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Abstract

Ranking tasks are defined through losses that measure trade-offs between different
desiderata such as the relevance and the diversity of the items at the top of the list.
This paper addresses the question of which of these tasks are asymptotically solved
by sorting by decreasing order of expected utility, for some suitable notion of utility,
or, equivalently, when is square loss regression consistent for ranking via score-and-
sort? We answer to this question by finding a characterization of ranking losses
for which a suitable regression is consistent. This characterization has two strong
corollaries. First, whenever there exists a consistent approach based on convex
risk minimization, there also is a consistent approach based on regression. Second,
when regression is not consistent, there are data distributions for which consistent
surrogate approaches necessarily have non-trivial local minima, and for which
optimal scoring function are necessarily discontinuous, even when the underlying
data distribution is regular. In addition to providing a better understanding of
surrogate approaches for ranking, these results illustrate the intrinsic difficulty of
solving general ranking problems with the score-and-sort approach.

1 Introduction

The usual approach in learning to rank is to score each item (e.g., a document) given the input (e.g., a
search query), and produce the ranking by sorting in decreasing order of scores. This score-and-sort
approach follows the probability ranking principle of information retrieval [29], which stipulates that
documents should be rank-ordered according to their estimated probability of relevance to the query.

In practice, the definition of a “good” ranking requires more than estimates of relevance. For instance,
in scenarios where several users issue the same query “jaguar” but with different intended meanings
(e.g., the animal or the car brand), it is desirable to produce diverse rankings where each user finds a
relevant document as early as possible. While in the probability ranking principle, items are ranked in
decreasing order of their expected utility to the users, in sophisticated ranking tasks with a trade-off
between relevance and diversity, the definition of a utility per item is not trivial, if not impossible.

In this paper, we study what ranking tasks are solved via sorting by expected utilities, in a general
supervised ranking framework that captures different types of ground-truth signal and losses. Since
utilities can serve as target values to learn the scoring function through square loss regression, the
optimality of sorting by expected utilities is equivalent to the consistency of regression. The main
question we address is thus: When is square loss regression consistent for ranking via score-and-sort?

The consistency of regression for ranking, and more generally the consistency of convex risk minimiza-
tion for ranking, are still only partly understood. Existing consistency results only apply to gain-based
losses such as the Discounted Cumulative Gain and precision and recall at K [12, 28, 6, 19, 14], for
which there is an explicit utility function [see e.g., 8, Table 1]. For other losses, only impossibility
results are known. Duchi et al. [15], followed by Calauzènes et al. [7] and Ramaswamy et al. [27]
proved that convex approaches are, in general, inconsistent with the usual loss when ranking from
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pairwise preferences, as well as with the Expected Reciprocal Rank [9] and the well-known Average
Precision [22], two metrics that are respectively diversity-inducing and diversity-averse [10]. Thus,
extending our analysis to general convex risk minimization, two questions remain open: i) Are there
ranking losses for which regression is not consistent, but for which there exists a consistent convex
risk minimization approach? and ii) When only non-convex surrogate approaches are consistent, is
the learning or optimization problem intrinsically more difficult?

In Section 3, we describe our main result: sorting by expected utilities is optimal if and only if the
sublevel sets of the ranking loss are connected, for a suitable notion of connectedness in the space of
permutations. This result identifies the fundamental property of ranking losses that is related to the
existence of a consistent regression approach. We give an intuitive interpretation of this result in terms
of continuity of optimal scoring functions: when regression is not consistent, there necessarily exist
data distributions with continuous conditional distributions x 7→ P (y|x) but such that all optimal
scoring functions are discontinuous. On the other hand, when there is a utility function, expected
utilities inherit the regularity properties of x 7→ P (y|x).

In Section 4, we elaborate on the two types of ranking tasks and discuss surrogate approaches. We
first answer question i) and show that for every ranking loss, whenever a convex risk minimization
approach is consistent, then a suitable regression is consistent. Second, we give elements of answer to
question ii): when surrogate losses need be non-convex to be consistent, we show that every Lipschitz
surrogate loss must have bad local minima.

Our results establish that the general class of convex surrogate losses cannot solve more tasks than
plain regression. This clarifies that sophisticated convex approaches for ranking should be justified
by better sample complexity more than “better fit” to a specific ranking task, since asymptotically
they are either inconsistent or equivalent to a suitable regression. Moreover, the necessary non-global
minima of surrogate losses and the discontinuity of optimal scoring are the first formal arguments for
the intrinsic difficulties that arise when using score-and-sort for general ranking problems.

2 Preliminaries: Learning to rank and Consistency

2.1 Learning to Rank

Supervised learning to rank. We consider a framework of label or subset ranking [13, 12]. The
learner predicts rankings over n items based on input features x ∈ X ⊆ Rd, where X has nonempty
interior. Rankings are represented by permutations, and we denote by Sn the set of all permutations
of [n] = {1, . . . , n}. The learner has access to a supervision signal in Y . When the task is fully
supervised, Y = Sn, but we also allow for weakly supervised settings where a supervision y ∈ Y is
a vector of relevance judgements for each item, a preference graph, or a partial ranking. Our analysis
is agnostic to the type of supervision, we only assume that Y is finite. The task loss L : Y ×Sn → R
measures the quality of a ranking given the supervision. The goal is to learn, from supervised training
data, a ranking function h : X → Sn with low task risk RL,P (h) = EP

[
L(Y, h(X))

]
, where the

expectation is taken according to the data distribution P . We give later examples of usual task losses
and their associated Y in Table 1 (Section 3).

The score-and-sort approach. A usual approach to learning to rank is to sort the items by decreas-
ing order of learnt scores. Given a vector of scores s ∈ Rn, argsort(s) returns the set of permutations
that are compatible with a decreasing order of score:

argsort(s) = {σ ∈ Sn : ∀k ∈ [n− 1], sσ(k) ≥ sσ(k+1)} .
We overload L for a set of rankings π ⊆ Sn, using its average value L(y, π) = 1

|π|
∑
σ∈π L(y, σ).

Thus, given a scoring function f , i.e., a measurable function f : X → Rn, the task risk for the
score-and-sort approach isRL,P (argsort ◦ f) = EP

[
L(Y, argsort(f(X))

]
.

Similarly to previous studies on consistency for ranking [e.g., 12, 15, 28, 7, 8, 26], x contains the
information about the input and all items. This is the natural setup when ranking class labels in
a multiclass/multilabel setting, since in that case there are only input features (e.g., an image). In
recommender systems or search engines, this means that we allos the score of an item to depend on
the other available items. This setup makes sure that every ranking function can be implemented by
the score-and-sort approach. The difficulty of learning to rank comes from the requirement to learn
the scoring function from noisy supervision, instead of from a deterministic ground-truth ranking.
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2.2 Consistency, Calibration and Utilities

Calibration of surrogate losses and consistency. In the score-and-sort approach, the scoring
function is not trained by minimizing RL(argsort◦f) (or its empirical counterpart) because it is
computationally hard in general. Rather, a surrogate loss is used, which is a measurable function
Φ : Y × Rn → R+. Learning algorithms aim at minimizing the surrogate risk, defined for a scoring
function f : X → Rn as RΦ,P (f) = EP

[
Φ(Y, f(X))

]
. We analyze the consistency of surrogate

risk minimization, which informally states that minimizing RΦ,P (f) over f leads to minimizing
RL,P (argsort ◦f). More formally, an excess risk bound between RΦ and RL is a continuous
function δ : R+ → R+ with δ(ε) −−−→

ε→0
0 such that, for every distribution P over X × Y:

∀f : X → Rn, RL,P (argsort◦f)− inf
h:X→Sn

RL,P (h) ≤ δ
(
RΦ,P (f)− inf

g:X→Rn
RΦ,P (g)

)
.

where we implicitly restrict to measurable functions. Excess risks bounds give distribution-
independent guarantees on the convergence of the task risk given the convergence of the surrogate
risk to its infimum. The guarantees are asymptotic in nature, because the infimum over all measurable
functions of the risks are, in general, approachable only as the number of samples tends to infinity.

Following Steinwart [31], we study consistency through inner risks and calibration. LetQ be the set of
probability mass functions over Y . Given q ∈ Q and ψ : Y → R, let Eq

[
ψ(Y )

]
=
∑
y∈Y q(y)ψ(y).

The inner task risk ` : Q×Sn → R and the inner surrogate risk φ : Q× Rn → R+ are:

`(q, σ) = Eq
[
L(Y, σ)

]
φ(q, s) = Eq

[
Φ(Y, s)

]
φ(q) = inf

s∈Rn
φ(q, s).

The terminology “inner risk” is justified by the equalityRL,P (h) = EP
[
`
(
P (.|X), h(X)

)]
, which

holds for every h : X → Sn and where x 7→ P (.|x) is the conditional distribution of Y givenX = x.
Similarly to L, we extend ` to subsets π ⊆ Sn using an average: `(q, π) = 1

|π|
∑
σ∈π `(q, σ)..

Our definition of calibration is adapted from [31, Def 2.7] to the case where Y and Sn are finite:
Definition 1. Given L : Y ×Sn → R, the surrogate loss Φ : Y × Rn → R+ is L-calibrated if

∀q ∈ Q,∃δ > 0,∀s ∈ Rn, φ(q, s)− φ(q) ≤ δ =⇒ argsort(s) ⊆ argmin
σ∈Sn

`(q, σ) .

Since Y is finite, using the notation of Def 1, we have (see [31, Th. 2.8] and Appendix B):
Proposition 2. Φ is L-calibrated if and only if there is an excess risk bound betweenRΦ andRL.

Consistency of regression and utility functions. We first study a problem equivalent to the consis-
tency of square loss regression. In genral, the supervision y does not necessarily contain suitable target
scores for the regression, so we use intermediate utility values. Given a task loss L : Y ×Sn → R,
we say that u : Y → Rn is a a utility function for L if the square loss Φsq

u (y, s) = (s − u(y))2 is
L-calibrated. We say that L is compatible with expected utility (CEU) if a utility function exists for
L. Denoting φsq

u the inner risk of Φsq
u , we have argmins φ

sq
u (q, s) = {Eq

[
u(Y )

]
}, so that

L is CEU ⇐⇒ ∃u : Y → Rn,∀q ∈ Q, argsort
(
Eq
[
u(y)

])
⊆ argmin

σ∈Sn
`(q, σ).

The characterization of CEU task losses for ranking is our main technical result, presented in Section 3.
We extend the analysis to general surrogate losses in Section 4.

2.3 Ranking losses

An arbitrary function Y ×Sn → R is not necessarily a valid task loss for ranking. The definition of a
ranking loss below isolates minimal properties that make a function Y ×Sn → R suitable to specify
a ranking task. We use τij to denote the transposition that swaps items i and j, i.e., for i′ ∈ [n],
τij(i

′) = i′ if i′ 6∈ {i, j}, τij(i) = j and τij(j) = i. Notice that given the definition of argsort in
(1), lower ranks are better, σ(k) is the item at rank k and σ−1(i) is the rank of item i.
Definition 3 (Ranking loss). A task loss L : Y ×Sn → R is a ranking loss if its inner risk satisfies

• Items are equivalent a priori: ∀q ∈ Q,∀i, j ∈ [n],∃q′ ∈ Q s.t. ∀σ ∈ Sn, `(q, σ) = `(q′, τijσ).
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• One distribution over Y strictly prefers item i over other items: ∀i ∈ [n], ∃q(i)
top ∈ Q s.t.:

1. `(q(i)
top, .) strictly decreases with the rank of i:

∀σ, ν ∈ Sn,
Ä
σ−1(i) < ν−1(i)⇒ `(q

(i)
top, σ) < `(q

(i)
top, ν)

ä
,

2. Ranks of items other than i do not matter:

∀σ ∈ Sn,∀j 6= i ∈ [n],∀j′ 6= i ∈ [n], `(q
(i)
top, σ) = `(q

(i)
top, τjj′σ) .

The first point of the definition is always satisfied in practice since indexes of items do not carry
any meaning. In usual ranking tasks, q(i)

top is trivial. For instance, when the supervision is a vector

of relevance judgements, q(i)
top is a Dirac on y that gives a high relevance to i and the same lower

relevance to all other items. The only practical restriction of this definition is the requirement of strict
improvement in the definition of q(i)

top. It is satisfied by some notions of DCG, the AP and the ERR,
but not by task losses for K-subset selection and top-K ranking tasks (in these tasks, ranks of i larger
than K lead to the same loss). In the appendix, we extend all our results to a more general case that
captures selection and top-k ranking tasks (see Appendix A for the general setup). In the main paper,
we focus on ranking only to keep the exposition simple.

For ranking losses, calibration is an “equality of argmins” instead of an inclusion:
Theorem 4 ([7, Th. 2]). Given a ranking loss L, Φ : Y × Rn → R+ is L-calibrated if and only if

∀q ∈ Q,∃δ0 > 0,∀δ ∈ (0, δ0], argmin
σ∈Sn

`(q, σ) =
⋃

s:φ(q,s)−φ(q)<δ

argsort(s)

This equality means that for L-calibrated surrogate losses, properties of sublevel sets of the inner risk
isurrogate translate into similar properties on ` and vice-versa. The next section characterizes the
sublevel sets of ranking losses that are CEU, while Section 4 focuses on calibrated surrogate losses.

