-lingual learning

In our first set of experiments, we explore the following baselines and strategies for training models
in Spanish and Thai given the large amount of English training data and a small amount of Spanish
and Thai training data.

• Target only: Using only the low-resource target language data.
• Translate train: Combining the target training data with the English data automatically

translated to the target language. The slot annotations are projected via the attention weights.
We translate the data using a commercial neural machine translation system.
• Cross-lingual with XLU embeddings: Joint training on the English and target language

data with pre-trained MUSE [4] cross-lingual embeddings. Note that MUSE embeddings
are not available for Thai and therefore we only evaluate this method for Spanish.

• Target only with encoder embeddings: Using only the low-resource language training
data and using pre-trained encoder embeddings.

• Cross-lingual with encoder embeddings: Joint training on the English and target language
data using pre-trained encoder embeddings.

Evaluation We evaluate our models according to four metrics: Domain accuracy, which measures
the accuracy of the domain classification task; intent accuracy which measures the accuracy of
identifying the correct intent; slot F1, which is the geometric mean of the slot precision and slot
recall; and frame accuracy which indicates the number of utterances for which the domain, intent, and
all slots were correctly identified. Frame accuracy is thus the strictest metric of all. We micro-average
all metrics across domains.

Results and discussion Table 3 shows the results for all evaluated models. While we get slightly
different results for the two languages, there are several consistent patterns. For Spanish, we observe
that adding contextual word representations to the target only model, consistently improves results.
The model using the bidirectional MT encoder combined with the autoencoder only marginally
improves results over the baseline without any encoder embeddings.

If we turn to the cross-lingual models for Spanish, the results indicate that the translation method
works well for domain and intent classification but less so for slot detection, presumably due to
noisy projection of the slot annotations. For slot detection, we get the best results using the MUSE
embeddings which slightly outperform the bidirectional MT encoder in terms of frame accuracy and
slot F1. Also in the cross-lingual setting, the bidirectional MT encoder combined with the autoencoder
performs worse than the other MT encoders. Overall, however, the choice of embeddings seems to
have only a very small impact on the performance of the cross-lingual models. Nevertheless, we do
see improvements across all metrics as compared to training only on the target language data.

We observe similar results for Thai. The translation approach again yields the worst results for slot
detection and we again see a consistent improvement from cross-lingual training as compared to
training only on Thai data. When we perform cross-lingual training, we also observe differences
depending on the type of MT encoder: The bidirectional MT encoders outperform the CoVe encoder.
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Spanish Embedding type Frame acc. Domain acc. Intent acc. Slot F1

Target only - 72.94 99.43 97.26 80.95
Target only CoVe 73.93 99.52 97.43 81.51
Target only bidir. MT 74.13 99.55 97.61 81.64
Target only bidir. MT + auto 73.05 99.51 97.13 81.22

Translate train - 72.49 99.65 98.47 80.60

Cross-lingual XLU embeddings 75.39 99.52 97.68 83.00
Cross-lingual CoVe 75.17 99.55 97.81 82.55
Cross-lingual bidir. MT 75.20 99.56 97.82 82.49
Cross-lingual bidir. MT + auto 74.68 99.59 97.90 82.13

Thai Embedding type Frame acc. Domain acc. Intent acc. Slot F1

Target only - 79.80 99.31 95.13 87.26
Target only CoVe 84.84 99.36 96.60 90.63
Target only bidir. MT 84.66 99.37 96.75 90.20
Target only bidir. MT + auto 84.79 99.41 96.59 90.51

Translate train - 73.37 99.37 97.41 80.38

Cross-lingual CoVe 84.49 99.29 96.87 90.60
Cross-lingual bidir. MT 85.76 99.39 96.98 91.22
Cross-lingual bidir. MT + auto 86.12 99.33 96.87 91.51

Table 3: Results averaged over 5 training runs.

In summary, the Thai results suggest that our models indeed facilitate cross-lingual transfer, and that
the gains from adding encoder embeddings is a combination of using contextual word representations
and cross-lingual transfer. For Spanish, the picture is not as clear since all three MT encoder
embeddings led to very similar results, including the monolingual CoVe embeddings. This potentially
indicates that the gains we observed when doing cross-lingual training mainly came from learning
something about individual lexical items such as Miami being a location but not transferring any
knowledge about phrases that constitute spans. At the same time, considering that we are getting
good results for both languages if we only train on the low-resource language data, the potential of
cross-lingual training might be limited in this case. To investigate this further, we also performed a
series of zero-shot and low-resource experiments, which we describe in the next section.

6 Zero-shot learning and learning curves

As mentioned in the previous section, is is not entirely clear what effect cross-lingual training has
on the results. We therefore conducted additional experiments with even smaller training sets in
the target language: the case where we no data in the target language exists (zero-shot) or the case
where a very limited amount of training data in the target language exists. If cross-lingual transfer
only happens at the token level, we would expect that all encoder embedding types lead to similar
results. However, if the multilingual MT encoder actually embeds phrases with similar meanings
in the two languages in a similar vector space, we would expect that the multilingual MT encoder
performs much better in the zero-shot and very low-resource scenarios. Further, for Spanish, we can
also investigate whether there is a benefit of using contextual multilingual embeddings over using
static XLU embeddings.

