
K-level Reasoning for Zero-Shot (Human-AI)
Coordination in Hanabi

Brandon Cui
Facebook AI Research

bcui@fb.com

Hengyuan Hu
Facebook AI Research

hengyuan@fb.com

Luis Pineda
Facebook AI Research

lep@fb.com

Jakob N. Foerster ∗
University of Oxford

Jakob.foerster@eng.ox.ac.uk

Abstract

The standard problem setting in cooperative multi-agent settings is self-play (SP),
where the goal is to train a team of agents that works well together. However,
optimal SP policies commonly contain arbitrary conventions (“handshakes”) and
are not compatible with other, independently trained agents or humans. This latter
desiderata was recently formalized by [18] as the zero-shot coordination (ZSC)
setting and partially addressed with their Other-Play (OP) algorithm, which showed
improved ZSC and human-AI performance in the card game Hanabi. OP assumes
access to the symmetries of the environment and prevents agents from breaking
these in a mutually incompatible way during training. However, as the authors
point out, discovering symmetries for a given environment is a computationally
hard problem. Instead, we show that through a simple adaption of k-level reasoning
(KLR) [7], synchronously training all levels, we can obtain competitive ZSC and
ad-hoc teamplay performance in Hanabi, including when paired with a human-
like proxy bot. We also introduce a new method, synchronous-k-level reasoning
with a best response (SyKLRBR), which further improves performance on our
synchronous KLR by co-training a best response.

1 Introduction

Research into multi-agent reinforcement learning (MARL) has recently seen a flurry of activity,
ranging from large-scale multiplayer zero-sum settings such as StarCraft [35] to partially observable,
fully cooperative settings, such as Hanabi [1]. The latter (cooperative) setting is of particular interest,
as it covers human-AI coordination, one of the longstanding goals of AI research [10, 6]. However,
most work in the cooperative setting—typically modeled as a Dec-POMDPs—has approached the
problem in the self-play (SP) setting, where the only goal is to find a team of agents that works well
together. Unfortunately, optimal SP policies in Dec-POMDPs commonly communicate information
through arbitrary handshakes (or conventions), which fail to generalize to other, independently
trained, AI agents or humans at test time.

To address this, the zero-shot coordination setting [18] was recently introduced, where the goal is
to find training strategies that allow independently trained agents to coordinate at test time. The
main idea of this line of work is to develop learning algorithms that can use the structure of the Dec-
POMDP itself to independently find mutually compatible policies, a necessary step towards human-AI
coordination. Related coordination problems have also been studied by different communities, in

∗Work done while at Facebook AI Research

35th Conference on Neural Information Processing Systems (NeurIPS 2021)



Figure 1: Visualization of various hierarchical training schemas, including sequential KLR, syn-
chronous KLR, synchronous CH, and our new SyKLRBR for 4 levels. Thicker arrows indicate a
greater proportion of games played with the level. Additionally, red boxes indicate an actively trained
agent, while grey boxes indicate a fixed agent. Typically π0 is a uniform random agent.

particular behavioural game theory. One of the best-known approaches in this area is the cognitive-
hierarchies (CH) framework [4], in which a hierarchy of agents is trained. For this method, an agent
at level-k models other agents as coming from a distribution up to level k − 1 and best-responds
accordingly. The CH framework has been shown to model human behavior in games for which
equilibrium theory does not match empirical data [4]; thus, in principle, the CH framework could be
leveraged to facilitate human-AI coordination in complex settings. A specific instance of CH that
is relevant to our work is K-level reasoning (KLR) [7], wherein the level-k agent models the other
agents as level-(k − 1). However, KLR, like many of the ideas developed in these works, has not
been successfully scaled to large scale coordination problems [18].

In this paper we show that k-level reasoning can indeed be scaled to large partially observable
coordination problems, like Hanabi. We identify two key innovations that both increase training
speed and improve the performance of the method. First, rather than training the different levels of
the hierarchy sequentially, as would be suggested by a literal interpretation of the method (as was
done as a baseline in [18]), we instead develop a synchronous version, where all levels are trained in
parallel (see figure 1). The obvious advantage is that the wall-clock time can be reduced from linear
in the number of levels to constant, taking advantage of parallel training. The more surprising finding
is that synchronous training also acts as a regularizer on the policies, stabilizing training.

The second innovation is that in parallel we also train a best response (BR) to the entire KLR
hierarchy, with more weight being placed on the highest two levels. This constitutes a hybrid
approach between CH and KLR, and the resulting BR is our final test time policy. Our method,
synchronous-k-level reasoning with a best response (SyKLRBR), obtains high scores when evaluating
independently trained agents in cross-play (XP). Importantly, this method also improves ad-hoc
teamplay performance, indicating a robust policy that plays well with various conventions.

Lastly, we evaluate our SyKLRBR agents paired with a proxy human policy and establish new state-
of-the-art performance, beating recent strong algorithms that, in contrast to our approach, require
additional information beyond the game-provided observations [18, 17].

Our results show that indeed KLR can be adapted to address large scale coordination problems, in
particular those in which the main challenge is to prevent information exchange through arbitrary
conventions. Our analysis shows that synchronous training regularizes the training process and
prevents level-k from overfitting to the now changing policy at level-k − 1. In contrast, in sequential
training each agent overfits to the static agent at the level below, leading to arbitrary handshakes
and brittle conventions. Furthermore, training a best response to the entire hierarchy improves the
final ZSC performance and robustness in ad-hoc settings. This is intuitive since the BR can carry out
on-the-fly adaptation in the ZSC setting.

Our results show that the exact graph-structure used, which were similarly studied in [13], and the
type of training regime (synchronous vs sequential) can have a major impact on the final outcome
when adapting ideas from the cognitive hierarchy literature to the deep MARL setting. We hope
our findings will encourage other practitioners to seek inspiration in the game theory literature and
to scale those ideas to high dimensional problems, even when there is precedent of unsuccessful
attempts in prior work.