3 Utility functions and connectedness

This section studies sublevel sets of inner ranking risks in terms of their connectedness:
Definition 5. A set π ⊆ Sn is connected if there is a connected set S ⊆ Rn s.t. π =

⋃
s∈S

argsort(s).

The relationship with topological notion of connectedness is given in Appendix A.

In our main result below, we denote by levε`(q, .) the strict ε-sublevel set of the excess inner risk at q:
levε`(q, .) = {σ : `(q, σ)−minσ′ `(q, σ

′) < ε}.
Theorem 6. For a ranking loss L, the following statements are equivalent:

(i) L is CEU,

(ii) ∀q, argminσ `(q, σ) is connected.

(iii) ∀ε > 0,∀q, levε`(q, .) is connected,

Moreover, the function ũ : Y → Rn defined as: ∀i ∈ [n], ũi(y) = −
∑
σ∈Sn

1{σ(1)=i}L(y, σ)

is a utility function for L whenever there exists a utility function for L (i.e., whenever L is CEU).

The proof is given in Appendix C. The theorem has four parts: the existence of the utility function,
the connected argmins, and the connected sublevel sets, which in turn give an explicit formula for a
utility function for L when one exists. We discuss these four aspects in more detail below.

3.1 Disconnected argmins and discontinuity of optimal scoring functions

While the connectedness of argmins and of sublevel sets is the fundamental concept underlying our
result, we first give a more intuitive interpretation of the connectedness of argmins (point ii) of Th. 6)
in terms of the continuity of optimal predictors. The full proof is in Appendix D.
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Figure 1: Graphical representation of level sets of the DCG (left) and the ERR (right) for three items.
(normalized in [0,1], lower is better). For the DCG, the distribution over Y is a Dirac on (1, 2, 0).
For the ERR it is a mixture of a Dirac on (1, 1, 0) and on (0, 0, 1) with weights 7

12 and 5
12 . Each axis

is the score of one item, and each region is the corresponding argsort. Two regions share an edge
(i.e., are adjacent)if the permutations differ only by a transposition of adjacent items. A subset of
regions is connected if it is possible to stay in that subset while moving from one region to the other
using a path of adjacent regions. The sublevel sets for the DCG are all connected, but for the ERR,
the sublevel set highlighted in dark green has two connected components.

Corollary 7. A ranking loss L is CEU if and only if: for every distribution P over X × Y such that
x 7→ P (.|x) is continuous, there is a continuous optimal scoring function forRL,P .

The result follows from the preservation of connectedness by continuous functions. If a ranking loss
has a utility function u, an optimal scoring function is x 7→ EP (.|x)[u(Y )], which inherits all the
regularity properties of x 7→ P (.|x) since Y is finite. The value of Cor. 7 is thus to show that only
CEU losses always have continuous optimal scoring functions when x 7→ P (.|x) is continuous.

Sketch of proof. The “only if” direction is straightforward. The full proof of the ”if” direction is
deferred to the appendix. The main line is the following: take a ranking loss L such that there
is a continuous optimal scoring function for every distribution such that P (.|x) is continuous.
Aiming for a contradiction, assume that L is not CEU. Then, by Theorem 6, there is a q such that
argminσ `(q, σ) is disconnected. Taking X = [0, 1] without loss of generality and using a uniform
marginal distribution over X , we construct a conditional distribution P (.|x) that continuously goes
between two distributions q0 and q1, where each one of argminσ `(q0, σ) and argminσ `(q1, σ)
are included in different connected components of q. In that construction, q itself is used as an
intermediate point between q0 and q1 to make sure that x 7→ P (.|x) is continuous. If this distribution
over X × Y had a continuous optimal scoring function, then this continuous function would connect
two distinct connected components of argminσ `(q, σ), which is a contradiction.

This interpretation of Theorem 6 in terms of continuous optimal predictors indicates that CEU and
non-CEU losses lead to learning problems of different intrinsic difficulty. We elaborate more on this
dichotomy between CEU and non-CEU ranking losses in the next subsection and in Section 4.

3.2 Disconnected sublevel sets and bad local minima

We now interpret the connectedness of sublevel sets in terms of local minima of the ranking loss. A
permutation is a local minimum if exchanging two adjacent items only increases the loss:

Definition 8. Given a distribution q ∈ Q and a loss L, a ranking σ ∈ Sn is a local minimum if for
any r ∈ [n− 1], `(q, σ) ≤ `(q, στr,r+1).

The relationship with the connectedness of sublevel sets is more apparent with this characterization
of connectedness in Sn (the proof is in Appendix C):

Proposition 9. A set π ⊆ Sn is connected if and only if for every σ, ν ∈ π there is path between
σ and ν in π using transpositions of adjacent items, i.e. ∃σ0 = σ, σ1, ..., σM = ν where ∀m,∃k :
σm+1 = σmτkk+1 and ∀m,σm ∈ π.
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ERR

Optimal RankingPreferences

AP

or

(cars are interchangeable)

Query: “Jaguar”

Figure 2: (left) Proportions of distributions q ∈ Q (y-axis) vs number of local minima (colors) vs
number of items (x-axis) for the ERR. For n = 8, nearly 70% of distributions have several local
minima. (middle) distribution of sub-optimality of the sub-optimal local minima for the ERR for
n = 4. The sub-optimality of a local minimum is value−min

max−min in %. 0.25% of local minima are more
than 90% sub-optimal. (right) Illustration of optimal rankings for the ERR (diversity-inducing) and
the AP (diversity-averse), for the fictional search engine scenario with the ambiguous query “jaguar”.

That is, in a connected set π, we can go from one ranking to another by iteratively swapping adjacent
items (as in the bubble sort algorithm), while staying in π. A gaphical representation of connected
and disconnected sets is given in Figure 1.

When L is CEU, then by point iii) of Th. 6, all sublevel sets are conected, which means that for any
ranking in a sublevel set, we can find a path using transpositions of adjacent items to an optimal
ranking that never increases the loss. Thus, for CEU losses, all local minima are global minima.

Conversely, when L is not CEU, then for some distributions q, the inner ranking risk ` has dis-
connected sublevel sets, leading to bad local minima. We show in Appendix E that the set
{q ∈ Q : q has at least one non-global local minimum} has non-zero Lebesgue measure for all
such L. In order to give concrete numbers, we consider the Expected Reciprocal Rank (ERR) [9],
which is not CEU as we see later in Section 3.3. By uniformly sampling q ∈ Q, we empirically
estimated proportions of distributions q vs number of local minima for `(q, .), for different numbers
of items n. The results are plotted in Fig. 2 (left). The probability that `(q, .) has several local minima
increases rapidly with n, which is expected since when n is small a larger proportion of permutations
are adjacent to each other. For n = 8, we found that the inner risk has up to 23 local minima, with
several local minima for nearly 70% of distributions. Fig. 2 (middle) displays the sub-optimality of
these local minima, showing that 25% of them are more than 10% sub-optimal. Appendix E contains
more details and presents additional results for the Average Precision that are qualitatively similar.

The absence of local minima in L when L is CEU echoes the absence of local minima of the square
loss Φsq

u that is L-calibrated. The result is far from trivial though, because calibration is only a
property of minimizers of the inner ranking risk. The strength of our result is to understand that
connectedness of argmins actually implies connectedness of all sublevel sets.

3.3 Utilities, diverse rankings and disconnected argmins

We now discuss Theorem 6 in light of prior works. First, it is well-known [12, 6, 28] that gain-
based metrics of the form DCGw,u(y, σ) = −

∑n
k=1 wkuσ(k)(y), which include the Discounted

Cumulative gain or precision/recall at K have u as a utility function. We provide example formulas
for well-known ranking losses in Table 1, more examples can be found in [see e.g., 8, Table 1]. We
show in Appendix F that u is equal to ũ given in Th. 6 up to an affine transformation.

Conversely, it is also known that the ERR and the AP are not CEU, because of their non-neutral
behavior with respect to diverse rankings [6, 7, 26]. To illustrate the effect of diversity on connect-
edness of the argmins, we use the examples of Calauzènes et al. [7, Table 2]. Let us consider a
fictional search engine scenario depicted in Figure 2 (right), in which the ambiguous query “jaguar”
is interpreted differently by two annotators (e.g., as the animal, or as the car brand) leading to noise
in the supervision. Optimal rankings for a diversity-inducing loss (e.g., the ERR) alternate items
relevant for each interpretation, while for a diversity-averse loss (e.g., the AP), they cluster items
relevant to the same interpretation. In both cases, we cannot find a path between optimal rankings by
swapping adjacent items without leaving the argmin, so the argmin is not connected.
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Y Loss Formula ui(y)

y ∈ {0, 1}n
Prec@K −

K∑
k=1

yσ(k)

K yi

AP −1
‖y‖1

∑
i:yi=1

Prec@σ−1(i)(y, σ) ×

AUC
∑

i:yi=1
j:yj=0

1{σ−1(i)>σ−1(j)}
‖y‖1(n−‖y‖1)

yi
‖y‖1(n−‖y‖1)

y ∈ {0, . . . , p}n
DCG@K −

K∑
k=1

2
yσ(k)−1

log(1+k) 2yi − 1

NDCG@K −DCG@K(y,σ)
max
ν∈Sn

DCG@K(y,ν)
2yi−1

max
ν∈Sn

DCG@K(y,ν)

ERR −
n∑
k=1

Rσ(k)
k

k−1∏
r=1

(1−Rσ(r)) , Ri=
2i−1
2p ×

y ∈ DAGn PD
∑

i→j∈y
1{σ−1(i)>σ−1(j)} ×

y ∈ Sn Spearman 6
n(n2−1)

n∑
i=1

(σ−1(i)− y−1(i))2 − 1 n− y−1(i)

Table 1: Example of ranking losses with their utilities, if any. We give examples with different types
of supervision, including DAGn, which is the set of directed acyclic graphs used in the computation
of the pairwise disagreement (PD) studied by Duchi et al. [15].

The works above studied convex approaches for ranking. As we explain next, compared to these
works, the value of Th. 6 is to show that only CEU ranking losses have a convex, calibrated surrogate.

4 Calibrated Surrogate Losses

When a ranking loss L has a utility function u, the square loss Φsq
u : y, s 7→ (s − u(y))2 is L-

calibrated. Many other convex surrogate losses are applicable when a utility function is available:
losses based on a general Bregman divergence D of the form y, s 7→ D(ũ(y), ψ(s)) where ψ is a link
function [28], pointwise losses such as y, s 7→

∑
i ũi(y) log(1 + e−si) + λ

∑
i log(1 + esi ) where

λ > 0 is a hyperparameter, as well as pairwise losses such as y, s 7→
∑
i,j ũi(y) log(1 + esj−si)

[8]. These losses are convex, in the sense that Φ : Y × RnR+ is convex when every y ∈ Y , the
function s 7→ Φ(y, s) is convex. Also, for all of them, the minimizers of the inner risk are equal to
expected utilities up to a strictly monotonic transform. These losses are well understood, and come
with numerous guarantees, such as explicit excess risk bounds for gain-based losses [12, 28, 8]. There
are also fast rates of estimation of the scoring function when x 7→ P (.|x) is smooth [see e.g., 4].

Our main result above, Theorem 6,implies that whenever there exists a convex, calibrated loss, then
these utility-based surrogate losses are calibrated (if given the suitable utility function):

Theorem 10. Given a ranking loss L, there is an L-calibrated convex loss if and only if L is CEU.

Proof of Theorem 10. The reverse implication is straightforward: if L admits a utility u, then y, s 7→
(s− u(y))2 is convex and L-calibrated. For the direct implication, let q ∈ Q. Since φ(q, .) is convex,
its sublevel sets are all convex. Thus, if Φ is L-calibrated, then argminσ `(q, σ) is generated by a
convex (and thus connected) set of scores by Theorem 4. By the definition of connectedness (Def. 5)
argminσ `(q, σ) is connected. This holds for all q, so L admits a utility function by Theorem 6.

This result establishes the fundamental role of utilities and regression in learning to rank with convex
risk minimization: for non-CEU ranking losses, only non-convex surrogate losses are calibrated. For
instance, it implies that sophisticated convex approaches such as structural SVMs for ranking [see
e.g., 21, 39] do not asymptotically solve more tasks than regression.
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4.1 The case of convex surrogate losses

Th. 10 closes the question of the calibration of convex losses for ranking. The question was initiated
by Duchi et al. [15, Section 2.1] in the context of learning from pairwise preferences, and then
extended to general ranking and classification losses [7, 26].

Calauzènes et al. [7] proved that the AP, the ERR and the pairwise disagreement cannot have
calibrated, convex surrogate losses because argminσ `(q, ., σ) is not connected for specific choices
of q. Their result is essentially i) =⇒ ii) of our Theorem 6. By proving the reverse implication, we
show that the general class of convex surrogate losses is not more general than square loss regression.
Notice that i) =⇒ ii) is an immediate consequence of Th. 4 (also [7, Theorem 2]), while proving the
reverse implication is technically much more challenging.

Ramaswamy and Agarwal [26] defined the concept of convex calibration dimension. On the one
hand, their approach is more general and they study the minimum number of degrees of freedom that
are required for a convex approach to be calibrated. However, they use an unstructured inference
procedure, which in general does not correspond to sorting and may be computationally hard. Thus,
they do not study when convex losses are calibrated with a score-and-sort approach.

