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Abstract

This paper presents recent progress on integrating speech sep-
aration and enhancement (SSE) into the ESPnet toolkit. Com-
pared with the previous ESPnet-SE work, numerous features
have been added, including recent state-of-the-art speech en-
hancement models with their respective training and evalua-
tion recipes. Importantly, a new interface has been designed
to flexibly combine speech enhancement front-ends with other
tasks, including automatic speech recognition (ASR), speech
translation (ST), and spoken language understanding (SLU). To
showcase such integration, we performed experiments on care-
fully designed synthetic datasets for noisy-reverberant multi-
channel ST and SLU tasks, which can be used as benchmark
corpora for future research. In addition to these new tasks,
we also use CHiME-4 and WSJ0-2Mix to benchmark multi-
and single-channel SE approaches. Results show that the in-
tegration of SE front-ends with back-end tasks is a promis-
ing research direction even for tasks besides ASR, especially
in the multi-channel scenario. The code is available online
athttps://github.com/ESPnet/ESPnet. The multi-
channel ST and SLU datasets, which are another contribution
of this work, are released on HuggingFace.

Index Terms: speech enhancement, speech recognition, speech
translation, spoken language understanding

1. Introduction

Speech separation and enhancement (SSE) aims at extracting
a target speech signal from noise, reverberation, and interfer-
ing speakers. It is essential to robust speech recognition [1, 2],
assistive hearing [3], and robust speaker recognition [4]. SSE
methods have benefited greatly from the recent development of
deep learning (DL) approaches, and DL-based methods are now
the de-facto standard. This opens up the possibility for end-to-
end integration of SSE methods with many downstream speech
processing back-end tasks [e.g., automatic speech recognition
(ASR), keyword spotting, and speech translation (ST), to name
a few]. In fact, many works have been recently exploring this
research direction, mainly concerning ASR [5-8].

To accelerate research in SSE, ESPnet-SE toolkit [9] was
developed and currently supports multiple state-of-the-art en-
hancement approaches and various corpora. In the meantime,
there is currently a lot of effort and interest for robust ASR, ST,
and spoken language understanding (SLU) in noisy and pos-
sibly distant speech scenarios [10, 11], such as ones encoun-

* denotes equal contribution.

tered by smart-speaker devices. This motivated us to extend
ESPnet-SE into ESPnet-SE++, which has a re-designed inter-
face focused on modularity. This new interface allows for a
seamless combination of different front-end SSE models with
various downstream tasks such as ASR, ST and SLU.

The contributions of ESPnet-SE++ are summarized below:

* We significantly extend ESPnet-SE by providing new
recipes for several enhancement corpora and challenges.

* In addition to new recipes, several state-of-the-art single-
channel and multi-channel enhancement approaches
have been added. Including unsupervised separation [12]
and generative speech enhancement [13] approaches.

* A redesigned modular interface allows a flexible, “plug-
and-play” combination of SE front-ends with different
ESPnet back-end tasks such as ASR, SLU, ST, etc. As
we showcase in Section 4 for ST and SLU, this easily
allows to test and possibly fine-tune (as done for SLU)
the same pre-trained front-end for multiple applications.

* We develop two multi-channel noisy-reverberant
datasets derived from SLURP and Libri-Trans, respec-
tively. We simulate potential applications of SLU and
ST in a distant speech setting and showcase how tight
integration of SE front-end with the back-end opens up
promising research directions for other tasks besides
ASR.

An extensive experimental evaluation is performed to
showcase the flexibility of ESPnet-SE++. In particular, we
conducted different experiments using four different datasets:
CHiME-4, WSJ0-2mix, and the two purposedely developed
SLU and ST multi-channel datasets mentioned previously. Re-
sults show that speech enhancement can improve the perfor-
mance in a wide variety of downstream tasks.

2. Related Works

In this section, we briefly compare ESPnet-SE with other open-
source deep learning-based speech enhancement and separation
toolkits, such as nuss! (North-western University Source Sep-
aration Library) [14], Onssen (An Open-source Speech Sepa-
ration and Enhancement Library) [15], Asteroid (Audio source
separation on Steroids) [16], and SpeechBrain [17]. While nuss!
provides several state-of-the-art SE methods, the data prepara-
tion and experiments of nuss/ and Onssen are not easily config-
urable from the command line [16]. On the other hand, Asteroid
and SpeechBrain provide a whole pipeline from data prepara-
tion to enhancing and evaluating the testing speech.



ESPnet-SE

Recipes (10)
i SJ0-2mix_spatialized,
RB, DIRHA, SMS-WSJ,
, WHAM, and WHAMR.