2



2 Related Work

A significant portion of research in MARL has been focused on creating agents that do well in fully
cooperative, partially observable settings. A standard approach is through variations of self-play
(SP) methods [9, 8, 12, 24, 15]; however, as shown in [18] generally optimal SP agents learn highly
arbitrary policies, which are incompatible with independently trained agents. Clearly, test-time
coordination with other, independently trained agents including humans is an important requirement
for AI agents that is not captured in the SP problem setting. To address this, [18] introduced the
zero-shot coordination (ZSC) setting, where the explicit goal is to develop learning algorithms that
allow independently trained agents to collaborate at test time.

Another recent area of work trains an RL agent separately, and then evaluate its performance in a
new group of AI agents or humans assuming access to a small amount of test-time data [24, 33].
These methods build SP policies that are compatible with the test time agents by guiding the learning
to the nearest equilibria [24, 33]. Other methods use human data to build a human model and then
train an approximate best response to this human model, making it compatible with human play
[5]. While this presents a promising near-term approach for learning human-like policies in specific
settings where we have enough data, it does not enable us to understand the fundamental principles
of coordination that lead to this behavior in the first place, which is the goal of the ZSC setting.
Our paper shows that even relatively simple training methods can lead to drastically improved ZSC
performance when combined with modern engineering best practices and, importantly, that the
performance gains directly translate into better coordination with a human-like proxy and ad-hoc
teamplay (without requiring human data in the training process).

Our approach for scaling KLR to Hanabi relies heavily on the parallel training of all of the different
levels, where each level is trained on one machine and the models are exchanged periodically through
a central server. This architecture draws inspiration from population based training (PBT), which
was first popularized for hyperparameter turning [20] and then applied in the multi-agent context
to train more robust policies in two player zero-sum team settings [19]. PBT has also been used to
obtain better self-play policies in Hanabi, both in [12] and [1]. In contrast to prior work, we do not
use PBT to avoid local optima or train less exploitable agents but instead leverage this framework to
implement a KLR and a best response to this KLR that is geared towards ZSC and coordination with
human-like proxies.

There are a few other methods directly addressing the ZSC framework. The first, other-play (OP) [18]
requires access to the ground truth symmetries of the problem setting and then learns policies that
avoid breaking these symmetries during training. OP has previously been applied to Hanabi and KLR
compares favorably to the OP results (see Section 4). We also note, that KLR does not require access
to the symmetries and can be applied in settings where no symmetries are present. The next method,
Ridge Rider (RR) [27] uses the connection between symmetries in an environment and repeated
eigenvalues of the Hessian, to solve ZSC problems. Like KLR, RR does not require prior ground truth
access. However, unlike KLR, RR is extremely computationally expensive and has not been scaled
to large scale RL problems. Life-Long Learning (LLL) has been studied for ZSC [26]. However,
LLL requires access to a pool of pre-trained agents, and in this case they had access to symmetries,
whereas our method never required access to such symmetries and our method compares favorably in
the ZSC setting. Lastly, Off-Belief Learning (OBL) [17] has been shown to provide well-grounded
play in hanabi and strong results in the ZSC setting, but requires simulator access to train. We note
that KLR doesn’t require simulator access and also matches or even outperforms OBL on various
metrics.

3 Background

3.1 Dec-POMDPs

This work considers a class of problems, Dec-POMDPs [2], where N agents interact in a partially
observable environment. The partial observability implies that every agent i ∈ {1, · · · , N} has an
observation oit = O(st) obtained from via the observation function O from the underlying state
st ∈ S. In our setting, at each timestep t the acting agent i samples an action uit from policy πi,
uit ∼ πiθ(ui|τ it ), where θ are the weights of the neural networks, and all other agents take no-op actions.
Here we use action-observation histories (AOH) which we denote as τ i = {oi0, ui0, r1 · · · , rT−1, oiT },

3



where T is the length of the trajectory, and rt is the common reward at timestep t defined by the
reward function R(s, u). The goal of the agents is to maximize the total reward Eτ∼P (τ |s,u)[Rt(τ)];
here we consider Rt(τ) to be the discounted sum of rewards, i.e. Rt(τ) =

∑∞
t′=t γ

t′−trt′ , where
γ is the discount factor. Additionally, the environments in this work are turn-based and bounded in
length at tmax.

3.2 Deep Multi-Agent Reinforcement Learning

Deep reinforcement learning has been applied to a multitude of multi-agent learning problems with
great success. Cooperative MARL is readily addressed with extensions of Deep Q-learning [25],
where the Q-function is parameterized by neural networks to learn to predict the expected return
based on the current state s and action u, Q(τt, ut) = Eτ∼P (τ |s,u)Rt(τ). Our work also builds off of
state of the state of the art algorithm Recurrent Replay Distributed Deep Q-Network (R2D2) [21].
R2D2 also incorporates other recent advancements such as using a dueling network architecture [36],
prioritized replay experience [29], and double DQN learning [34]. Additionally, we use a similar
architecture as the one proposed in [14] and run many environments in parallel, each of which has
actors with varying exploration rates that add to a centralized replay buffer.

The simplest way to adapt deep Q-learning to the Dec-POMDP setting is through Independent
Q-learning (IQL) as proposed by [32]. In IQL, every agent individually estimates the total return and
treats other agents as part of the environment. There are other methods that explicitly account for
the multi-agent structure by taking advantage of the centralized training with decentralized control
regime [31, 28]. However, since our work is based on learning best responses, here we only consider
IQL.