4.2 When no convex surrogate loss is calibrated

For non-CEU ranking losses, Th. 10 shows that L-calibrated surrogate losses are necessarily non-
convex. Additionally, we explained in Sections 3.1 and 3.2 that non-CEU ranking losses have a
complex landscape with local minima and discontinuous optimal scoring functions. We now describe
analogous undesirable properties for their calibrated (non-convex) surrogate losses.

To illustrate the claims of this section, we perform simulations using a non-convex surrogate loss
defined by smoothing the task loss, similarly to [33, 35, 20]. We follow the idea of the probit loss for
classification [18], which is a Gaussian smoothing of the 0/1 loss. Here, we use a Gumbel kernel
κ instead of a Gaussian kernel, because the resulting smoothed loss has a closed form formulation
using the Plackett-Luce model [38], and is always L-calibrated (a proof is given in Appendix G).

Proposition 11. For any ranking loss L, the following surrogate loss ΦNC
L is L-calibrated.

ΦNC
L : y, s 7→

∫
Rn
L(y, argsort(u− s))κ(u)du =

∑
σ∈Sn

L(y, σ)
n∏
r=1

esσ(r)∑
k≥r e

sσ(k)

Existence of sub-optimal local minima. Th. 12 below is the counterpart of Section 3.2 for surro-
gate losses. In essence, it shows that when L is not CEU, then bounded, Lipschitz surrogate losses that
are L-calibrated have bad local minima. In order to deal with surrogate losses like ΦNC

L where critical
points are at infinity, we use the following generalization of local minimum. Let levεφ(q, .) denote the
strict ε-sublevel set of the excess inner (surrogate) risk: levεφ(q, .) = {s ∈ Rn : φ(q, s)− φ(q) < ε}.
Given ε > 0, a local valley is a connected component of levεφ(q, .). A bad local valley is a local
valley C such that infs∈C φ(q, s) > φ(q) [23, Def. 4.1].

Theorem 12. Let L be a non-CEU ranking loss. Let Φ : Y × Rn → R+ such that s 7→ Φ(y, s)
is bounded and Lipschitz for every y ∈ Y . If Φ is L-calibrated, then the set {q ∈ Q :
φ(q, .) has bad local valleys} has non-zero Lebesgue measure.

To give more precise figures on these local valleys, Fig. 3 (left and middle) shows the distribution
of sub-optimalities of bad local valleys for the surrogate ΦNC

L applied to the ERR and the AP. These
local valleys are found by gradient descent, starting from a relatively large random initialization to
analyze the global loss surface. The distributions q are uniformly sampled over Q, rejecting the
distributions q where `(q, .) does not have any local minima, as for Fig. 2 (middle). Fig. 3 (right)
show the proportions or runs on these distributions that end up stuck in a bad local valley when using
an initialization close to 0 (which empirically was best to avoid bad local valleys). As for the ranking
losses, we see that the surrogate losses also have “bad local minima”, but also that gradient descent
algorithms might be stuck in them. Details of these experiments are given in Appendix H.

(Bad) approximations of optimal scoring functions by Lipschitz functions. In Section 3.1, we
showed that optimal scoring functions for non-CEU ranking losses are discontinuous for some
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Figure 3: Left and middle Distributions of sub-optimalities of local valleys for the surrogate ΦNC
L

applied to the ERR and the AP on random distributions where the ERR/the AP have bad local minima.
(right) percentage of optimization runs based on gradient descent that end up stuck in local minima.

distributions where x 7→ P (.|x) is continuous. Prop. 13 below is a stronger analogous statement for
surrogate losses when x 7→ P (.|x) is Lipschitz. The proof can be found in Appendix H.
Proposition 13. Let L be a non-CEU ranking loss. Let Φ : Y × Rn → [0, BΦ] be an L-calibrated
loss such that Φ(y, .) is βΦ-Lipschitz for all y ∈ Y .

Then, there exists constants c, c′ > 0 and a probability measure P over [0, 1]× Y where x 7→ P (.|x)
is Lipschitz, such that for all β ≥ 0:

inf
f :[0,1]→Rn
f :β−Lipschitz

RΦ,P (f)− inf
g:X→Rn

RΦ,P (g) ≥ min
(
c′,

c

8BΦ + βΦβ

)
.

Notice that for CEU ranking losses with utility function u, denoting βP the Lipschitz coefficient of
x 7→ P (.|x), the optimal scoring function is ‖u‖∞βP -Lipschitz. In contrast, for non-CEU losses, the
lower bound above shows that for some distributions, the Lipschitz constant of the scoring function β
needs to grow to infinity to minimize a Lipschitz, calibrated surrogate loss.

5 Dicussion and conclusion

For supervised ranking with the score-and-sort approach, learning the scoring function through
regression is consistent for all ranking tasks for which a convex risk minimization approach is
consistent. When regression is not consistent, surrogate risks have bad local minima and their
minimizers cannot be approximated by regular functions even when P (.|x) is regular. These results
demonstrate the fundamental role of regression among convex methods for ranking. They also cast
light on the undesirable properties of the score-and-sort approach for non-CEU ranking losses.

For tasks with non-CEU ranking losses, one possible avenue is to develop efficient direct loss
minimization approaches, such as approximations of ΦNC

L above or as proposed by Song et al. [30].
Another direction is to find alternatives to score-and-sort. Ramaswamy and Agarwal [26] developped
a more general approach which allows for consistent convex approaches, but in higher dimension than
the number of items. Excess risk bounds follow from the work on stuctured prediction [11, 25]. The
drawback of these approaches is that inference might be NP-hard [15, 26]. In multilabel classification,
in some rare cases, efficient inference procedures have been found [36], but not yet in ranking. A third
direction is to relax the requirement of asymptotic optimality. By choosing a sensible but efficient
inference procedure and making additional assumptions on the data distribution. Chapelle et al. [10]
followed this approach for divesifying search results. For now, the theoretical properties of for such
approaches have not been investigated. A possible starting point would be to build on the recent work
on excess risk bounds for non-calibrated losses [32].
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Broader Impact

The framework of ranking we studied plays a fundamental role in information retrieval and informa-
tion filtering systems. While these systems play an undeniable positive role in society because they
increase the efficiency of information access, they also shape the landscape of what their users get to
know. This lead to questions regarding equal representation in search engines result [34], how they
represent social groups [17], and whether they exacerbate filter bubbles or act as echo chambers [3].
As the most recent trends in learning to rank involve randomized experiments and online learning
[16, 1] to improve quality, such user experiments also need be carried out with care [5].

Creating a strong theory of learning to rank is important to address the challenges of information
access systems. For instance, methods to produce diverse rankings might be part of the solution, and
for now the theory of machine learning for diverse rankings is scarse. This paper partly fills this gap.
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A General Setting

Disclaimer: As mentioned in the body of the paper, we address, in this Appendix, a setting more
general than ranking. We pay attention to often reinterpret the results with the ranking setting
described in the paper to ease the reader’s task.

In supervised learning, a learner has access to input features x ∈ X ⊆ Rd and wants to predict
output variables z ∈ Z (finite). To do so, she can learn a prediction function h : X → Z , belonging
to the space of measurable functions from X to Z denoted H, using some feedback y ∈ Y (finite)
and minimizing a task loss L : Y × Z → R in expectation over some joint distribution P on the
observable variables:

inf
h∈H
RL,P (h) where RL,P (h) = EP [L(Y, h(X))]

Note that the infimum exists because L is bounded (because Z and Y being finite). We denote by
‖L‖∞ = maxy,z |L(y, z)|.

Prediction space: Z vs Sn. Intuitively, when predictions are ranking σ ∈ Sn, they cannot encode
indifference between items (the ordering is strict). However, all the results still holds when items
can be indifferent (the ordering is a weak order). Further, moving from total orders to weak orders
allows to extends the range of applications. For instance, multiclass classification can be seen as
predicting a weak order amongst those that strictly prefers one item (label) to all the other items, that
are indifferent one from each other. Top-k ranking and subset selection can be handled similarly. The
prediction space Z allows to handle the additional formalism (detailed below) required to handle this
generalization.

Two notes on notation. For n ∈ N, we denote [n] the set of integers going from 1 to n. The
indicator function is denoted 1[.]. For s ∈ Rn and ε > 0, B2(s, ε) = {s′ ∈ Rn, ‖s′ − s‖2 < ε}.
Similarly, B∞(s, ε) denotes the open ball of infinity norm. For q ∈ Q,the ‖.‖1 ball in Q is denoted
by B1(q, ε) = {q′ ∈ Q : ‖q − q′‖1 < ε}. Random variable are uppercase version of their realisation
counterparts. Given a function g : U → R bounded below and some ε ≥ 0, we define the strict
ε-optimal (relative) sub-level set of g,

levεg = {u ∈ U : g(u)− inf
u′∈U

g(u′) < ε} .

Further, we denote argmin g = argminu∈U g(u).

A.1 Score-and-sort for weak orders (Z)

Scores and argsort We consider the case of ranking or selection tasks solved by sorting according
to predicted scores. The basic operation we consider, called argsort, is the set-value function that
associates to a vector of scores given to items the set of total orders compatible with the scores:

argsort : Rn � Sn (1)
s 7→ {σ ∈ Sn : ∀k ∈ [n− 1], sσ(k) ≥ sσ(k+1)} .

Note that we consider argsort as a set-valued function (and not as a function with values in 2Sn ), so
that follows the usual convention, for any subset S ∈ Rn, the notation argsort(S) is defined as:

∀S ⊆ Rn, argsort(S) =
⋃
s∈S

argsort(s) .

Transpositions We make heavy use of transpositions: given i, j in [n], the transposition of i and
j is the permutation τij such that τij(i′) = i′ if i′ 6∈ {i, j}, τij(j) = i and τij(i) = j. Given σ, we
denote by τijσ the composition of τij and σ.

Given z ⊆ Sn, we denote by τijz = {τijσ : σ ∈ z}.
Notice the following difference between a subset z ⊆ Sn and a permutation σ ∈ Sn when it
comes to transpositions: the sequential application of transpositions to a permutation commute
and it is an associative operation (because they are all members of the symmetric group). That
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is, if σ ∈ Sn we have τijτi′j′σ = (τijτi′j′)σ = τi′j′τijσ. This is not the case in general when
applying sequences of transpositions in Z . For instance let z = {(123), (213)}. Then τ12z = z, so
τ13τ12z = τ13z = {(321), (231)}, while τ12τ13z = τ12{(321), (231)} = {(312), (132)}. Thus, the
composition of a permutation and an element of Z is not defined in general, it is only defined for
transpositions, and these should only be read as usual function compositions.

The decision space The final prediction space corresponds to a selection or partial ranking task,
generally speaking, a weak order. The decision space Z should satisfy the following properties:

(A1). The decision space Z ⊆ 2Sn satisfies

(Total preorders) ∀z ∈ Z,∃s ∈ Rn : z = argsort(s) ⊆ Sn.

(Partition of Sn)
⋃
z∈Z z = Sn and ∀z, w ∈ Z, (z 6= w)⇒ (z ∩ w = ∅).

(Closed under transpositions) ∀i, j, ∀z ∈ Z, τijz ∈ Z .

Since Z partitions Sn, elements of Z can be seen as equivalence classes on rankings in Sn, and
we can define the function Λ as the quotient map which assigns a permutation to its representative
member of Z:

Λ : Sn → Z
σ 7→ z s.t. σ ∈ z ,

The prediction function is then the composition Λ ◦ argsort:

∀sRn, pred(s) = Λ ◦ argsort(s) = {Λ(σ) : σ ∈ argsort(s)} .

A straightforward consequence of Assumption (A1) that we make use of when discussing connected-
ness later is that Λ is equivariant by transposition1:

∀σ, ∀i, j, Λ(τijσ) = τijΛ(σ) .

Notation for orders and preorder Given σ ∈ Sn, and i, j ∈ [n], we use the notation

i �σ j ⇔ σ−1(i) < σ−1(j) "σ prefers i to j".

This is coherent with an ordering in decreasing order of scores in (1), where σ−1(i) is the rank of
item i and lower ranks are associated with higher scores (i.e., rank 1 is best), the usual convention in
learning to rank.

We use the following notation for the preorder induced by z on [n]: ∀z ∈ Z,∀i, j ∈ [n]:

• i �z j ⇔ ∃σ ∈ z, i �σ j,
• i �z j ⇔ ∀σ ∈ z, i �σ j,
• �z induces indifference classes: i ∼z j ⇔ ∃σ, σ′ ∈ z, i �σ j and j �σ′ i.

Given the properties of Z (Assumption (A1)), the following properties are straightforward to prove:
∀z ∈ Z,∀s ∈ Rn s.t. z = argsort(s),∀i, j ∈ [n]:

a)i �z j ⇔ si ≥ sj b)i �z j ⇔ si > sj c)i ∼z j ⇔ si = sj (2)
d)i ∼z j ⇔ τijz = z

a), b), c) above simply mean that our definition of �z is coherent with the preorder induced by the
scores. d) is a direct consequence of c). Another noticeable implication of (A1) is that the number of
indifference classes is the same for all z. This can be seen by combining d) above together with the
fact that z is both a partition and stable by transposition.