Single-Channel Models (3)
Conv-TasNet, T-F Masking, and
DPRNN-TasNet

ESPnet-SE++

Recipes (20)
+ VoiceBank-DEMAND, DNS (Interspeech 2020, ICASSP
2021, Interspeech 2021), ConferencingSpeech, Clarity-
2021, L3DAS22, CHIME-4, LT-S, and SLRUP-S.

Single-Channel Models (12)
\ Conv-TasNet, T-F Masking, DPRNN-TasNet, Deep
N clustering, Deep Attractor Network, DCCRN, DC-CRN,
SkiM, DPT-FSNet, Svoice, CDiffuSE, and MixIT.

Multi-Channel Models (12)
) Neural Beamformer (MVDR, MVDR_Souden, wMPDR,
4l \WMPDR_Souden, WPD, WPD_Souden, SDW-MWF, r1-
g MWEF), AuxIVA-IS, DC-CRN, FasNet, and iNeuBe.

Multi-Channel Models (4) '
Beamformer (MVDR, MVDR_Souden;
WPD, WPD_Souden)

Downstream Tasks (3)
Automatic Speech Recognition, Speech Translation,
and Spoken Language Understanding.

Downstream Tasks (1)
Automatic Speech Recognition
Figure 1: Comparison for ESPnet-SE and ESPnet-SE++.

Recipes in ESPnet-SE are not shown in the block of ESPnet-
SE++.

However, Asteroid is exclusively designed for SE front-end
processing. On the other hand, SpeechBrain, supports both SSE
front-end and back-end (e.g. ASR) techniques along with cor-
responding recipes but does not yet integrate multiple speech
processing tasks into a single recipe. Although the application
of SE can already be beneficial, especially in the multi-channel
case, various studies suggest that joint-optimization with down-
stream tasks can further boost the performance [10, 18, 19].
We summarize the difference between ESPnet-SE and ESPnet-
SE++ in Figure 1. ESPnet-SE++ owns 20 SSE recipes, with 24
different enhancement/separation models.

3. Features of ESPnet-SE++

ESPnet-SE covers a wide range of speech enhance-
ment/separation models and recipes, including (1) single-
channel and multi-channel; (2) single-source and multi-source;
(3) time-domain and frequency-domain enhancement models.
ESPnet-SE++, is extended to support the latest state-of-the-art
models and the latest enhancement/separation recipes, and
also provides the combination of enhancement with other
downstream tasks, including ASR, ST, and SLU. In addition,
ESPnet-SE++ supports the native complex datatype built
by PyTorch for complex time-frequency domain processing
instead of relying on custom workarounds built on top of
PyTorch real-valued tensors.

3.1. Recipes

ESPnet-SE provides various recipes for several SSE bench-
mark corpora which are derived from WSJ [20] and Lib-
rispeech [21] corpora. ESPnet-SE++, on top of these, adds 10
new recipes, including speech enhancement/separation corpora:
Voicebank-DEMAND [22], speech enhancement challenges:
DNS (Interspeech 2020 [23], ICASSP 2021 [24], and Inter-
speech 2021 [25]), ConferencingSpeech 2021 [26], Clarity-
2021 [27], and L3DAS22 [28]. In addition, we develop a new
recipe that enables an all-in-one combination of multiple speech
processing components with a front-end SSE module. This in-
cludes robust ASR (CHiME-4), ST (Libri-Trans [29] mixture),
and SLU (SLURP [30] mixture) datasets. These recipes con-
tain the data preparation steps for both enhancement and down-
stream speech processing tasks, the joint-training of the front-
end and back-end models, and the output of enhanced/separated
speech with the recognition/translation/understanding results.
The function of each stage in the unified pipeline is depicted
in Figure 2.

enh_asrl/enh_asr.sh

Stage 1 Stage 2 Stage 3 Stage 4

Corpus dependent Speed perturbation

data preparation (optional) Remove short data

Wave formating

Stage 5-9 Stage 10 Stage 11 Stage 12

LM and N-gram Collect stats for Model Inference and
(optional) joint-training joint-training decode

Stage 13 Stage 14-15
Scoring Uploading model

Figure 2: Block diagram of enh_asr. shin ESPnet-SE++, the
combination of SE and back-end models.

3.2. Models

In ESPnet-SE++, we add various classical and state-of-the-
art supervised SSE models, including (1) single-channel mod-
els: Deep Clustering [31], Deep Attractor Network [32],
DCCRN [33], DC-CRN [34], SkiM [35], DPT-FSNet [36],
SVoice [37], and (2) multi-channel models: neural beamformer
with more supported types (c.f. Section 3.4), FaSNet [38], and
iNeuBe [39, 40]. In addition, we further extend the ESPnet-SE
framework to support various training and inference procedures,
including (3) generative enhancement model, CDiffuSE [13],
and (4) unsupervised separation model, MixIT [12].