3.3 Zero-Shot Coordination Setting

Generally, many past works have focused on solving solving the self-play (SP) case for Dec-POMDPs.
However, as shown in [18], these policies typically lead to arbitrary handshakes that work well within
a team when jointly training agents together, but fail when evaluated with other independently trained
agents from the same algorithm or humans. However, many real-world problems require interaction
with never before seen AI agents and humans.

This desiderata was formalized as the zero-shot coordination (ZSC) by [18], in which the goal is to
develop algorithms that allow independently trained agents to coordinate at test time. ZSC requires
agents not to rely on arbitrary conventions as they lead to mutually incompatible policies across
different training runs and implementations of the same algorithm. While extended episodes allow
for agents to adapt to each other, this must happen at test time within the episode. Crucially, the ZSC
setting is a stepping stone towards human-AI coordination, since it aims to uncover the fundamental
principles underlying coordination in complex, partially observable, fully cooperative settings.

Lastly, the ZSC setting addresses some of the shortcomings of the ad-hoc team play [30] problem
setting, where the goal is to do well when paired with any well performing SP policy at test time. As
Hanabi shows, this fails in settings where there is little overlap between good SP policies and those
that are suitable for coordination. So notably in our ad-hoc experiments we do not use SP policies
but instead ones that can be meaningfully coordinated with.

4 Cognitive Hierarchies for ZSC

The methods we investigate and improve upon in this work are multi-agent RL adaptations of
behavioral game theory’s [3] cognitive hierarchies, where level k agents are a BR to all preceding
levels {0, · · · k − 1}; we define CH’s as a Poisson distributions over all previously trained levels. We
consider k-level reasoning (KLR) to be a hierarchy wehre level k agents are trained as an approximate
BR to level k − 1 agents [7]. Lastly, we propose a new type of hierarchy, SyKLRBR, which is
a hybrid of the two, where we train a BR to a Poisson distribution over all levels of a KLR (see
appendix A.1 for more details).

4



Algorithm 1: Client-Server Implementation of k-level reasoning, cognitive hierarchies, SyKLRBR.
1: Inputs: a level k
2: Initialization: From the server retrieve a trainable policy πk and corresponding set of collaborative policies

Πk, Πk = {πk−1} for k-level reasoning, Πk = {π0, · · · , πk−1} for cognitive hierarchies, and
ΠBR. = {π0, · · · , πk} for the Best Response Agent in SyKLRBR.

3: iteration = 0;
4: for epoch in {1, · · · num_epochs} do
5: for iter in {1, · · · num_iter_per_epoch} do
6: if iter % server_update == 0 then
7: UpdateWeightsOnServer(πk)
8: RetrieveServerWeights(Πk)
9: end if

10: Update weights for πk towards a best response to Πk

11: end for
12: end for

For all hierarchies, we start training the first level of the hierarchy π1 as an approximate BR to a
uniform random policy over all legal actions 2, π0. The main idea of this choice is that it prevents the
π0 agent from communicating any information through its actions, beyond the grounded information
revealed by the environment (see [17] for more info). It thus forces the π1 agent to only play based
on this grounded information provided, without any conventions.

Furthermore, it is a natural choice for solving zero-shot coordination problems since it makes the
least assumptions about a specific policy and certainly does not break any potential symmetries in
the environment. Crucially, as is shown in [3], in principle, the convergence point of CH and KLR
should be a deterministic function of π0 and thus a common-knowledge π0 should allow for zero-shot
coordination between two independently trained agents.

A typical implementation of these training schemas is to train all levels sequentially, one level at a
time, until the given level has converged. We also draw inspiration from [23] and their deep cognitive
hierarchies framework (DCH) to instead train all levels simultaneously. To do so, we use a central
server to store the policies of a given hierarchy and periodically refresh these policies by sending
updated policies to the server and retrieving policies we are best responding to from the central server.

We implement the sequential training as follows: We halt the training of a policy πk at a given level
k after 24 hours and start training the next level πk+1 as a BR to the trained set of policies Πk, where
Πk = {π0, · · · , πk−1} for the CH case and Πk = {πk−1} in the KLR case. This is the standard
implementation of KLR and CH, as it was unsuccessfully explored in Hanabi by [18].

For synchronous training we train all levels in parallel under a client-server implementation (see
algorithm 1). Here all policies {π1, · · · , πn} are initialized randomly on the server. A client training
a given level k ∈ {1, · · · , n}, fetches a policy πk and corresponding set of partner policies Πk and
trains πk as an approximate BR to Πk. Periodically, the client sends a copy of its updated policy πk,
fetches an updated Πk and then continues to train πk. The entire hierarchy is synchronously trained
for 24 hours, the same amount as a single level is trained in the sequential case.

5 Experimental Setup

5.1 Hanabi Setup

Hanabi is a cooperative card game that has has been established as a complex benchmark for fully
cooperative partially observable multi-agent decision making [1]. In Hanabi, each player can see
every player’s hand but their own. As a result, players can receive information about their hand either
by receiving direct (grounded) “hints” from other players, or by doing counterfactual reasoning to
interpret other player’s actions. In 5-card Hanabi, the variant considered in this paper, there are 5
colors (G, B, W, Y, R) and 5 ranks (1 to 5). A “hint” can be of color or rank and will reveal all cards
of the underlying color or rank in the target player; an example hint is, “your first and fourth cards

2In Hanabi there are some illegal moves, e.g., an agent cannot provide a hint when the given color or rank is
not present in the hand of the team mate.

5



are 1s.” A caveat is that each hint costs a scarce information token, which can only be recovered by
“discard” a card.

The goal in Hanabi is to complete 5 stacks, one for each of the 5 colors, each stack starting with the
“1” and ending with the “5”. At one point per card the maximum score is 25. To add to a stack players
“play” cards and cards played out of order cost a life token. Once the deck is exhausted or the team
loses all 3 lives (“bombs out”), the game will terminate.