1proof: τijΛ(σ) ∈ Z because Z is closed by transpositions. By the definition of τijz for z ∈ Z , τijΛ(σ)
must contain τijσ. Since Z is a partition of Sn, there is a unique element of Z that contains τijσ, which is, by
definition of Λ, Λ(τijσ).
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A.2 Assumption on task losses

Let Q be the set of probability mass functions over Y . For any q ∈ Q, we define the inner risk for
the task loss L as

∀z ∈ Z, `(q, z) =
∑
y∈Y

q(y)L(y, z) and `(q) = min
z∈Z

`(q, z)

We now detail our assumptions that subsumes the ranking task loss definition (Def. 3).

(A2) (Items are equivalent a priori). ∀q ∈ Q,∀i, j ∈ [n],∃q′ ∈ Q s.t. ∀z ∈ Z, `(q, z) = `(q′, τijz).

For the next assumption, for any z and any item i, let us denote the rank of i in the preorder z as:

z−1(i) = |{j ∈ [n] : j �z i}|+ 1.

The +1 makes sure this definition of rank matches the definition for permutations (first rank is 1
rather than 0).

(A3) (One distribution over Y strictly prefers item i over other items). ∀i ∈ [n],∃q(i)
top ∈ Q such that

1. ∀z, w ∈ Z,
Ä
z−1(i) < w−1(i)⇒ `(q

(i)
top, z) < `(q

(i)
top, w)

ä
2. ∀z ∈ Z,∀k 6= i,∀l 6= i, `(q

(i)
top, z) = `(q

(i)
top, τklz)

The following lemma is a straightforward consequence of the three assumptions above:

Lemma 14. Under assumptions (A1), (A2) and (A3), we have:

i) ∀i ∈ [n],∃q(i)
bottom ∈ Q such that

(a) ∀z, w ∈ Z,
Ä
z−1(i) < w−1(i)⇒ `(q

(i)
bottom, z) > `(q

(i)
bottom, w)

ä
(b) ∀z ∈ Z,∀k 6= i,∀l 6= i, `(q

(i)
bottom, z) = `(q

(i)
bottom, τklz)

ii) ∀z ∈ Z,∃q(z) ∈ Q such that argmin `(q(z), .) = {z}.

Proof. Notice that without loss of generality, using (A2), we can assume ∀z, `(q(i)
top, z) =

`(q
(j)
top, τijz)

Then, define

q
(i)
bottom =

1

n− 1

∑
j 6=i

q
(j)
top.

q
(i)
bottom ∈ Q by convexity of the simplex. It is then easy to check that q(i)

bottom satisfies the two
desired conditions.

For q(z), define αi = n− z−1(i) and α̃i = αi/
∑
j αj . Then, define

q(z) =
∑
i

α̃iq
(i)
top .

q(z) ∈ Q by convexity of the simplex and it is easy to check that argmin `(q(z), .) = {z}.

An immediate consequence of point ii) of Lemma 14 above, is the following straightforward result,
which we use throughout the proof of the main results to reduce all cases to cases where argmins of
the task loss are unique:

Lemma 15 (Tie-breaking). Under (A1), (A2) and (A3), ∀q ∈ Q,∀z ∈ argmin `(q, .), ∃q′ ∈ Q s.t.

1. argmin `(q′, .) = {z},

2. ∀z1, z2 ∈ Z, `(q, z1) > `(q, z2)⇒ `(q′, z1) > `(q′, z2)
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Proof. Let q ∈ Q and z ∈ argmin `(q, .). By point ii) of Lemma 14, we know ∃q(z) ∈
Q, argmin `(q(z), .) = {z}. We denote qα = (1− α)q + αq(z).

1. As z is the only element of Z optimal for both q and q(z), we have that ∀α ∈
(0, 1], argmin `(pα, .) = {z}.

2. Denoting ε = minz1,z2:`(q,z1)6=`(q,z2)|`(q, z1)− `(q, z2)|, Let 0 < α < ε
ε+maxz′ (`(q

(z),z′)−`(q(z))
.

Then, for any z1, z2 such that `(q, z1) > `(q, z2):

`(qα, z1)− `(qα, z2) = (1− α)(`(q, z1)− `(q, z2)) + α(`(q(z), z1)− `(q(z), z2))

≥ (1− α)ε− αmax
z′∈Z

(`(q(z), z′)− `(q(z))) > 0 for our choice of α.

Thus, for our choice of α, qα satisfies both conditions.

A.3 Notation

For conciseness, in the following, we may skip the sets that universal quantifiers range over when
default values apply and are unambiguous:

• i, j always denote items in [n], if the range is not specified, ∀i, ∀j or ∀i, j respectively mean
∀i ∈ [n], ∀j ∈ [n] and ∀i, j ∈ [n]

• k,m denote ranks, also in [n]. We use the same shorthands as above
• Sn denotes the set of permutations of [n]. σ, µ, σ′ denote permutations. ∀σ means ∀σ ∈ Sn,

same for µ and σ′.
• z, w, z′ denote possible predictions, as above, ∀z (without specific range for z) means
∀z ∈ Z

• q, q′ are members of Q, i.e., ∀q is a shorthand for ∀q ∈ Q.
• s, s′ are vectors of scores that belong to Rn, ∀s means ∀s ∈ Rn.

A.4 Connectedness in Sn and Z

Definition 16 (Connectedness in Sn). A subset π ⊆ Sn is connected in Sn if there is a connected
subset S ⊆ Rn such that π = argsort(S).
Definition 17 (Connectedness in Z). A subset ζ ⊆ Z is connected in Z if there is a connected subset
S ⊆ Rn such that ζ = pred(S).
Remark 18 (Link with topological connectedness). These notions of connectedness are not stricto
sensu corresponding to topological connectedness on Sn and Z . To derive the topological connect-
edness that corresponds to these definitions, it is necessary to see argsort as a function valued in
2Sn rather than a set-valued function. When doing so, the image of Rn by argsort is exactly the set
of weak orders, on which it is possible to put the specialization topology, where the specialization
corresponds to the inclusion relation. It is also sometimes referred to as the Alexandroff topology[2].
This topology makes argsort continuous (as a function valued in 2Sn ) and open, which explains the
use of argsort and pred to have a suitable (but not topological) definition of connectedness on Sn

and Z .
Definition 19 (u.h.c.). Let U and V be two topological spaces. A set-valued function g : U � V is
upper hemicontinuous (u.h.c.) if for any non-empty open set O ⊆ V , the upper inverse of O by g,
uinv[g](O) = {u ∈ U : g(u) ⊆ O} is open.
Proposition 20. Given a discrete space V (the topology is its whole power set), some m ∈ N, a
set-valued function g : Rm � V is u.h.c. if and only if

∀s ∈ Rm,∃ε > 0, g(B∞(s, ε)) = g(s)

Proof. Direct implication. Let s ∈ Rn. Because V is discrete, g(s) is open. Because g is u.h.c. and
g(s) is open, uinv[g](g(s)) is open in Rn. As it contains s itself, ∃ε > 0,B∞(s, ε) ⊆ uinv[g](g(s)).
Hence ∃ε > 0, g(B∞(s, ε)) ⊆ g(s). The equality comes from s being itself in the ball.

Reverse implication. Let O ⊆ V non-empty. For any s ∈ uinv[g](O),∃εs > 0, g(B∞(s, εs)) = g(s).
Thus B∞(s, εs) ⊆ uinv[g](O). Finally, uinv[g](O) =

⋃
s∈uinv[g](O) B∞(s, εs) which is open.
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Some basic properties of connectedness are given below. These are useful in general to understand
basic properties of argsort and pred. Point vii) allows to focus on connected subsets S that are open,
which is convenient since open subsets or Rn are connected if and only if they are path-connected,
and path-connectedness is easier to manipulate in our case.
Lemma 21.

i) ∀σ, {s : argsort(s) = {σ}} is open and connected.

ii) ∀s, {s′ : argsort(s′) = argsort(s)} is connected.

iii) ∀s, {s′ : argsort(s′) ⊆ argsort(s)} is connected.

iv) ∀s, {s′ : pred(s) = pred(s′)} is connected.

v) argsort is u.h.c. with respect to the discrete topology on Sn, i.e.

∀s,∃ε > 0, argsort(B∞(s, ε)) = argsort(s). (3)

vi) ∀s,∀ε > 0,∀σ ∈ argsort(s), ∃s′ : ‖s− s′‖∞ < ε and argsort(s′) = {σ}.

vii) π ⊆ Sn is connected in Sn if and only if there is an open connected subset S ⊆ Rn such
that π = argsort(S). Similarly, ζ ⊆ Z is connected if and only if there is an open subset S
such that ζ = pred(S).

Proof.

i) The set {s : argsort(s) = {σ}} is open and convex (and thus connected) as the intersection
of n− 1 open half spaces {sσ(k) > sσ(k+1)} for k = 1 . . . n− 1.

ii) As for point i) above, {s′ : argsort(s′) = argsort(s)} is an intersection of open half-
spaces and hyperplanes: use the half-space {s′ : (si − sj)(s′i − s′j) > 0} for i, j such that
si 6= sj and the hyperplane {s′ : s′i = s′j} for i, j such that si = sj . The intersection is
convex and thus connected.

iii) It is a consequence of points v) and vi), which are proved below, and point ii) above.
Fix s, denote by S = {s′ : argsort(s′) ⊆ argsort(s)} and take an arbitrary s′ ∈ S.
Denote by B∞(s, ε) = {s′ : ‖s− s′‖∞ < ε}. Fix ε > 0 to satisfy (3) for both s and
s′, i.e., argsort(B∞(s, ε)) = argsort(s) and argsort(B∞(s′, ε)) = argsort(s′). let σ ∈
argsort(B∞(s′, ε)) = argsort(s′). Then

B∞(s, ε) ∪ B∞(s′, ε) ∪ {s′′ : argsort(s′′) = {σ}}
is connected and included in S. S is thus a union of connected subsets (of the form above)
with non-empty intersection {s}, and is thus connected.

iv) Fix s and let s0 such that argsort(s0) = pred(s) (s0 exists by definition of pred). The
set {s′ : pred(s) = pred(s′)} is then equal to {s′ : argsort(s) ⊆ argsort(s0)}, which is
connected by point iii) above.

v) To show inclusion, take ε < min{si − sj : i, j such that si > sj}. The ranking induced by
any s′ ∈ B∞(s, ε) is necessarily compatible with a ranking induced by s. Equality holds
since s is in the open ball.

vi) Take ε as above, take s′i = si − εσ−1(i)
n (using −σ−1(i) because lower ranks are better). by

the choice of ε, the relative ordering of s′i and s′j is the same as si and sj when si 6= sj , and
the ordering is exactly the one induced by σ on equivalence classes of ties in s.

vii) Let π = argsort(S) for some connected S ⊆ Rn. For s ∈ S, let εs > 0 such
that argsort(B∞(s, εs)) = argsort(s). Then π = argsort(

⋃
s∈S B∞(s, εs)), and⋃

s∈S B∞(s, εs) is open (as a union of open balls) and connected (as a union of con-
nected sets with a connected set that intersects all of them). The argument is the same for
connectedness in Z .
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The following lemma makes sure the definitions of connectedness in Z and Sn are coherent.
Lemma 22. ζ ⊆ Z is connected in Z if and only if

⋃
z∈ζ z is connected in Sn.

Proof. First point: The if direction holds because ζ = Λ(
⋃
z∈ζ z), thus if

⋃
z∈ζ z = argsort(S) for

some connected S, then ζ = Λ ◦ argsort(S) = pred(S). For the only if direction, let us assume
ζ ⊆ Z is connected, i.e. there is a connected S ⊆ Rn such that ζ = pred(S). Then⋃

z∈ζ

z =
⋃
s∈S

pred(s) =
⋃
s∈S

argsort({s′ : argsort(s′) ⊆ pred(s)})

= argsort(
⋃
s∈S
{s′ : argsort(s′) ⊆ pred(s)}︸ ︷︷ ︸

S̃

)

Thee set S̃ is the union of connected sets (by Lemma 21 point iii)), and there is a connected set (S)
that intersects all members of the union. Thus, it is connected.

Remark 23. An analog statement from Sn to Z is false in general: there exists n and pred satisfying
all assumptions such that there is π ⊆ Sn not connected but Λ(π) is connected.

To see this, we anticipate a bit on the idea of paths of adjacent items (Lemma 36 below). Consider
a top-2 selection task with n=3. Let π = {2 � 1 � 3, 3 � 1 � 2}. π is not connected because
there is no path between the two permutations. However, Λ(π) = {1 ∼ 2 � 3, 1 ∼ 3 � 2}, which is
connected because there is a path (transposition of 2 and 3).

B Calibration and Consistency

Disclaimer: As mentioned in the body of the paper, we address, in these Appendices, a setting more
general than ranking. This setting is described in Section A. We restate first the statement of the paper
(on ranking), then state the more general statement (on weak orders) and prove the latter.

Subsection B.1 describes the definition and basic notions of calibration and uniform calibration,
Subsection B.2 provides the proof that calibration is not just an inclusion of argmins, but rather an

equality, stated in Theorem 4 (also [7, Th. 2]),
Subsection B.3 contains the proof that uniform calibration is equivalent calibration under our as-

sumptions as mentioned in Proposition 2.