3.3. Training Objectives

The training objective can vary a lot between different speech
enhancement and separation tasks. To make it more flexible
and customizable, we disentangle the training objective into two
abstract classes: a criterion and a wrapper.

The criterion is an implementation of a simple loss func-
tion, e.g. SI-SNR [41, 42], CI-SDR [43, 44], mean square error
(MSE) on time-frequency masks, etc. These losses usually take
both target and estimated tensors as input and output a scalar
loss value.

The wrapper instead deals with a post-processing of the cri-
terion output. For example, the procedure to find the best per-
mutation in the PIT [45] algorithm is implemented as a wrap-
per. We have also added MixIT [12] wrapper for unsupervised
speech separation. This modular design allows researchers to
add complex training objectives conveniently by writing cus-
tom wrapper classes and combining it with a suitable criterion.

Furthermore, ESPnet-SE++ supports multiple training ob-
jectives. Different training objectives can be combined with
different weights in a multi-task learning (MTL) fashion. The
specific implementation of training objectives, including their
wrapper, criterion and MTL weight, can be selected and con-
figured directly in the ESPnet yam! configuration file.

3.4. Single- and Multi-channel Speech Enhancement

As mentioned above, ESPnet-SE++ adds several models on
top of ESPnet-SE. For single-channel models, DCCRN [33]
and DC-CRN [34] are added. To catch up with the latest
development of deep learning-based multi-channel speech en-
hancement systems, we further added several multi-channel
SSE models, including FaSNet [38], DC-CRN [34], and
iNeuBe [39, 40]. The first one is a time-domain multi-
channel model, while the other two operate in the complex
time-frequency domain. In addition, there are also various



Table 1: Results of single- and multi-channel speech enhance-
ment approaches on CHIiME-4.

Models PESQ STOI SI-SNR (dB)
No processing 2.18  0.870 7.51
Wang et al. [50] 3.68 0.986 22.00
Single-channel Models
Conv-TasNet (baseline) 2.58 0.892 11.57
*DCCRN 2,59  0.895 12.57
*DC-CRN 243  0.880 11.59
Multi-channel Models
MVDR 2.61 0.954 13.98
MVDR _Souden 2.66  0.954 15.25
*wMPDR 2.60  0.951 13.53
Neural *wMPDR _Souden 2.64 0.951 15.24
Beamformer  wpD 2.60  0.950 13.43
WPD_Souden 2.64  0.950 14.89
*SDW-MWF 243 0.922 11.87
*r1I-MWF 2.67 0.953 15.08
* AuxIVA-ISS 249  0.900 10.34
*DC-CRN 295 0.948 17.04
*FaSNet 270  0.935 14.83
*iNeuBe (DNN;) 324 0.969 19.52

* The symbol * denotes models newly-added to ESPnet-SE++.

notable updates to the existing ESPnet-SE neural beamformer
model. Firstly, the DNN_Beamformer module is refactored
to be more user-friendly, while keeping backward compati-
bility. Secondly, more beamformer variants are supported,
such as weighted minimum power distortionless response (wWM-
PDR) [46], speech distortion weighted multi-channel Wiener
filtering (SDW-MWEF) [47], and rank-1 multi-channel Wiener
filter (r1-MWF) [1] etc. A differentiable implementation of the
blind source separation algorithm AuxIVA-ISS [48] has also
been added. Thirdly, these beamforming solutions now rely on
the native complex tensors data-type built in PyTorch 1.9.0+,
which shows a faster speed and comparable performance com-
pared to our previously-adopted implementation. ' We also
integrate multi-channel processing methods provided by Tor-
chAudio [49] such as power spectral density (PSD) compu-
tation, MVDR beamforming, etc. 2 Last, several numerical
stability-related techniques proposed in [2] have been integrated
to improve the training stability and performance.

In Table 1, we list the SSE performance of various models
supported in the current toolkit on the CHiME-4 corpus, where
the newly-added models are marked with *.