5.2 Training Details

For a single agent we utilize distributed deep recurrent Q-Networks with prioritized replay experience
[21]. Thus, during training there are a large number of simultaneously running environments calling
deep Q-networks to generating and adding trajectories to a centralized replay buffer, which are then
used to update the model. The network calls are dynamically batched in order to run efficiently on
GPUs [11]. This agent training schema for Hanabi was first used in [15], and achieved strong results
in the self-play setting. Please see the Appendix A for complete training details.

5.3 Evaluation

We evaluate our method and baseline in both self-play (SP), zero-shot coordination (ZSC), ad-hoc
teamplay and human-AI settings. For zero-shot coordination, we follow the problem definition
from [18] and evaluate models through cross-play (XP) where we repeat training 5 times with
different seeds and pair the independently trained agents with each other.

To test our models’ performance against a diverse set of unseen, novel partners (ad-hoc team
play [30]), we next use RL to train two types of agents that use distinct conventions. The first RL
agent is trained with Other-Play, which almost always hints for the rank of the playable card to
communicate with their partners. For example, in a case where “Red 1" and “Red 2” have been
played and the partner just draw a new “Red 3”, the other agent will hint 3 and then partner will play
that card deeming that 3 being a red card based on the convention. This agent is therefore referred to
as Rank Bot. The second RL agent is a color-based equivalent of Rank Bot produced by adding extra
reward for color hinting during early stage of the training to encourage color hinting behavior. This
agent is called Color Bot. More details are in the appendix.

We also train a supervised bot (Clone Bot) on human data, as a proxy evaluation for zero-shot
human-AI coordination. We used a dataset of 208, 974 games obtained from Board Game Arena
(https://en.boardgamearena.com/). During training, we duplicate the games so that there is a training
example from the perspective of each player, for a total of 417, 948 examples; that is, observations
contain visible private information for exactly one of the players (the other being hidden). Using this
dataset, we trained an agent to reproduce human moves by applying behavioral cloning. The agent
is trained by minimizing cross-entropy loss on the actions of the visible player. After each epoch,
the agent performs 1000 games of self-play, and we keep the model with the highest self-play score
across all epochs.

Level Self-play Cross-Play w/ (k-1)th level XP (k-1)th level w/ Color Bot w/ Rank Bot w/ Clone Bot
1 3.64± 0.50 3.82± 0.19 0.03± 0.00 0.03± 0.00 2.94± 0.49 3.84± 0.33 3.03± 0.37
2 10.36± 1.14 10.08± 0.55 6.66± 1.35 7.15± 0.45 9.49± 0.98 7.79± 0.66 7.64± 1.12
3 13.32± 1.29 13.10± 0.67 17.99± 0.21 12.62± 0.95 10.49± 0.94 8.03± 1.13 8.80± 1.26
4 15.63± 2.35 14.18± 1.31 21.41± 0.15 15.48± 1.33 13.63± 2.09 12.47± 0.79 12.33± 1.90
5 16.97± 1.19 17.17± 0.98 22.77± 0.08 17.04± 1.54 14.80± 1.77 12.36± 1.44 13.03± 1.91

Table 1: Performance of sequentially trained KLR for Self-play (SP), Cross-Play (XP), with the
k − 1th level, XP with the k − 1th level, with Color Bot, with Rank Bot, and with Clone Bot. We
find that the score with level k − 1 drops from over 22 points to roughly 17 in XP. This indicates that
in the sequential training, each level-k can overfit to the static level-k − 1 and thus develop arbitrary
handshakes that propagate along the hierarchy.

6 Results and Discussion

In this section we present the main results and analysis of our work, for sequential training, syn-
chronous training, and SyKLRBR. For each variant/level we present self-play, cross-play, ad-hoc

6



Level Self-play Cross-Play w/ (k-1)th level XP (k-1)th level w/ Color Bot w/ Rank Bot w/ Clone Bot
1 3.95± 0.28 4.55± 0.11 0.03± 0.00 0.03± 0.00 3.44± 0.32 4.59± 0.22 3.70± 0.28
2 14.97± 0.31 15.67± 0.09 9.95± 0.29 9.81± 0.12 8.40± 0.11 7.71± 0.25 9.95± 0.54
3 20.00± 0.25 20.67± 0.08 19.27± 0.42 18.85± 0.21 14.10± 0.47 14.64± 0.36 13.38± 0.51
4 21.28± 0.22 21.05± 0.16 22.61± 0.12 22.45± 0.07 15.80± 0.57 15.43± 0.64 14.09± 0.18
5 22.29± 0.08 22.14± 0.12 23.47± 0.10 23.16± 0.16 17.21± 0.86 15.90± 0.30 15.86± 0.23

Table 2: Synchronously trained KLR performance for Self-play (SP), Cross-Play (XP), with the
k − 1th level, XP with the k − 1th level, with Color Bot, with Rank Bot, and with Clone Bot.
Synchronous training produces extremely stable outcomes across the different runs, as indicated by
the close correspondence between SP and XP scores. The fact that all levels are changing during
training regularizes the process and prevents overfitting to the level k − 1.

teamplay and human-proxy results. Although we present self-play numbers, the purpose of this paper
is not to produce good self-play scores, rather we are optimizing for the ZSC and ad-hoc settings.
Therefore, our analysis focuses on the cross-play and ad-hoc teamplay settings, including the human-
proxy results. We demonstrate that simply training the KLR synchronously achieves significant
improvement over its sequentially trained counterpart in the ZSC setting. We also demonstrate that
our new method SyKLRBR is able to further improve upon the synchronous KLR results and achieve
SOTA results in certain metrics e.g. scores with clone bot. We also provide analysis into the issues
with sequential training and how synchronous training addresses them.