B.1 Calibration and Consistency

Following the body of the paper, a surrogate loss Φ : Y × Rn → R+ is a measurable function that
aims to be minimized. Similarly to the task loss, we can define the outer and inner risks, given a
function f : X → Rn belonging to the space of measurable function from X to Rn, denoted F , a
distribution P over X × Y , s ∈ Rn and a distribution q ∈ Q,

RΦ,P (f) = EP [Φ(Y, f(X))] , φ(q, s) = Eq[Φ(Y, s)] , φ(q) = inf
s′∈Rn

φ(q, s′) .

We can state the definition of calibration in Z ,
Definition 24 (calibration). Φ is L-calibrated if and only if

∀q ∈ Q,∃δ > 0, pred(levδφ(q, .)) ⊆ argmin `(q, .)

And the one of uniform calibration,
Definition 25 (uniform calibration). Φ is L-uniformly calibrated if and only if

∀ε > 0,∃δ > 0,∀q ∈ Q, pred(levδφ(q, .)) ⊆ levε`(q, .)
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Indeed, uniform calibration leads to the existence of an excess risk bound allowing to control the task
risk by the surrogate risk.
Definition 26 (excess risk bound). A continuous function δ : R+ → R+ is an excess risk bound if

∀P,∀f ∈ F , RL,P (pred ◦ f)− inf
h∈H
RL,P (h) ≤ δ

Å
RΦ,P (f)− inf

g∈F
RΦ,P (g)

ã
and

δ(ε) −−−→
ε→0

0

Proposition 27. Φ is uniformly L-calibrated if and only if there exists an excess risk bound.

Proof. This result is directly derived from Steinwart [31] Th. 2.13 (direct implication) and Th. 2.17
(reverse implication).

B.2 Proof of characterization of Calibration in Theorem 4 (equality of optimal predictions)

In this section, for the sake of completness, we provide a full proof for the generalization of Theorem
4 under our assumptions. First, lets remind the exact statement of the paper in the ranking setting.
Theorem 4 ([7, Th. 2]). Given a ranking loss L, Φ : Y × Rn → R+ is L-calibrated if and only if

∀q ∈ Q,∃δ0 > 0,∀δ ∈ (0, δ0], argmin
σ∈Sn

`(q, σ) =
⋃

s:φ(q,s)−φ(q)<δ

argsort(s)

Then, the version of the same theorem in Z ,
Theorem 28. Assuming (A1), (A2) and (A3), Φ is L-calibrated if and only if

∀q ∈ Q,∃δ0>0,∀0<δ<δ0,pred(levδφ(q, .)) = argmin `(q, .)

Before providing to the proof of Theorem 28, we state a general result of upper hemicontinuity that
underlies many of the proofs in these appendices. It is a simplified version of the Berge Maximum
Theorem [24]. One application is that argmin `(q, .) is u.h.c. as a function of q.
Lemma 29. Given a function g : Q × Z → R, continuous in its first argument, the set-valued
function {

Q � Z
q 7→ argmin

z∈Z
g(q, z) is u.h.c.

Proof. We use the characterization of u.h.c. from Prop.20 as Q ⊆ R|Y|. Let q ∈ Q be a distribution.
We denote Aq = argminz∈Z g(q, z) and

εq = min
z∈Aq,w∈Z\Aq

|g(q, z)− g(q, w)|

For some δ > 0, and for any q̃ ∈ B∞(q, δ), we use the following decomposition,

g(q̃, w)− g(q̃, z) = g(q̃, w)− g(q, w)︸ ︷︷ ︸
∃δ1>0, _ <

εq
4

(continuity)

+ g(q, w)− g(q, z)︸ ︷︷ ︸
>εq

+ g(q, z)− g(q̃, z)︸ ︷︷ ︸
∃δ2>0, _ <

εq
4

(continuity)

Thanks to the continuity of g in its first argument, we have that

∃δq > 0,∀q̃ ∈ B∞(q, δ), g(q̃, w)− g(q̃, z) >
εq
2
.

Thus,
∃δq > 0,

⋃
q̃∈B∞(q,δ)

argmin
z∈Z

g(q̃, z) ⊆ argmin
z∈Z

g(q, z)

The equality comes from the fact q itself is in the ball.

We can now proceed to the proof of Theorem 28.

19



Proof of Theorem 28.

(Φ,pred) is L-calibrated
⇔ ∀q ∈ Q,∃δ0 > 0,∀0 < δ < δ0,pred(levδφ(q, .)) ⊆ argmin `(q, .) (Definition 25)

We now focus on showing

∀q ∈ Q,∃δ0 > 0,∀0 < δ < δ0,pred(levδφ(q, .)) ⊆ argmin `(q, .)

⇔
∀q ∈ Q,∃δ0 > 0,∀0 < δ < δ0,pred(levδφ(q, .)) = argmin `(q, .)

Or otherwise stated, that

∀q ∈ Q,
⋂
δ>0

pred(levδφ(q, .)) ⊆ argmin `(q, .) ⇔ ∀q ∈ Q,
⋂
δ>0

pred(levδφ(q, .)) = argmin `(q, .)

(4)

First, for any q ∈ Q, after defining φ̃(q, z) = infs∈pred−1(z) φ(q, s), we have that⋂
δ>0

pred(levδφ(q, .)) = argmin φ̃(q, .) .

Now, thanks to Wijsman [37, Th. 2], we know that φ̃ is continuous with respect to its first argument,
then Lemma 29 gives us that argmin φ̃(q, .) is u.h.c. and thanks to Prop. 20, we have

∃δ > 0,
⋃

q̃∈Bδ(q)

argmin φ̃(q̃, .) = argmin φ̃(q, .) =
⋂
δ>0

pred(levδφ(q, .)) . (5)

Let’s take z ∈ argmin `(q, .). By Lemma 14 ii), ∃qz ∈ Q, argmin `(qz, .) = {z} and we can define
q̃α = (1 − α)q + αqz for some α ∈ (0, 1). Because argmin `(q, .) ∩ argmin `(qz, .) = {z}, then
argmin `(q̃α, .) = {z} (z is the only element optimal for both components of the mixture). Finally,
we prove (4):

∀q ∈ Q,
⋂
δ>0

pred(levδφ(q, .)) ⊆ argmin `(q, .)

⇒ ∀q ∈ Q,∀z ∈ argmin `(q, .),∀α ∈ (0, 1),
⋂
δ>0

pred(levδφ(q̃α, .)) = {z} (previous line applied at q̃α)

⇒ ∀q ∈ Q,∀z ∈ argmin `(q, .),∀α ∈ (0, 1), argmin φ̃(q̃α, .) = {z} (from (5))

⇒ ∀q ∈ Q,∀z ∈ argmin `(q, .),∃α ∈ (0, 1), {z} = argmin φ̃(q̃α, .) ⊆ argmin φ̃(q, .) (from (5))

⇒ ∀q ∈ Q,∀z ∈ argmin `(q, .), {z} ⊆
⋂
δ>0

pred(levδφ(q, .)) (from (5) again)

⇒ ∀q ∈ Q, argmin `(q, .) ⊆
⋂
δ>0

pred(levδφ(q, .))

B.3 Equivalence between calibration and uniform calibration

In this section, we prove the equivalence between calibration and the existence of an excess risk
bound stated in Proposition 2. First, we remind the exact statement of the paper in the ranking setting.

Proposition 2. Φ is L-calibrated if and only if there is an excess risk bound betweenRΦ andRL.

Since we already established in Proposition 27 that uniform calibration is equivalent to the existence
of an excess risk bound, we now show the equivalence between calibration and uniform calibration in
our general setting:

Theorem 30. Assuming (A1), Φ is L-calibrated if and only if Φ is L-uniformly calibrated.
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Proof. If Φ is L-uniformly calibrated, then it is L-calibrated, so we just have to prove the only if
direction.

Using the notation φ̃(q, z) = infs∈pred−1(z) φ(q, s) ∈ R for z ∈ Z , let us notice that all the following
functions are continuous on Q as Y is finite [37, Theorem 2]:

q 7→ φ̃(q, z) q 7→ φ(q) = inf
s∈Rn

φ(q, s) = min
z∈Z

φ̃(q, z)

q 7→ `(q, z) q 7→ `(q) = min
z∈Z

`(q, z) .

Consequently, for every z ∈ Z , both functions

gz : q 7→ `(q, z)− `(q) and hz : q 7→ φ̃(q, z)− φ(q)

are continuous on Q. Also notice that since both Y and Z are finite, both ` and φ̃ are bounded on
their domain. More formally, denoting B` = maxz∈Z maxy∈Y L(y, z)−minz∈Z miny∈Y L(y, z),
we have gz ∈ [0, B`].

Let us now fix ε > 0 and denote

∆̃(z, ε) =
{
q ∈ Q : gz(q) ≥ ε

}
= g−1

z ([ε, B`]) .

Since gz is continuous from a compact set (Q) to R, it is a proper map, which means that preimages
of compact subsets of R are compact. In particular, it implies that ∆̃(z, ε) is compact. Since hz is
also continuous on Q, it implies that is reaches its minimum on ∆̃(z, ε). Let us then denote:

δ(ε) = min
z∈Z

min
q∈∆̃(z,ε)

hz(q) .

Then, since Φ is L-calibrated, gz(q) > ε⇒ hz(q) > 0 for all z, q and thus δ(ε) > 0.

Thus, for all ε > 0, q ∈ Q and s ∈ Rn, we have:

φ(q, s)− φ(q) < δ(ε)

⇒ ∀z ∈ pred(s), φ̃(q, z)− φ(q) < δ(ε) (by def. of φ̃)

⇒ ∀z ∈ pred(s), `(q, z)− `(q) < ε (by Def of δ(ε))
⇒ `(q, s)− `(q) < ε

which means that Φ is L-uniformly calibrated.

C Proof of the main result

Disclaimer: As mentioned in the body of the paper, we address, in these Appendices, a setting more
general than ranking. This setting is described in Section A. We restate first the statement of the paper
(on ranking), then state the more general statement (on weak orders) and prove the latter.

The objective of this section is to prove the following Theorem 6. First we restate the theorem in the
ranking setting.
Theorem 6. For a ranking loss L, the following statements are equivalent:

(i) L is CEU,

(ii) ∀q, argminσ `(q, σ) is connected.

(iii) ∀ε > 0,∀q, levε`(q, .) is connected,

Moreover, the function ũ : Y → Rn defined as: ∀i ∈ [n], ũi(y) = −
∑
σ∈Sn

1{σ(1)=i}L(y, σ)

is a utility function for L whenever there exists a utility function for L (i.e., whenever L is CEU).

Before stating its generalization in Z , we need to note the definition of CEU task loss extends in a
strait-forward way to Z . We state it for the sake of completeness.
Definition 31 (CEU). A task loss L is compatible with expected utility (CEU) if there exists a
function u : Y → Rn such that Φsq

u : y, s 7→ (u(y)− s)2 is L-calibrated.
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Theorem 32. Under assumptions (A1), (A2) and (A3), for a task loss L, the following statements are
equivalent:

(i) L is CEU,

(ii) ∀q, argmin `(q, .) is connected.

(iii) ∀ε > 0,∀q, levε`(q, .) is connected,

Moreover, the function ũ : Y → Rn defined as: ∀i ∈ [n], ũi(y) = −
∑

z∈Z:z−1(i)=1

L(y, z)

is a utility function for L whenever there exists a utility function for L (i.e., whenever L is CEU).

We now proceed with the proof that this whole section is dedicated to. The two main intermediary
results of this proof are Corollary 41 and Theorem 42.

In Appendix C.1, we elaborate on more properties of connectedness in Sn and Z . In particular, we
prove Lemma 36 which is the generalized version of Proposition 9 in the main paper regarding the
characterization of connectedness with paths of adjacent items. This proposition is a key technical
result that is fundamental to the results of Appendices D, E and H.

In Appendix C.2, we give technical lemmas that lead to the main steps in the full proof. The main
result of this section, Lemma 38 allows to define sequences of distributions in cQ for which the
argmin matches a path of adjacent transposition between permutation. This is the key component to
extend properties of argmins to properties of the entire loss.

In Appendix C.3, we put the tools together, and first prove the strict monotonicity of loss with
connected argmins (Corollary 41) , which means that preferences between items as defined by
optimal z are reflected by preferences even for non-optimal z′. This, in turn, allow us to prove the
existence of the utility function and its analytical formula 42. The final proof at the end of that section
makes the link with connected sublevel sets.

C.1 Properties of connected sets in Sn and Z

The main technical property of connectedness is the existence of paths with transpositions of adjacent
items:

Definition 33 (Adjacent items). ∀σ ∈ Sn, items i and j are adjacent2 in σ if |σ−1(i)−σ−1(j)| ≤ 1.

∀z ∈ Z , items i and j are adjacent in z if ∃σ ∈ z such that i and j are adjacent in σ.