3.5. Single-channel Speech Separation

In the initial version of ESPnet-SE [9], we implemented some
time-frequency (TF) domain [45] and time domain models [51,
52]. In the new implementation, we design these two kinds
of models into a unified framework, which consists of an en-
coder, a separator and a decoder. Depending on the model
type, encoder and decoder could be short-time Fourier trans-
form (STFT) and inverse STFT (iSTFT) for the TF domain
models; or they could be convolutional layers and transposed
convolutional layers for time domain models such as [41]. The
separator is typically a sequence mapping neural network. It
takes the input from the encoder, and generates S output fea-
tures. S is the number of speech sources to be separated, and

"https://github.com/kamo-naoyuki/pytorch_
complex

’https://pytorch.org/audio/main/functional#
multi-channel

Table 2: Results of single-channel speech separation models on
WSJO-2mix.

Models PESQ STOI  SI-SNR (dB)
No processing 2.01  0.738 0.00
Conv-TasNet (baseline) 3.25 0.953 15.94
DPRNN-TasNet 347  0.968 17.91
*Deep Clustering 2.15  0.845 7.91
*Deep Attractor Network | 2.68  0.893 10.30
*DC-CRN 311 0935 13.01
*SkiM 347  0.966 18.45
*MixIT (Conv-TasNet) 3.00 0.938 13.50

* The symbol * denotes models newly-added to ESPnet-SE++.

Table 3: WER for system combination of speech enhancement
with speech recognition on CHIME-4 corpus.

Models SIMU (%) REAL (%)
No processing 19.7 18.0
Single-channel Models
Conv-TasNet 17.4 15.2
DCCRN 16.3 15.8
Multi-channel Models
FaSNet 15.7 23.8
Neural Beamformer 10.8 13.7
iNeuBe (DNN;) 9.0 35.8

for most speech enhancement models, S = 1. The decoder
transforms the features into the target audios.

An interface holding together the encoder, separator and
decoder has been designed. This modular design allows to ex-
plore many different architectural variations with less boiler-
plate code. Based on the unified framework, we also enrich
the speech separation models in ESPnet-SE, including deep
clustering [31], deep attractor network [32], DC-CRN [34],
SkiM [35] and, MixIT [12]. The reproduced results on the
WSJ0-2mix [31] benchmark are listed in Table 2.

4. Combination tasks of ESPnet-SE++

ESPnet-SE++ allows for a tight and easy integration of SSE
front-end processing techniques and back-end tasks as intro-
duced in Sec. 3.1. To showcase this, we provide three com-
bined recipes, CHiME-4, LT-S, and SLURP-S, with speech
enhancement (SE) front-end subtask, followed by a back-end
ASR/ST/SLU subtask. We performed several experiments with
different techniques to assess if and how SE could improve the
results of the back-end tasks even when multi-condition training
is employed.

4.1. Data Simulation

We created two multi-channel noisy-reverberant datasets based
on SLURP and Libri-Trans (LT): SLURP-S and LT-S , where
S stands for spatialized. We augmented the original SLURP
and LT datasets using room impulse responses generated via
Pyroomacoustics [53], and noises from FSD50k [54], SINS
[55]. In detail, for each original utterance from SLURP and
LT we simulate a smart-speaker scenario where the target sig-
nal is captured by a 4-microphone circular array with a diame-
ter of 10 cm. For each utterance, we sample a room size from
uniform distribution U(10,100) m? and a reverberation time
(T60) from U(0.2,0.6) s, typical of most indoor settings [56].



Room height is sampled from U (2.5,4) m. The target speech
is contaminated by 1 up to 4 point-source localized noises from
FSD50k and, in addition, also one diffuse noise audio sample
from SINS. Diffuse noise is simulated using the technique out-
lined in [57]. The positions of the array, point-source noises
and target are sampled randomly in the virtual room with the
constraint of being at least 0.5 m apart from each other and the
walls. The Signal-to-Noise ratio (SNR) for target versus point-
source noises is sampled from U(0, 15) dB, while for diffuse
noise is sampled from U (12, 35) dB.

Regarding SLURP, since it already comprises noisy-
reverberant examples, we use DNSMOS model [58] to select
only a subset of sufficiently clean utterances (with estimated
BAK > 3.2) from training real, development and test, to use
for SLURP-S. This process leaves 24497 utterances for train-
ing real, and 6387 and 6099 for development and test respec-
tively. No utterance is discarded from training synthetic. The
discarded utterances are kept but treated as single-channel ex-
amples with no oracle SE supervision, and are left for possible
future work on semi/self-supervised joint SE+SLU. Instead, LT-
S retains the same number of utterances of the original LT as it
features only clean speech.

Finally, in order to assess generalization to unseen noise
conditions, we also generate, for both datasets, an additional test
set with diffuse noise derived from QUT [59] instead of SINS.