6.1 XP Performance

Table 3 shows the XP scores for other-play, OBL, sequential KLR, synchronous KLR, and SyKLRBR.
Changing the training schema from sequential to synchronous significantly increases the XP score
to the state-of-the-art XP score for methods that don’t use access to the environment or known
symmetries. Thus, by synchronously training the KLR, we are able to achieve strong results in the
ZSC setting without requiring underlying game symmetries (other-play) or using simulator access
(OBL). SyKLRBR improves upon this result by synchronously training the BR and the KLR, yielding
even better XP results. Additionally, tables 1 and 2 show the performance of all levels of KLR. A
KLR trained sequentially or synchronously is able to achieve good scores with the k − 1th level,
as level k is explicitly optimized to be an approximate best response to level k − 1. However, the
sequential KLR has a significant dropoff for the XP score with the k − 1th level, indicating that
sequential KLRs have large inconsistencies across runs. This also indicates that the sequentially
trained hierarchy is overfitting to the exact k − 1th level. In contrast, the synchronously trained
hierarchy keeps its score with the k − 1th level close to the XP score with the k − 1 level. Thus,
by synchronously training the hierarchy we are able to minimize overfitting. For more analysis on
overfitting see section 6.4.

6.2 Ad-hoc Teamplay

Table 3 shows the scores in the ad-hoc teamplay setting i.e. evaluation with color and rank bot, where
the synchronously trained KLR outperforms the sequentially trained KLR for both bots. Similarly,
our SyKLRBR further improves performance with both rank and color bot. Thus, the benefits from
synchronous training and from training a BR measured in the ZSC setting translate to improvements
in ad-hoc teamplay.

6.3 Zero-Shot Coordination with Human Proxies

Up to now we have focused on AI agents playing well with each other. Next we measure performance
of bots playing with bots trained on human data, representing a human proxy, specifically the Clone
Bot described in Section 5.3. In table 3, we present overall performance of our agents when trained
under OP, OBL, sequentially KLR, synchronously KLR, and SyKLRBR. As a reference, we trained a
bot using [18]’s OP, which when paired with Clone Bot achieved an average score score of 8.55±0.48.

When synchronously trained, KLR monotonically improves its score with Clone Bot. By level 5
the synchronously trained KLR is able to achieve a score of 15.801± 0.26; the sequentially trained
KLR has a significantly lower score. Additionally, the synchronously trained KLR Clone Bot score
is comparable to the more algorithmically complex OBL bot, which furthermore requires access

7



Method Self-play Cross-Play w/ Color Bot w/ Rank Bot w/ Clone Bot Limitations
Other-Play 24.14± 0.03 21.77± 0.68 4.05± 0.37 - 8.55± 0.48 Sym
OBL (level 4) 24.10± 0.01 23.76± 0.06 21.78± 0.42 14.46± 0.59 16.00± 0.13 Env
Sequential 16.97± 1.19 17.17± 0.98 14.80± 1.77 12.36± 1.44 13.03± 1.91 -
Synchronous 22.29± 0.08 22.14± 0.12 17.21± 0.86 15.90± 0.30 15.86± 0.23 -
SyKLRBR 23.40± 0.07 23.29± 0.05 17.62± 0.69 17.01± 0.45 16.59± 0.16 -

Table 3: Other-Play, OBL level 4, level 5 Sequential KLR, level 5 Synchronous KLR, and SyKLRBR
for Self-play (SP), Cross-Play (XP), ad-hoc play with Color Bot, Rank Bot, and Clone Bot. We
include methodological limitations, requiring underlying game symmetries (sym) or requiring access
to the simulator (env). Both synchronous training and our SyKLRBR improve upon XP, ad-hoc
teamplay, and clone-bot scores. Also SyKLRBR achieves state-of-the-art results with clone-bot.

to the simulator. Lastly, our new method, SyKLRBR, is able to achieve state-of-the-art results in
coordination with human proxies. Therefore, through simply synchronously training KLR we are
able to produce bots that cooperate well with human-like proxy policies at test time and by co-training
a BR we obtain state-of-the-art results.

Figure 2: A plot of probability distributions of actions an agent at level k − 1 will play with level k
for KLR trained sequentially and synchronously. At lower levels, the synchronous KLR is stochastic,
but at higher levels it stabilizes. The stochasticity in the lower levels broadens the range of policies
seen and robustifies lower levels, which propagates upwards and leads to stable, robust policies.

Training Schema % Bomb out with (k-1)th level % Bomb out in XP with (k-1)th level
Sequential 0.4± 0.2 19.8± 18.0

Synchronous 0.4± 0.2 0.6± 0.3

Table 4: Percentage of bombing out for the level 5 agent playing with the level 4 agent it trained
with ((k-1)th level) or the other level 4 agents unseen at training time (XP with (k-1)th level). By
synchronously training we prevent overfitting to the policy distribution of a fixed agent. This allows
us to be better off distribution, which significantly reduces bombing out in the XP case.

6.4 Observations of Training Behaviors

We plot the probability that an agent from k − 1 will take a given type of action u when playing
with an agent from level k in Figure 2. At low levels of the hierarchy (levels 2, 3), the synchronous
hierarchy is trained as an approximate best response to a set of changing policies. Higher up in the
hierarchy the change in the policies gets attenuated, leading to stable policies towards the end of
training. By synchronously training the hierarchy, we allow each policy to see a wider distribution
of states and ensure it is robust to different policies at test time. This robustness is reflected in the
improved ZSC, XP with k − 1th levels, ad-hoc teamplay, and human-proxy coordination.