Definition 34 (paths of adjacent items).
Path in Sn: Let π ⊆ Sn, and σ, σ′ ∈ π. A path of adjacent transpositions of length M ∈ N from σ
to σ′ in π is a sequence (σ0, ..., σM ) ∈ πM such that:

• σ0 = σ and σM = σ′

• ∀m ∈ [M ], there is (im, i
′
m) ∈ [n]2 such that im and i′m are adjacent in σm−1 and

σm = τimi′mσm−1.

Path in Z: Let ζ ⊆ Z , and z, z′ ∈ ζ . A path of adjacent transpositions of length M ∈ N from z to z′
in ζ is a sequence (z0, ..., zM ) ∈ ζM such that:

• z0 = z and zM = z′

• ∀m ∈ [M ], there is (im, i
′
m) ∈ [n]2 such that im and i′m are adjacent in zm−1 and

zm = τimi′mzm−1.

We say that there is a path from σ and σ′ in π ⊆ Sn if there is M ∈ N such that there is a path of
adjacent transpositions of length M from σ to σ′ in π. A similar terminology is used in Z .

2In that definition, we consider an item to be adjacent to itself. We could prevent that without altering
anything in the proofs.
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Paths of adjacent items between two permutations can be found by bubble sort. We describe a naive
version of the algorithm and then explain the important property that we use later in the proofs.

Algorithm 1: (Naive) Bubble Sort
input :n and σ, σ′ ∈ Sn

output :a sequence of transpositions τ (1), . . . , τ (t) such that σ = τ (t) . . . τ (1)σ′

k = n;
ν = σ′;
t = 1;
for m← 1 to n− 1 do

for k ← 1 to m− i do
if σ−1(ν(k)) > σ−1(ν(k + 1)) then

τ (t) = τν(k)ν(k+1);
ν = τ (t)ν;
t = t+ 1;

end
end

end

Remark 35. Note the monotonicity property of the bubble sort. We use it later in the proofs. Given
two items i 6= j ∈ [n], if i �σ j and i ≺σ′ j, then either τij or τji appears exactly once in the output
sequence τ (1), . . . , τ (t) of bubble sort. Otherwise, neither τij nor τji appears in the output sequence
of bubble sort.

The next lemma is the general version of Proposition 9 in the main paper.

Lemma 36 (connectedness and paths in Sn). π ⊆ Sn is connected in Sn if and only if for every
σ, σ′ ∈ π, there is a path from σ to σ′ in π.

As a corollary, ζ ⊆ Z is connected in Z if and only if for every z, z′ ∈ ζ there is a path between z
and z′ in ζ.

Proof. “if” direction Let σ and σ′ two permutations such that there is a path between them in π.
Denote (σm)Mm=0 the sequence of permutations along that path (σ0 = σ and σM = σ′). We show
that there is a connected set S such that {σ0, ..., σM} = argsort(S).

The first step is to notice that if σm and σm+1 are two permutations that are equal up to an adjacent
transposition, then there is s(m) such that argsort(s(m)) = {σm, σm+1} (use s(m)

i = −(σ−1
m (i) +

σ−1
m+1(i))). We thus have:

{σ0, ..., σM} = argsort(
⋃

m=0..M−1

{s : argsort(s) ⊆ argsort(s(m))}︸ ︷︷ ︸
Sm

)

Each Sm is connected by Lemma 21 point iii), and Sm ∩ Sm+1 = {s : argsort(s) = σm+1} is open
and connected. Thus

⋃
m Sm is connected. Finally, π is the union of all these sets for all possible

pairs σ, σ′ ∈ π. The union itself is connected

"only if" direction We prove the result in two steps. First, we prove that if π = argsort(s) for
some s ∈ Rn, then any two σ, σ′ are connected by a path. We then go to the more general case
π = argsort(S) with S ⊆ Rn.

Case 1: ∃s ∈ Rn, π = argsort(s). Let σ, σ′ ∈ π. By definition of argsort, i �σ j and j �σ′ i is
only possible for i, j such that si = sj . Apply bubblesort(target=σ, input=σ′). Bubble sort gives a
path (σm)Mm=0 between σ and σ′; applying recursively the above remark to i �σ j and j �σm i, the
adjacent transpositions only exchange items i, j that are tied in s. Thus, by the definition of argsort,
∀m ∈ {0, ...,M}, σm ∈ argsort(s) = π.

Step 2: general case: π = argsort(S) for connected S ⊆ Rn Using Lemma 21 (point vii)) we
can assume without loss of generality that S is open and thus path-connected. Let σ, σ′ ∈ π. Let
γ : [0, 1]→ S be a continuous function such that σ ∈ argsort(γ(0)) and σ′ ∈ argsort(γ(1)); such
a γ exists by the assumption π = argsort(S) for path-connected S. By definition of γ, we have
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argsort(γ([0, 1])) ⊆ π. Now consider the undirected graph G = (π,E) with set of nodes π and
edges E, where (ν, ν′) ∈ E if ∃t ∈ [0, 1] such that {ν, ν′} ⊆ argsort(γ(t)). We now prove that
there is a path in G (in the usual sense of paths in a graph) between the nodes corresponding to σ
and σ′. To that end, first notice that by Lemma 21 point v), argsort(γ(t− ε)) ⊆ argsort(γ(t)) for
small enough ε and t ∈ (0, 1], since γ is continuous (a similar statements holds for t+ ε instead of
t− ε). This means that all permutations in consecutive values of t 7→ argsort(γ(t)) are neighbors in
G. Now let us consider

t0 = sup{t ∈ [0, 1] : ∀ν ∈ argsort(γ(t)), ν is connected to σ in G}.

t0 is well defined since all permutations of γ(0) are connected to σ in G. First notice that since
argsort is u.h.c. (Lemma 21 point v)), the sup above is actually a max. We now prove that it implies
that all permutations in argsort(γ(t)) are connected to σ in G. Aiming for a contradiction, assume
t0 < 1. Then, by the remark above, there is ε > 0 such that argsort(γ(t0 + ε)) ⊆ argsort(γ(t0)).
Then, all permutations of argsort(γ(t0 +ε)) are connected inG to all permutations of argsort(γ(t0)),
and are thus connected to σ in G. This contradicts the definition of t0.

Thus, all permutations in γ(1) are connected in G to all permutations in γ(0). To finish the proof,
let us remind that by the Step 1 above, for all t, all permutations within argsort(γ(t)) are connected
by a path (of adjacent transpositions) in Sn. Thus, any two permutations connected in G are also
connected by a path of adjacent transpositions. Thus, σ and σ′ are connected by a path of adjacent
transpositions.

C.2 Main property of Losses with connected argmins

To clarify the results of the section, we state the connectedness of the argmins of the losses as an
assumption:
(A4). ∀q ∈ Q, argmin `(q, .) is connected in Z .

The proof of the final result is the combination of the following observation, which is a general
property of preorders, together with the lemma that follows.

The general observation is the following: Given two preorders z and w that have the same (strict)
preferences between two items i and j, then we can find a path of adjacent transpositions between
them that never transposes i and j. Thus the strict preferences between i and j are kept constant
along the path.
Lemma 37. ∀z, w ∈ Z,∀i, j ∈ [n] s.t. i �z j and i �w j, ∃M ∈ N,∃(im, i′m)Mm=0 ∈ [n]2M s.t.
denoting z0 = z and zm = τim,i′mzm−1, we have

(i) ∀m ∈ [M ], iq, i
′
m are adjacent in zm−1,

(ii) zM = w,

(iii) ∀m ∈ [M ], {km, k′m} 6= {i, j}.

Proof. For two permutations, the existence of such a path is given by bubble sort: since bubble sort
is monotonic (see Remark 35), it never exchanges two items that are in an ordering compatible with
the target weak order. The result in Z follows by compositing with Λ the path between σ ∈ z and
σ′ ∈ z′.

The next lemma is the main technical step in the proof of our final result, and transposes the previous
lemma in sequences of argmins for different distributions, when the argmins are always connected.
In a similar way to the path between preorders above, the lemma considers a distribution for which
the argmin of the loss is a single preorder z, and two fixed items i, j. Then, it shows that for any two
adjacent items {k, l} ∈ z, different from {i, j}, we can find a distribution for which the argmin is
τklz, which at the same time preserves strict preferences (by the inner risk) between z′ and τijz′:
Lemma 38 (Adjacent transpositions of argmin). Under assumptions (A1), (A2) and (A3) and (A4):
∀q, z s.t. argmin `(q, .) = {z}, ∀i, j, k, l ∈ [n] s.t. {i, j} 6= {k, l} and (k, l) are adjacent in z, we
have: ∃q′ ∈ Q s.t.

1. argmin `(q′, .) = {τklz},
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2. ∀z′, `(q, z′) > `(q, τijz
′)⇒ `(q′, z′) > `(q′, τijz

′)

Proof. Note that the result trivially holds with q′ = q when k ∼z l, since in that case τklz = z (by
(2) d)). We thus focus on the case k 6∼z l. Without loss of generality, we assume l �z k.

First case: k 6= i and k 6= j. Consider qα = (1 − α)q + αq
(k)
top and let α0 = inf{α : {z} 6=

argmin `(qα, .)}. Notice that α0 is well defined since all z′ ∈ argmin `(q1, .) must have z′−1
(k) =

1 by definition of q(k)
top, while z−1(k) > z−1(l) by our assumption l �z k. Moreover, since

argmin `(., .) is uhc, the infimum is a minimum, and thus α0 > 0 since argmin `(q0, .) = {z}.
Let q′ = qα0 . Since argmin `(., .) is uhc, we have that ∃ε > 0 such that argmin `(B∞(q′, ε), .) =
argmin `(q′, .). Taking one such ε with the additional requirement ε < α0, we have:

1. z ∈ argmin `(q′, .), because {z} = argmin `(qα0−ε, .) ⊆ argmin `(q′, .). The first equality
comes from the definition of α0 and the inclusion comes from the choice of ε.

2. argmin `(q′, .) 6= {z}, since the infimum in the definiton of α0 is a minimum.

Let z′ ∈ argmin `(q′, .) with z′ 6= z. Since argmin `(q′, .) is connected by (A4), Lemma 36 shows
that there is a path of adjacent transpositions between z and z′ in argmin `(q′, .). In particular, there
exists two items k′, l′ adjacent in z such that τk′,l′z ∈ argmin `(q′, .) and τk′,l′z 6= z. The result
follows from the three additional remarks:

1. We necessarily have k′ = k or l′ = k.

Indeed, aiming for a contradiction, assume k 6∈ {k′, l′}. By the definition of q(k)
top, we have

`(q
(k)
top, τk′l′z) = `(q

(k)
top, z), and thus

`(q′, τk′l′z) = (1− α0)`(q, τk′l′z) + α0`(q
(k)
top, z) (6)

> (1− α0)`(q, z) + α0`(q
(k)
top, z) because τk′l′z 6∈ argmin `(q, .)

= `(q′, z)

which contradicts τk′l′z ∈ argmin `(q′, .).

2. w.l.o.g., let k′ = k. Then `(q′, τkl′z) = `(q′, τklz) and thus τklz ∈ argmin `(q′, .).

Indeed, since τk′l′z ∈ argmin `(q′, .), this means `(q(k)
top, τkl′z) < `(q

(k)
top, z) and thus

z−1(l′) < z−1(k) by the definition of q(k)
top. Since k and l′ are adjacent in z, and the rank of

l′ is strictly smaller than that of l, we have z−1(l′) = z−1(l) and thus l ∼z l′. This implies
`(q′, τkl′z) = `(q′, τklz).

3. ∀z′′, `(q′, z′′)− `(q′, τijz′′) = (1− α0)
(
`(q, z′′)− `(q, τijz′′)

)
.

This follows from the same calculation as (6), using the definition of q(k)
top and k 6∈ {i, j}.

This remark implies that strict inequalities between `(q, z′′) and `(q, τijz′′) are preserved in
q′.

The final result immediately follows, using the tie breaking lemma (Lemma 15) to find some other
distribution for which τk′lz is the unique element of the argmin.

Second case: k ∈ {i, j}. Then, by assumption we have l 6= i and l 6= j. In that case, we follow
similar steps, using q(l)

bottom instead of q(k)
top.

C.3 Strict monotonicity for losses with connected argmin

This section provides the final proof. The proof of the main result (coonected argmins are equivalent
to the existence of a utility function) is based on the argument of strict monotocity of task losses with
connected argmins (Lemma 40 and Corollary 41). In essence, the strict monotonicity extends to the
entire task loss the property of its argmin, when these are connected: whenever item i is preferred
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to item j in the argmin, it is always preferred. The strict monotocity allows to directly prove the
existence of a utility function (Theorem 42). The utility function itself proves the calibration of
the square loss, which in turn implies the connectedness of argmins using the characterization of
calibration based on equality of argmins (Theorem 28). The strict monotonicity also readily implies
connectedness of all sublevel sets, since it shows we can find a path between any permutation and an
optimal permutation that never increases the task loss.

Before going to the proofs of strict monotonicity, we give the following alternative to the tie-breaking
lemma (Lemma 15)3:

Lemma 39. Under assumptions (A1), (A2) and (A3):

Let q ∈ Q and i, j, z′ such that i �z′ j. If `(q, z′) = `(q, τijz
′), then ∃q′ ∈ Q, such that

argmin `(q′, .) ⊆ argmin `(q, .) and `(q′, z′) > `(q′, τijz
′).