4.2. Combination of SE with ASR on CHiME-4

In Table 3 we report the results obtained by combining differ-
ent SE front-ends with an ASR model on the CHiME-4 cor-
pus [11]. CHiME-4 consists of both real and simulated noisy
speech signals and is particularly suited for this analysis. We
used a transformer encoder-decoder as the E2E ASR model that
is pre-trained using the official ESPnet CHiME-4 recipe. The
SE models are instead pre-trained using simulated data. The
performance of these systems in terms of signal-based met-
rics is summarized in Sec. 3.4. After pre-training, the entire
SE+ASR system is fine-tuned together with both SE and ASR
losses. On the simulated data, all SE+ASR systems improve
performance with respect to using solely the ASR model. This
result confirms the effectiveness of jointly fine-tuning SE and
ASR systems for robust speech recognition. Meanwhile, some
models resulted in worse WERS on the real data. This is a com-
monly observed phenomenon when evaluating SE models on
simulated and real data [19, 60], especially when they are not
jointly optimized with the downstream ASR task. The neural
beamformer achieved the best performance in both simulated
and real sets.

4.3. Combination of SE with ST on LT-S

In the left part of Table 4, we explore the combination of SE
with a ST task performed on the simulated LT-S dataset outlined
in Section 4.1. For the ST model, we used a conformer-encoder
transformer-decoder as the back-end model. The ST model was
trained on the original clean Libri-Trans dataset and achieved a
BLEU score of 16.7 on the test set. The front-end SE models
were pre-trained using both LT-S and SLURP-S datasets using
the anechoic clean speech as target (thus performing joint de-
noising and dereverberation). For the evaluation, we directly
concatenate the pretrained SE models with the ST model in
an end-to-end manner. Note that the whole system was not
fine-tuned. We can see that the addition of the SE front-end
generally improves the performance against the noisy speech
even without fine-tuning. Among the SE models considered,

Table 4: Results of combining speech enhancement with speech
translation on LT-S corpus and speech enhancement with spo-
ken language understanding on SLURP-S corpus.

- | LT-S(BLEU) | SLURP-S(Acc%)
| TEST TESTQUT | TEST TEST QUT
| 73 74 | 742 734

No processing

Single-channel Models

Conv-TasNet 7.4 7.5 64.3 64.0

DCCRN 10.1 10.1 77.0 76.3
Multi-channel Models

FaSNet 7.7 3.6 73.1 72.5

iNeuBe (DNN;) 13.2 13.2 77.8 71.5

iNeuBe (mfmcwf) 13.0 13.0 80.1 80.2

iNeuBe (DNN2) 14.4 14.6 80.4 80.3

both iNeuBe models based on DNN> and multi-frame multi-
channel Wiener filter (mfmcwf), bring the largest performance
gain. In the single-channel case, DCCRN, as expected, outper-
forms Conv-Tasnet.

4.4. Combination of SE with SLU on SLURP-S

In the right part of Table 4, we explore instead the combination
of SE with a SLU back-end and report the intent classification
accuracy. Regarding the SLU model, we used the conformer-
encoder transformer-decoder trained with multi-condition train-
ing (clean and noisy-reverberant) on the SLURP-S corpus. Af-
ter SLU back-end pre-training, we fine-tuned the SE and SLU
systems together. The SE models are the same as used in the
ST experiments in Sec. 4.3. Notably, we can see that in this
instance, contrary to what is observed on CHiME-4 which is
arguably less acoustically challenging than SLURP-S, Conv-
TasNet and FaSNet lead to degraded performance. On the other
hand, both DCCRN and iNeuBe are able to outperform the
multi-condition SLU model. This confirms that models that rely
on complex spectral mapping [40, 50] are more robust in chal-
lenging acoustical conditions.

5. Conclusions

In this work we presented the ESPnet-SE++ toolkit. Built on top
of ESPnet-SE, it includes new state-of-the-art models, losses,
and recipes for speech enhancement corpora and challenges in
various scenario. The toolkit interface has also been overhauled
and improved with greater modularity. This allows a flexi-
ble combination of speech enhancement with ESPnet back-end
tasks such as ASR, ST, and SLU. As an additional contribution,
to showcase such integration of front-end and back-end compo-
nents, we developed two multi-channel noisy-reverberant cor-
pora based on SLURP and Libri-Trans. Experiments show that
the use of SE front-end models improves both signal-based
evaluation metrics and back-end tasks such as ASR, ST, and
SLU, even when the back-end is trained on a multi-condition
fashion. Future work could investigate further integration of
different SE techniques with back-end tasks, including self-
supervised pre-training via MixIT and generative enhancement
models, with the goal of improving generalization to unseen
acoustical conditions.
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