In table 4 we present the percentage of “bombing out” for the level 5 agent playing with the level 4
agent it trained with or level 4 agents from other seeds of our KLRs. “Bombing out” is a failure case
when too many unplayable cards have been played, leading to the agent losing all points in the game.
Both the sequential and synchronous KLRs rarely bomb out when paired with their training partners.
Only the sequential KLR bombs out significantly more in XP, roughly 20% compared with <1% with
the agent it trained with. This high rate illustrates that the agent is making a large number of mistakes,
indicating that it is off-distribution in XP. We verified this by checking the Q-values of the action the
agent takes when it bombs out. The vast majority of cases (90%+) the agent has a positive Q-value

8



for its play action when it bombs out and negative Q-values associated with other actions (discarding
and hinting). Since the play action is causing the large negative reward, while the other actions are
safe, these Q-values are clearly nonsensical, another indicator that the agent is off-distribution. All of
this illustrates that the “bomb out” rate is a good proxy for being off-distribution, which shows that
the synchronously trained KLR agents are more on-distribution during XP testing.

6.5 Understanding Synchronous Training

At a training step t, the synchronous KLR πti is trained towards a BR to πti−1. There are a few reasons
why synchronous training helps regularize training. First of all, weights are typically initialized s.t.
Q-values at the beginning of training are small, so under a softmax all π0

i ∀i ∈ k are close to uniform.
Secondly, over the course of training the entropy for each policy decreases, as Q-values become more
accurate and drift apart, so πTi (the final policy) will have the lowest entropy. Lastly, the entropy of
the average policy across the set {π1

i−1, π
2
i−1, · · · , πTi−1} is higher than the average of the entropies

from the same set (e.g. the average of two deterministic policies is stochastic, but the average entropy
of the policies 0). Therefore, by playing against a changing distribution over stochastic policies we
significantly broaden the support of our policy.

Entropy in πi−1 has two effects: First of all it increases robustness by exposing πi to more states
during training and, secondly, more entropic (i.e. random) policies will generally induce less
informative posterior (counterfactual) beliefs (a fully random policy is the extreme case, with a
completely uninformative posterior). As a consequence, the BR to a set of different snapshots of a
policy πti−1 is both more robust and less able to extract information from the actions of πi−1 than the
BR to only the final πTi−1. This forces the policy to rely to a greater extend on grounded information
in the game, rather than arbitrary conventions.

Empirically we show this effect by training a belief model on a πT1 and on a set of snapshots of πt1
for t = (100, 200, ...1000). The cross entropy of belief model for the final πT1 is 1.58± 0.01, while
the cross entropy for the set is substantially higher (1.70± 0.01) (both averaged over 3 seeds).

6.6 Cognitive Hierarchies (CH)

We also use our synchronous setup to train a CH (i.e., a best response to a Poisson sample of lower
levels) and present the results in table 5. We note that the scores for the synchronous CH are lower
than the synchronous KLR in terms of SP, XP, ad-hoc teamplay, and human-proxy coordination. This
is likely because even at higher levels, the majority of the partner agents come from lower levels, as a
result the performance is similar to that of KLR level 3. Additionally, computing a best response to a
mix of lower level agents makes the hints provided less reliable and disincentivizes the agent to hint.

Level Self-play Cross-Play w/ Color Bot w/ Rank Bot w/ Clone Bot
1 4.11± 0.29 4.33± 0.12 4.06± 0.30 4.72± 0.40 4.21± 0.28
2 15.61± 0.27 15.79± 0.10 8.77± 0.61 8.58± 0.83 9.26± 0.51
3 19.71± 0.12 19.51± 0.07 10.43± 0.29 11.52± 0.63 13.10± 0.26
4 20.85± 0.17 20.57± 0.08 12.90± 0.42 13.75± 0.47 13.59± 0.33
5 21.65± 0.21 21.42± 0.10 14.13± 0.16 15.12± 0.27 14.59± 0.25

Table 5: CH synchronously trained performance for Self-play (SP), Cross-Play (XP), and ad-hoc play
with Color Bot, Rank Bot, and Clone Bot. In the CH setting we are unable to obtain very strong
results, regardless of setting.

7 Conclusion

How to coordinate with independently trained agents is one of the great challenges of multi-agent
learning. In this paper we show that a classical method from the behavioral game-theory literature,
k-level reasoning, can easily be adapted to the deep MARL setting to obtain strong performance on
the challenging benchmark task of two player Hanabi. Crucially, we showed that a simple engineering
decision, to train the different levels of the hierarchy at the same time, made a large difference for
the final performance of the method. Our analysis shows that this difference is due to the changing

9



policies at lower levels regularizing the training process, preventing the higher levels from overfitting
to specific policies. We have also developed a new method SyKLRBR, which further improves on our
synchronous training schema and achieves state-of-the-art results for ad-hoc teamplay performance.

This raises a number of possibilities for follow-up work: What other ideas have been unsuccessfully
tried and abandoned too early? Where else can we use synchronous training as a regularizer? Another
interesting avenue is to investigate whether the different levels of the hierarchy are evaluated off-
distribution during training and how this can be addressed. Level-k is only trained on the distribution
induced when paired with level-k − 1, but evaluated on the distribution induced from playing with
k + 1. Furthermore, extending the work of [13] and searching for the optimal graph-structure during
training is a promising avenue for future work.

8 Limitations

Although our synchronous training schema does alleviate overfitting in the KLR case, there is still a
large gap between cross-play and playing with the k − 1th level. This indicates that there still exist
some unfavorable dynamics in the hierarchy. Similarly, although our work does provide steps towards
human-AI cooperation, the policy can still be brittle with unseen bots resulting in lower scores.

9 Broader Impact

We have demonstrated that synchronously training a KLR greatly improves on sequentially training a
KLR in the complex Dec-POMDP setting, Hanabi. This in essence is a simple engineering decision,
but it improves performance to very competitive methods. Our method, SyKLRBR, synchronously
trains a BR to the KLR, which resulted in SOTA performance for coordination with human proxies
through “clone bot.” We have found that our method works as it provides distributional robustness in
the trained policies. As a result, it can be a positive step towards improving human-AI cooperation.
Clearly no technology is safe from being used for malicious purposes, which also applies to our
research. However, fully-cooperative settings are clearly targeting benevolent applications.