Proof. Let ε = minz1,z2:`(q,z1)6=`(q,z2) |`(q, z1)−`(q, z2)|, take α such that 0 < α < ε
ε+maxz0 `(q,z0) ,

and define q′ = (1− α)q + αq(τijz
′) (as defined in Lemma 14). The choice of α makes sure that any

strict preferences between any z1 and z2 by `(q, .) are preserved in `(q′, .). Only ties in `(q, .) can
be changed in strict inequalities in `(q′, .). Thus argmin `(q′, .) ⊆ argmin `(q, .). Moreover, since
`(q(τijz

′), τijz
′) < `(q(τijz

′), , z′) by definition of q(τijz
′), we have `(q, z′) > `(q, τijz

′), which is
the desired result.

We decribe the strict monotonicity property of losses with connected argmins (A4) in the next results.

Lemma 40 (Strict monotonicity, base case). Under assumptions (A1), (A2) and (A3) and (A4), we
have:

∀q, z s.t. argmin `(q, .) = {z}: ∀i, j such that i �z j, ∀z′ such that i �z′ j, `(q, z′) < `(q, τijz
′).

Proof. Let i, j such that i �z j and z′ such that i �z′ j. By Lemma 37, there is a path of adjacent
transpositions between z and z′ that never swaps i and j. Let us denote by z0, ..., zM such a path
(with z0 = z and zM = z′). Since we never swap i and j, denoting km, km′ the adjacent items
of zm−1 that are swapped between zm−1 and zm, we have {i, j} 6= {km, k′m}. We can thus apply
Lemma 38, and find q0 = q, q1, ..., qM such that:

1. ∀m ∈ [M ], argmin `(qm, .) = {zm}

2. ∀m ∈ [M ], ∀z′′ such that `(qm−1, z
′′) > `(qm−1, τijz

′′), we have `(qm, z
′′) >

`(qm, τijz
′′)

An immediate consequence is that

`(q, z′) ≤ `(q, τijz′).

Indeed, aiming for a contradiction, assume that `(q, z′) > `(q, τijz
′). Then by point 2. above,

the sign of the difference would be kept along the path, all the way to qM , i.e. we should have
`(qM , z

′) > `(qM , τijz
′). But z′ ∈ argmin `(qM , .), so this impossible.

Now, by Lemma 39, if we had `(q, z′) = `(q, τijz
′), we could find q′′ with argmin `(q′′, .) = {z}

and `(q′′, z′) > `(q′′, τijz
′), which is impossible as we just stated. Thus, we have `(q, z′) <

`(q, τijz
′).

The lemma above extends to all possible q, not only those for which the argmin is a single element,
in the following way:

Corollary 41 (Strict monotonicity). Under the assumptions of Lemma 40, let q ∈ Q and i, j ∈ [n].
There are three cases:

3Note that even though tie breaking lemmas are purely technical, they are very important because connected-
ness is materialized by ties. There are two ways to break ties: the tie breaking lemma chooses the argmin, but
cannot guarantee that other ties outside the argmin are suitably broken. On the other hand, Lemma 39 breaks a
specific tie, but cannot choose precisely the resulting argmin.
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i) if ∀z ∈ argmin `(q, .), i �z j, then ∀z′ : i �z j, `(q, z′) < `(q, τi,jz
′);

ii) if ∀z ∈ argmin `(q, .), i �z j and ∃z0 ∈ argmin `(q, .), i �z0 j, then:

∀z′ : i �z′ j, `(q, z′) ≤ `(q, τi,jz′).

(Notice in that case `(q, z0) < `(q, τi,jz0).)

iii) if ∃z0, z1 ∈ argmin `(q, .) such that i �z0 j and j �z1 i, then ∀z′ : `(q, z′) = `(q, τi,jz
′).

Proof.

i) Let q such that ∀z ∈ argmin `(q, .), i �z j. Aiming for a contradiction, assume `(q, z′) >
`(q, τi,jz

′). Let z ∈ argmin `(q, .). By the tie-breaking lemma (Lemma 15), we could find
q′ with argmin `(q′, .) = {z} and `(q′, z′) > `(q′, τi,jz

′), but since i �z j this contradicts
the base case (Lemma 40). We thus have `(q, z′) ≤ `(q, τi,jz

′). However, by Lemma 39,
`(q, z′) = `(q, τi,jz

′) would also yield a contradiction. We thus have `(q, z′) < `(q, τi,jz
′),

which is the desired result.

ii) ∀z ∈ argmin `(q, .), i �z j and ∃z0 ∈ argmin `(q, .), i �z0 j. With the same arguments as
above, taking z ∈ argmin `(q, .) such that i �z j (which exists by assumption) when using
the tie-breaking lemma, we obtain ∀z′, `(q, z′) ≤ `(q, τi,jz′).

iii) Let q such that ∃z0, z1 ∈ argmin `(q, .) such that i �z0 j and j �z1 i. If there is z′ such that
i �z j, `(q, z′) > `(q, τi,jz

′) then we can use the tie-breaking lemma with z0 and that would
contradicts the base case Lemma 40. Likewise, a z′ such that i �z j, `(q, z′) < `(q, τi,jz

′)
would contradict the base case after applying the tie breaking lemma with z1. Thus, equality
must hold for all z′.

The following result is a direct consequence of the strict monotonicity, and is the main result of the
paper: there is a utility function wuch that the expected utility gives an optimal scoring function:

Theorem 42. Let ũ : Y → Rn defined as: ũi(y) = −
∑

z∈Z:z−1(i)=1

L(y, z).

For q ∈ Q, denote the expected utility by Ũ(q) =
∑
y∈Y

qyũ(y).

Under assumptions (A1), (A2) and (A3) and (A4), we have:

argmin `(q, .) = pred(Ũ(q))

Obviously, utilities are cardinal, in the sense that any affine transformation of u is also a utility.

Proof. Let q ∈ Q and i, j ∈ [n]. From the definition of u and the linearity (w.r.t. q) of Ũ , we have:

Ũi(q)− Ũj(q) =
∑

z∈Z:z−1(j)=1

`(q, z)−
∑

z∈Z:z−1(j)=1

`(q, z)

=
∑

z∈Z:z−1(i)=1

(
`(q, τijz)− `(q, z)

)
.

because {τijz ∈ Z : z−1(j) = 1} = {z ∈ Z : z−1(i) = 1}. Thus, coming back to the three cases
of Lemma 41, we immediately have:

i) if ∀z ∈ argmin `(q, .), i �z j, then Ũi(q) > Ũj(q);

ii) if ∀z ∈ argmin `(q, .), i �z j and ∃z0 ∈ argmin `(q, .), i �z0 j, then Ũi(q) > Ũj(q);

(The strict inequality comes from `(q, z0) < `(q, τi,jz0).)
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iii) if ∃z0, z1 ∈ argmin `(q, .) such that i �z0 j and j �z1 i, then Ũi(q) = Ũj(q)

The second and main step of the theorem is to show argsort(Ũ(q)) ⊆
⋃
z∈argmin `(q,.) z. The main ar-

guments consist in the following disjunction of cases. Denoting
⋃

argmin `(q, .) =
⋃
z∈argmin `(q,.) z,

we have:

a) if ∀z ∈ argmin `(q, .), i �z j, then ∀σ ∈
⋃

argmin `(q, .), i �σ j;

b) if ∀z ∈ argmin `(q, .), i �z j and ∃z0 ∈ argmin `(q, .), i �z0 j, then ∀σ ∈⋃
argmin `(q, .) we either have i �σ j or τi,jσ ∈

⋃
argmin `(q, .).

c) if ∃z0, z1 ∈ argmin `(q, .) such that i �z0 j and j �z1 i, then ∀σ ∈
⋃

argmin `(q, .), we
have τijσ ∈

⋃
argmin `(q, .) (because `(q,Λ(σ)) = `(q,Λ(τijσ)) by iii) of Corollary 41).

d) if ∀z ∈ argmin `(q, .), i ∼z j, then ∀σ
⋃

argmin `(q, .), we have τijσ ∈
⋃

argmin `(q, .)
(by definition of ∼z).

The critical implication of points a-d) above is that for all σ ∈
⋃

argmin `(q, .), if Ũi(q) > Ũi(q) then
σ either gives a relative ordering of i, j properly, or τijσ ∈

⋃
argmin `(q, .). If Ũi(q) = Ũi(q), which

happens only in cases c) and d) above, then {σ, τijσ} ⊆
⋃

argmin `(q, .). Successive applications
of this remark allows us to construct σ ∈ argsort(Ũ(q)) ∩

⋃
z∈argmin `(q,.): start from an arbitrary

σ ∈
⋃
z∈argmin `(q,.), and take any σ′ ∈ argsort(Ũ(q)). Apply bubble sort starting from σ with

target σ′. By the remark above, every step of bubble sort stays in
⋃

argmin `(q, .), which proves
σ′ ∈

⋃
argmin `(q, .), and thus argsort(Ũ(q)) ⊂

⋃
argmin `(q, .).

We thus proved ∀q ∈ Q,pred(Ũq) ⊂ argmin `(q, .). Equality is proved since this inclusion proves
the square loss y, s 7→ (s − ũ(z))2 is L-calibrated, so equality follows from equality of argmins
(Theorem 28).

Now, we have all the tools to wrap up the proof of Theorem 32.

Proof of Theorem 32.
(i)⇒ (ii). As L is CEU, there exists u such that Φsq

u is L-calibrated. Thanks to Th. 28, we know

∀q ∈ Q,∃δ0>0,∀0<δ<δ0,pred(levδφ
sq
u (q, .)) = argmin `(q, .)

As Φsq
u is convex in s and thus levδφ

sq
u (q, .) is connected, then ∀q ∈ Q, argmin `(q, .) is connected.

(ii)⇒ (i). This is exactly Th. 42.

(ii)⇒ (iii). By Cor. 41, we have the property we referred to as strict monotonicity of the loss L. We
use Lemma 36 to prove the connectedness by using path of adjacent items. Let us take q ∈ Q, ε > 0
and z ∈ levε`(q, .) and σ ∈ z. We know there exists s ∈ Rn such that argmin `(q, .) = pred(s)
(from (ii) ⇒ (i)), thus we can find ν ∈ Sn such that pred(ν) ∈ argmin `(q, .) and for any i, j
such that τij ∈ bubblesort(target=ν, input=σ), we have ∀z′ ∈ argmin `(q, .), i ≺z j. Indeed,
if there were τij ∈ bubblesort(target=ν, input=σ) such that ∃z′argmin `(q, .), i �z j because
argmin `(q, .) = pred(s) then τijν ∈ argsort(s) and we could choose τijν instead of ν.

Denoting (τ (m))Mm=1 the output of bubblesort(target=ν, input=σ), we just prove
τ (1)z ∈ levε`(q, .), and then finish by induction.
Case 1: i ∼z j. In this case τijz = z ∈ levε`(q, .).
Case 2: i �z j By Cor. 41 (i), `(q, τijz) > `(q, z). Hence τijz ∈ levε`(q, .). Then, by induction,
for any m ∈ [M ] we have τ (m) . . . τ (1)z ∈ levε`(q, .).
Finally, any z ∈ levε`(q, .) is connected to an element of argmin `(q, .) which is itself a connected
set. Thus, levε`(q, .) is connected.

(iii)⇒ (ii). Because ∀q ∈ Q,∃ε > 0, levε`(q, .) = argmin `(q, .).
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D Proof of Corollary 7

Disclaimer: As mentioned in the body of the paper, we address, in these Appendices, a setting more
general than ranking. This setting is described in Section A. We restate first the statement of the paper
(on ranking), then state the more general statement (on weak orders) and prove the latter.

This section provides the proof of Corollary 7. First, we remind the exact statement of the paper in
the ranking setting.

Corollary 7. A ranking loss L is CEU if and only if: for every distribution P over X × Y such that
x 7→ P (.|x) is continuous, there is a continuous optimal scoring function forRL,P .

Then, the version of the same statement in Z ,

Corollary 43. Under (A1), (A2) and (A3), the task loss L is CEU if and only if for every dis-
tribution P over X × Y such that x 7→ P (.|x) is continuous, there is a continuous optimal
scoring function for RL,P – i.e. a function f : X → Rn continuous such that ∀x ∈ X ,
pred(f(x)) ⊆ argmin `(P (.|x), .).

The proof of that corollary, as well as all proofs regarding local minima when there are disconnected
argmins rely on the following path between probability distributions q̄. The proof is straightforward.

Lemma 44. Let q0 such that |argmin `(q0, .)| > 1. Let z, z′ ∈ argmin `(q0, .) with z 6= z′. Define
the following path between probability distributions in Q:

∀α ∈ [0, 1], q̄(α) =

®
(1− 2α)q(z) + 2αq0 if α ∈ [0, 1

2 ]

(2− 2α)q0 + (2α− 1)q(z′) if α ∈ [ 1
2 , 1]

.

Then, let
ε0 = min

q′∈{q0,q(z),q(z′)}
min

z′′ 6∈argmin `(q′,.)

(
`(q′, z′′)− `(q′)

)
Then, ε > 0 and we have:

∀α ∈ [0, 1],∀z′′ ∈ levε0`(q̄(α), .), z′′ ∈ argmin `(q0, .).