Experiments We used the same models with the same parameters as in the previous section. In
the zero-shot case, we only use English data for training and model selection. For the learning curve
experiments, we sample 10, 50, 100, or 200 utterances from each domain for the target language for
training and model selection and upsample the target language data so that it roughly matches the
size of the English data. For the zero-shot results, we present the average numbers across 5 runs. For
the learning curve experiments, since we introduced another random factor by randomly sampling
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Spanish Embedding type Frame acc. Domain acc. Intent acc. Slot F1

Cross-lingual - 0.63 37.74 36.17 5.50
Cross-lingual XLU embeddings 4.01 38.24 36.94 17.50
Cross-lingual CoVe 1.37 39.42 37.13 5.35
Cross-lingual bidir. MT 10.56 59.29 53.34 22.50
Cross-lingual bidir. MT + auto 9.28 59.25 53.89 19.25

Thai Embedding type Frame acc. Domain acc. Intent acc. Slot F1

Cross-lingual - 0.20 39.36 39.11 3.44
Cross-lingual CoVe 5.82 66.75 54.24 8.84
Cross-lingual bidir. MT 15.37 73.84 66.35 32.52
Cross-lingual bidir. MT + auto 20.84 81.95 70.70 35.62

Table 4: Zero-shot results averaged over 5 training runs.

the training and model selection data, we repeat this process 10 times and report the average as well
as the minimum and maximum frame accuracy for these experiments.

Results and discussion Table 4 shows the zero-shot results. These results consistently indicate
that using a multilingual sentence encoder works much better than not using any encoder embeddings
or using monolingual CoVe embeddings. This is true for the sentence-level domain and intent
classification tasks as well as for slot detection. The Spanish results also suggest that in the zero-shot
case, the multilingual encoder embeddings lead to better results than the XLU embeddings.

We observe similar results when we consider the results for different training set sizes as shown in
Figure 2. For both languages, the bidirectional MT encoder embeddings led to the best results for all
investigated training data sizes with the exception of the largest Spanish training set for which the
XLU embeddings yielded better results. Importantly, however, the model with the bidirectional MT
encoder consistently outperformed the model with the monolingual CoVe encoder. In combination
with the zero-shot results, this provides strong evidence that the bidirectional MT encoder indeed
learns to embed phrases with similar meanings across languages into a similar vector space which
allows for efficient cross-lingual transfer learning.

7 Related work

Cross-lingual sequence labeling The task of cross-lingual and multilingual sequence labeling has
gained a lot of attention recently. Yang et al. [30] used shared character embeddings for cross-lingual
transfer, and Lin et al. [16] used shared character and sentence embeddings that were trained in
a multitask setting for part-of-speech tagging and named entity recognition. Upadhyay et al. [27]
used cross-lingual embeddings for training multilingual slot-filling systems. Xie et al. [29] used a
similar model for NER but they first “translated” the high-resource training data by replacing each
token with the token in the target language that was closest in vector space, and they further used
character embeddings and a self-attention mechanism. Yu et al. [32] investigated using character-
based language models for NER in several languages but did not do any cross-lingual learning.

Cross-lingual sentence representations Recently, there was also a lot of work of using cross-
lingual sequence encoders for sentence classifications using either multilingual MT encoders similar
to ours (e.g., Eriguchi et al. [9], Yu et al. [31]) or training encoders and then aligning their vector
spaces after pre-training [5].

Cross-lingual transfer for other tasks Apart from tasks such as slot filling and NER, cross-lingual
transfer learning has also been investigated a lot for syntactic tasks, and in particular for part-of-speech
tagging and dependency parsing. Early work trained part-of-speech taggers for individual languages
and then trained delexicalized dependency parsers (e.g., [33, 22]). Further, a lot of syntactic and
semantic parsing models recently successfully incorporated parameter sharing for training parsers in
closely related languges. [8, 1, 26, 25, 6].
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Figure 2: Results for different training set sizes. The top and the bottom of the error bars correspond
to the highest and lowest frame accuracy among the 10 runs.

8 Conclusion and future work

In this paper, we collected a new multilingual intent and slot filling dataset for task oriented dialog
and investigated the performance of three different methods for cross-lingual transfer learning,
including a novel method using cross-lingual contextual word representations. For both investigated
languages, we consistently found that cross-lingual learning improves results as compared to only
training on limited amounts of target language data. We further found that models using cross-lingual
representations – either contextual or static – outperform models trained on translated training data
and that in extremely low-resource scenarios, contextual word representations seem to be beneficial
over static word representations.

There are many natural extensions to this work. First, we did not use any character embeddings in any
of our experiments or models. This presumably makes sense for the English-Thai transfer learning
case since these two languages use different alphabets; given the results by Lin et al. [16] and Yang
et al. [30], we would expect additional improvements by using character embeddings.

Second, one could try to include a specific learning objective to embed translations into a similar
vector space as used by Yu et al. [31] and Conneau et al. [5] for multilingual sentence representations.

Third, given the recent success of contextual word representations that were trained on monolingual
data such as ElMo [24], it is likely that combining monolingual and multilingual contextual word
representations would further improve the results. In fact, in preliminary experiments, we found that
combining the MT encoder embeddings and the Spanish ELMo embeddings by Che et al. [3, 10] led
to further improvements.

Finally, the presented multilingual MT encoder embeddings seem applicable to training multilingual
models for a range of tasks and it would be interesting to investigate whether our results also hold for
other sequence labeling tasks such as named entity recognition or part-of-speech tagging as well as
entirely different tasks such as multilingual dependency parsing.
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