References
[1] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song,

Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl
Mourad, Hugo Larochelle, Marc G. Bellemare, and Michael Bowling. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

[2] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity
of decentralized control of markov decision processes. Math. Oper. Res., 27(4):819–840,
November 2002.

[3] Colin Camerer, Teck Ho, and Juin-Kuan Chong. A cognitive hierarchy theory of one-shot
games and experimental analysis. Social Science Research Network, 08 2003.

[4] Colin F Camerer, Teck-Hua Ho, and Juin-Kuan Chong. A cognitive hierarchy model of games.
The Quarterly Journal of Economics, 119(3):861–898, 2004.

[5] Micah Carroll, Rohin Shah, Mark Ho, Thomas Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in Neural
Information Processing Systems, 10 2019.

[6] Shan Carter and Michael Nielsen. Using artificial intelligence to augment human intelligence.
Distill, 2017. https://distill.pub/2017/aia.

[7] Miguel Costa-Gomes and Vincent P. Crawford. Cognition and behavior in two-person guessing
games: An experimental study. In American Economic Review, volume 96(5), pages 1737–1768,
2006.

[8] Sam Devlin and Daniel Kudenko. Plan-based reward shaping for multi-agent reinforcement
learning. The Knowledge Engineering Review, 31(1):44–58, 2016.

10



[9] Sam Devlin, Daniel Kudenko, and Marek Grzes. An empirical study of potential-based reward
shaping and advice in complex, multi-agent systems. Advances in Complex Systems, 14:251–
278, 11 2011.

[10] D. C. Engelbart. Augmenting Human Intellect: A Conceptual Framework. Air Force Office
of Scientific Research, AFOSR-3233, www.bootstrap.org/augdocs/friedewald030402/
augmentinghumanintellect/ahi62index.html, 1962.

[11] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl:
Scalable and efficient deep-rl with accelerated central inference. In International Conference
on Learning Representations, 2020.

[12] Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson,
Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent
reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 1942–1951. PMLR, 09–15 Jun 2019.

[13] Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu, Dhruva Tirumala, Junhyuk Oh, Gau-
thier Gidel, Hado van Hasselt, and David Balduzzi. Pick your battles: Interaction graphs as
population-level objectives for strategic diversity. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, page 1501–1503,
Richland, SC, 2021. International Foundation for Autonomous Agents and Multiagent Systems.

[14] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van
Hasselt, and David Silver. Distributed prioritized experience replay. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[15] Hengyuan Hu and Jakob N. Foerster. Simplified action decoder for deep multi-agent reinforce-
ment learning. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[16] Hengyuan Hu, Adam Lerer, Noam Brown, and Jakob Nicolaus Foerster. Learned belief search:
Efficiently improving policies in partially observable settings, 2021.

[17] Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, David Wu, Noam Brown, and Jakob N.
Foerster. Off-belief learning. (To Appear) ICML, 2021.

[18] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “Other-play” for zero-shot
coordination. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 4399–4410. PMLR, 13–18 Jul 2020.

[19] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al.
Human-level performance in 3d multiplayer games with population-based reinforcement learn-
ing. Science, 364(6443):859–865, 2019.

[20] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based
training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

[21] Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

11

www.bootstrap.org/augdocs/friedewald030402/augmentinghumanintellect/ahi62index.html
www.bootstrap.org/augdocs/friedewald030402/augmentinghumanintellect/ahi62index.html


[23] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Perolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent
reinforcement learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30, pages 4190–4203. Curran Associates, Inc., 2017.

[24] Adam Lerer and Alexander Peysakhovich. Learning existing social conventions via observa-
tionally augmented self-play. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, AIES ’19, page 107–114, New York, NY, USA, 2019. Association for Computing
Machinery.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Ried-
miller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[26] Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous
coordination as a realistic scenario for lifelong learning. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 8016–8024. PMLR, 18–24 Jul 2021.

[27] Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher,
Alexander Peysakhovich, Aldo Pacchiano, and Jakob Foerster. Ridge rider: Finding diverse
solutions by following eigenvectors of the hessian. Advances in Neural Information Processing
Systems, 33:753–765, 2020.

[28] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N.
Foerster, and Shimon Whiteson. QMIX: monotonic value function factorisation for deep multi-
agent reinforcement learning. In Jennifer G. Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 4292–4301. PMLR, 2018.

[29] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[30] Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous
agent teams: Collaboration without pre-coordination. In Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[31] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Pro-
ceedings of the 17th international conference on autonomous agents and multiagent systems,
pages 2085–2087. International Foundation for Autonomous Agents and Multiagent Systems,
2018.

[32] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceed-
ings of the tenth international conference on machine learning, pages 330–337, 1993.

[33] Mycal Tucker, Y. Zhou, and Julie Shah. Adversarially guided self-play for adopting social
conventions. ArXiv, abs/2001.05994, 2020.

[34] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA,
pages 2094–2100. AAAI Press, 2016.

[35] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, P. Georgiev, A. S. Vezhnevets, Michelle Yeo,
Alireza Makhzani, Heinrich Küttler, J. Agapiou, Julian Schrittwieser, John Quan, Stephen
Gaffney, S. Petersen, K. Simonyan, T. Schaul, H. V. Hasselt, D. Silver, T. Lillicrap, Kevin

12



Calderone, Paul Keet, Anthony Brunasso, D. Lawrence, Anders Ekermo, J. Repp, and Rodney
Tsing. Starcraft ii: A new challenge for reinforcement learning. ArXiv, abs/1708.04782, 2017.

[36] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In Maria-Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop
and Conference Proceedings, pages 1995–2003. JMLR.org, 2016.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We discuss limitations in section
8.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] discussed
in section 9.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] we included all
information needed to reproduce results in section 4 and appendix A. We will release
an open source version of our code and copies of our trained agents later.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] They are included in appendix A

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] reported in appendix A

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

13



(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14



Hyper-parameters Value
Replay Buffer Parameters

burn-in-frames 10000
replay buffer size 131072 (217)
priority exponent 0.9
priority weight 0.6

maximum trajectory length 80
Optimization Parameters

optimizer Adam [22]
lr 6.25e− 05

eps 1.5e− 5
gradient clip 5

batchsize 128
Q-learning Parameters

n step 3
discount factor 0.999

num gradient steps sync target net 2500
Table 6: Hyper-parameters for Hanabi agent training

A Experimental Details

In training every agent we use a distributed framework for simulation and training. For simulation, we
run 6400 Hanabi environments in parallel and the trajectories are batched together for efficient GPU
computation. This is done efficiently as every thread can hold many environments in which many
agents interact. Every agent chooses actions based on neural network calls, which are more intensive
and done by GPUs. By doing these calls asynchronously it allows a thread to support multiple
environments while waiting for prior agents’ actions to be computed. Therefore, by stacking multiple
environments into a thread and utilizing multiple threads we are able to maximize GPU utility and
generate a massive amount of data on the simulation side. Every environment is considered to be in a
permanent simulation loop, where at the end of the environment the entire action observation history,
consisting of action, observation, and reward is aggregated together into a trajectory, padded to a
length 80, and then added to a centralized replay buffer as done in [29]. We compute the priority of
each trajectory as ξ = 0.9 ·maxiξi + 0.1 · ξ [21], where ξi is the TD error per step. From the training
perspective we have a training loop that continuously samples trajectories from the replay buffer
and updates the model based on TD error. The simulation policies are updated to be the training
policy every 10 gradient steps. We utilize epsilon exploration for training agent exploration. At the
beginning of every simulated game we generate epsilon εi from the equation εi = α1+β∗ i

N−1 , where
α = 0.1, β = 7, N = 80. For our entire training, inference infrastructure we use a machine with 30
CPU cores and 2 GPUs, one GPU for training and one GPU for simulation.

We use the same network architecture as described in [16]. We follow their design choices of utilizing
a 3-layer feedforward neural network to encode the entire observation and then using a one-layer
feedforward neural network followed by an LSTM to encode only the public observation. We
combine these two outputs with element-wise multiplication and use a dueling architecture [36] to
get the final Q-values. We also use double DQN as done in [34]. Other relevant hyper-parameters are
presented in table 6.

For synchronous hierarchy training, every 50 gradient steps, each client sends the weights of the
policy it is training πi to the server and queries the server for the corresponding set of updated policies
Πi that πi is trained to be an approximate best response.

A.1 Poisson Distribution Details

For CH and SyKLRBR, each responds to a Poisson distribution over some set of agents
{π0, π1, · · ·πk}. Concretely, each of the games played simultaneously has an agent from a set
level. We use a Poisson distribution with a PMF of λk∗e−λ

k! . For SyKLRBR we use λ = 1, which
means for a given level j and a hierarchy of i levels k = i− j in the PMF. Therefore, a BR to a 5

15



level KLR has ∼ 37% of the actors from level 5, ∼ 37% from level 4, ∼ 18% from level 3, ∼ 6%
from level 2, ∼ 1% from level 1, and < 1% from level 0.

Similarly, for CH we use λ = 2, which is a standard value for CHs as noted by [4]. Thus, a CH at a
given level i and partner level j, it will have k = j in the Poisson PMF for a given level j (excluding
level 0). Therefore, for a 5 level cognitive hierarchy, ∼ 37% of the actors are from level 1, ∼ 37%
from level 2, ∼ 20% from level 3, and ∼ 6% are from level 4.

B Details on Rank Bot and Color Bot

We train two distinct policies to test the ad-hoc teamplay performance of our agents. Both two policies
use the same network design as our KLR policies. The first policy is trained with the Other-Play [18]
technique where one of the two players always observe the world, i.e. both input observation and
output action space, in a randomly permuted color space. The color permutation is sampled once at
the beginning of each episode. This method is capable of preventing the agent from learning arbitrary
conventions and previously achieved the best zero-shot coordination score in Hanabi. Empirically,
policies trained with Other-Play tends to use a rank based convention where it hints about the rank of
a playable card to indicate play and partner will often safely play a rank hinted card without knowing
the color. Therefore we refer to this policy as Rank Bot. Similarly, we may expect a color based
equivalent of the Rank Bot but in practice we find it difficult to learn such policy naturally. We
instead use a reward shaping technique where we give extra reward of 0.25 when the agent hints a
color. To wash out the artifact of the reward shaping, we first train the agent with reward shaping till
convergence and then disable the extra reward and train it for another 24 hours. However, we find
that the reward shaping may lead to inconsistent training results across different runs and thus make
it hard to reproduce. We use a simple trick of zeroing out the last action field of the observation to
stabilize the learning. Note that the last action is a shortcut to learn arbitrary conventions but it is
redundant in our setting since the agent with RNN can infer last action from the board. The policy
trained this way predominantly uses color based conventions and is referred to as Color Bot.

16


	Introduction
	Related Work
	Background
	Dec-POMDPs
	Deep Multi-Agent Reinforcement Learning
	Zero-Shot Coordination Setting

	Cognitive Hierarchies for ZSC
	Experimental Setup
	Hanabi Setup
	Training Details
	Evaluation

	Results and Discussion
	XP Performance
	Ad-hoc Teamplay
	Zero-Shot Coordination with Human Proxies
	Observations of Training Behaviors
	Understanding Synchronous Training
	Cognitive Hierarchies (CH)

	Conclusion
	Limitations
	Broader Impact
	Experimental Details
	Poisson Distribution Details

	Details on Rank Bot and Color Bot