Proof. We prove the case α ∈ [0, 1
2 ], the other case is similar. Let α ∈ [0, 1

2 ]. We first notice
z ∈ argmin `(q̄(α), .). Thus, by developping q̄(α) we have, for z′′ 6= z:

`(q̄(α), z′′)− `(q̄(α)) = (1− 2α)
(
`(q(z), z′′)− `(q(z), z)

)
+ 2α

(
`(q0, z

′′)− `(q0, z)
)
≥ ε.

Proof of Corollary 43. The direct implication is straightforward: if L is CEU, we can choose f :
x 7→ EP (.|x)[u(Y )] as optimal scoring function by Theorem 32, which is continuous whenever
x 7→ P (.|x) is continuous.

For the reverse implication, let q0 ∈ Q. We have to prove that argmin `(q0, .) is connected. Notice
that if |argmin `(q0, .)| = 1 it is connected, so we focus on the case |argmin `(q0, .)| > 1. Let
z, z′ ∈ argmin `(q0, .) with z 6= z′. Let X = [0, 1], and take the distribution P over X ×Y such that
the marginal distribution over X is uniform and x 7→ P (.|x) is the path q̄ constructed as in Lemma
44. If there is a continuous optimal scoring function f : [0, 1] → Rn, it means that ∀α ∈ [0, 1],
pred(f(α)) ∈ argmin `(q̄(α), .) and thus pred(f([0, 1])) ⊆ argmin `(q0, .) by Lemma 44.

Notice that f is continuous and thus preserves connectedness, so pred(f([0, 1])) is connceted in Z
by definition. By the characterization of connectedness in Z through paths of adjacent transpositions
(Theorem 36), there is a path between z and z′ in argmin `(q0, .). The construction above can be
repeated for every z, z′ ∈ argmin `(q0, .), which implies that argmin `(q0, .) is connected.

E Local Minima of the Task Loss

E.1 Proof of Theorem 46

Definition 8. Given a distribution q ∈ Q and a loss L, a ranking σ ∈ Sn is a local minimum if for
any r ∈ [n− 1], `(q, σ) ≤ `(q, στr,r+1).
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The definition of local minima for ranking losses 8 is extended to Z in a straightforward manner:

Definition 45. Given a loss L and q ∈ Q, a prediction z ∈ Z is a local minimum if, for any pair of
adjacent items (i, j), we have `(q, z) ≤ `(q, τijz).

Theorem 46. Under (A1), (A2) and (A3), if a task loss L is not CEU, then the subset of distribution
for which ` has non-global local minima has non-zero measure.

Proof. We use the following property of the excess inner risk, where we denote ‖L‖∞ =
maxy,z |L(y, z)|. The calculation is similar to the one later in Lemma 48 for surrogate losses.

∀q, q′,∀z,
∣∣`(q′, z)− `(q′)− (`(q, z)− `(q))∣∣ ≤ 2‖q − q′‖1‖L‖∞.

Let us take q0 such that argmin `(q0, .) is not connected, and z ∈ argmin `(q0, .).

Let q̄(α) = (1− α)q0 + αq(z). We define the gap with respect to q0 of q ∈ Q as:

G(q) = min
z′ 6∈argmin `(q0,.)

(
`(q, z′)− `(q)

)
.

We use ε0 = G(q0).

The important aspect of this gap is that if z and z′ are both in argmin `(q0, .) but not connected in
argmin `(q0, .), this disconnectedness remains in sublevel sets of `(q, .) for other distributions q: If,
for some ε > 0, z and z′ are not connected in levε`(q, .) with ε ≤ G(q), then z and z′ are in different
connected components of levε`(q, .). We prove the existence of bad local minima by showing that
there are suboptimal connected components smaller than the gap.

Let α0 ∈ (0, 1]. We then have {z} = argmin `(q̄(α0), .). Moreover, let ε̃ = minz′ 6=z(`(q
(z), z′)−

`(q(z))). Notice that ε̃ > 0 by definition of q(z). We have4:

G(q̄(α0)) ≥ ε0 − 4α0‖L‖∞,
∀z′ ∈ argmin `(q0, .), z

′ 6= z, 4α0‖L‖∞ ≥ `(q̄(α0), z′)− `(q̄(α0)) ≥ α0ε̃.

And thus, given η > 0, for every q′ such that ‖q′ − q̄(α0)‖1 ≤ η, we have

G(q′) ≥ ε0 − (4α0 + 2η)‖L‖∞,

and ∀z′ ∈ argmin `(q0, .), z
′ 6= z:

(4α0 + 2η)‖L‖∞ ≥ `(q
′, z′)− `(q′) ≥ α0ε̃− 2η‖L‖∞.

Let α0 ∈ (0, 1) and η ∈ (0, 1) such that

0 < α0ε̃− 2η‖L‖∞ < (4α0 + 2η)‖L‖∞ < ε0 − (4α0 + 2η)‖L‖∞.

These exist since ε0 > 0. Then, for any q′ such that ‖q̄(α0)− q′‖ < η, for any z′ ∈ argmin `(q0, .)
such that z′ is not in the same connected component as z, with such values of α0 and η, z′ is in a
connected component of levε0−(4α0+2η)‖L‖∞`(q

′, .) that is suboptimal (because α0ε̃− 2η‖L‖∞ > 0

) and disconnected from z (becuase G(q′) ≥ ε0 − (4α0 + 2η)‖L‖∞). Thus, all such q′ have a bad
local minimum. The result follows, since the measure of the ‖.‖1-ball of radius η is non-zero.

F Proof of Utility Computation on Generalized DCG

The expression of the utility u from Theorem 6 may not be efficient to compute a priori. As it happens,
for many evaluation metrics, the expression of u does simplify for numerous common tasks losses.

4The last equality comes from noticing `(q̄(α0)) = `(q̄(α0), z) and decomposing

`(q̄(α0), z′)− `(q̄(α0)) = α0

(
`(q(z), z′)− `(q(z), z)

)
+ (1− α0)

(
`(q0, z

′)− `(q0, z))
)
.

where the term in q0 vanishes because both z and z′ are optimal for q0.
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Proposition 47. We assume here a ranking task loss L of the form L(y, σ) = DCGw,u(y, σ) =
−
∑n
k=1 wkuσ(k)(y)− b(y) where ∀i ∈ [n], ui is increasing and w is decreasing. Then, there exists

B : Y → R+
∗ and A > 0 such that, ∀i ∈ [n],∀y ∈ Y ,

ũi(y) = B(y) +Aui(y)

Proof. By definition, we have,

ui(y) = −
∑
σ∈Sn

1[σ(1)=i]L(y, σ)

=
∑
σ∈Sn

1[σ(1)=i]

(
b(y) +

n∑
r=1

uσ(r)(y)wr

)

= b(y)(n− 1)! +
∑
σ∈Sn

n∑
r=1

1[σ(1)=i]uσ(r)(y)wr

= b(y)(n− 1)! + ui(y)w1(n− 1)! +
∑
σ∈Sn

n∑
r=2

1[σ(1)=i]uσ(r)(y)wr

= b(y)(n− 1)! + ui(y)w1(n− 1)! +
∑
σ∈Sn

n∑
r=2

∑
k 6=i

1[σ(r)=k]1[σ(1)=i]uk(y)wr

= b(y)(n− 1)! + ui(y)w1(n− 1)! +
n∑
k=1

n∑
r=2

uk(y)wr
∑
σ∈Sn

1[σ(r)=k]1[σ(1)=i]

= b(y)(n− 1)! + ui(y)w1(n− 1)! +
n∑
k=1

n∑
r=2

uk(y)wr1[k 6=i](n− 2)!

= b(y)(n− 1)! + ui(y)w1(n− 1)!−
n∑
k=1

n∑
r=2

uk(y)wr1[k=i](n− 2)! +
n∑
k=1

n∑
r=2

uk(y)wr

(
1[k 6=i]+1[k=i]

)
(n− 2)!

= b(y)(n− 1)! +
n∑
r=2

(
ui(y)w1 − ui(y)wr

)
(n− 2)! +

n∑
k=1

n∑
r=2

uk(y)wr(n− 2)!

= b(y)(n− 1)! +
n∑
k=1

n∑
r=2

uk(y)wr(n− 2)!︸ ︷︷ ︸
B(y)

+ui(y)
n∑
r=2

(
w1 − wr

)
(n− 2)!︸ ︷︷ ︸

A

= B(y) +Aui(y)

G Gumbel Smoothing is a Calibrated Surrogate Loss

Disclaimer: While this section presents a way to build, for any L, a non-convex surrogate loss
L-calibrated, it is by no means one to use in practice. Its interest is mostly theoretical as its
computational complexity is generally prohibitive.

Disclaimer: For this section, we keep the specific case of the ranking where Z = Sn.

We examine here a convolution with a well-behaved kernel to smooth L(., argsort(.)). We obtain the
following surrogate loss,

ΦNC
L : y, s 7→

∫
Rn
L(y, argsort(u− s))κ(u)du

The particular kernel κ we choose here is a Gumbel density as it can easily be reformulated in
the ranking space using a Plackett-Luce model. Indeed, for any s ∈ Rn and u ∼ Gumbel(0, 1)n,
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we have that argsort(s + u) follows a Plackett-Luce distribution[38], allowing to express ΦNC
L in

closed-form (with prohibitive computational cost for large values of n):

ΦNC
L (y, s) =

∫
Rn
L(y, argsort(s− u))κ(u)du

=

∫
Rn
L(y, argsort(s− u))k(u)du

=
∑
σ∈Sn

L(y, σ)

∫
Rn
1[argsort(s−u)=σ]k(u)du︸ ︷︷ ︸

P(σ|es) of a Plackett-Luce model

=
∑
σ∈Sn

L(y, σ)
n∏
r=1

esσ(r)∑
k≥r e

sσ(k)

Proposition 11. For any ranking loss L, the following surrogate loss ΦNC
L is L-calibrated.

ΦNC
L : y, s 7→

∫
Rn
L(y, argsort(u− s))κ(u)du =

∑
σ∈Sn

L(y, σ)
n∏
r=1

esσ(r)∑
k≥r e

sσ(k)

Proof. Considering the surrogate Φ = ΦNC
L , let q ∈ P , to show the calibration, we show that

1. φ(q) = `(q).

2. ∀s ∈ Rn such that ∃ν ∈ argsort(s), `(q, ν) > `(q) we have φ(q, s) ≥ n!−1
n! `(q) +

1
n!`(q, ν) > `(q)

Let’s prove 1. first. We can choose σ ∈ argmin `(q, .) and s ∈ Rn such that argsort(s) = {σ}.
Taking α > 0, we have P(σ|eαs) −−−−→

α→∞
1, meaning that φ(q, αs) −−−−→

α→∞
`(q, σ) = `(q).

Let’s prove 2. now and consider s ∈ Rn,∃ν ∈ argsort(s), `(q, ν) > `(q). Because ν ∈ argsort(s)
it is an event of maximal probability in the Plackett-Luce model P(.|es). Hence P(ν|es) > 1

n! .

φ(q, s) =
∑
σ∈Sn

`(q, σ)P(σ|es)

≥ 1

n!
`(q, ν) +

Å
P(ν|es)− 1

n!

ã
`(q, ν) +

∑
σ 6=ν

`(q, σ)P(σ|es)

≥ 1

n!
`(q, ν) +

Å
P(ν|es)− 1

n!

ã
`(q) +

∑
σ 6=ν

`(q)P(σ|es)

≥ 1

n!
`(q, ν) +

n!− 1

n!
`(q)

H Local Minima of Surrogate Loss

H.1 Simulations to Analyze Surrogate Bad Local Valleys

We describe here the simulations ran to analyze the loss surface of the ΦNC
L . We remind its definition:

ΦNC
L : y, s 7→

∫
Rn
L(y, argsort(u− s))κ(u)du =

∑
σ∈Sn

L(y, σ)
n∏
r=1

esσ(r)∑
k≥r e

sσ(k)
.

Let us first make a few remarks on ΦNC
L to explain the intention and the design of the experiments.

First, about the smoothing. It is common, when smoothing a function with a convolution, to have
the strength of the smoothing controlled by the bandwidth of the convolution kernel (e.g., variance
of a Gaussian kernel). This is unnecessary here: the function s 7→ L(y, argsort(s)) is invariant by
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re-scaling of the scores s (contrarily to the convolution kernel). Thus, the loss L is more smoothed
towards vectors s of small norm (up to removing a translation) and almost not smoothed when the
norm of s goes towards infinity.

Second, because the task loss is more smoothed towards scores of low norm, initializing optimization
algorithms close to 0 (all items have the same score) proves to be an empirically good heuristic.

We performed two experiments, similarly to the simulation for the task losses described in Section 3.
Given n items, we ran simulations where each simulation consists in sampling a distribution q then,
for each q, we randomly choose a starting point s0 for the optimization and run a gradient descent on
ΦNC
L with a basic line search to handle the poor conditioning of ΦNC

L . To handle bad valleys where the
infimum is not reached while avoiding numerical issues, we project the optimization to stay inside a
‖.‖2 ball of radius 100. This is sufficient to ensure that the local minimum reached in the ‖.‖2 ball
generates the same ranking σ as the scores at infinity. We then compute the sub-optimality of this
local valley as η = `(q,σ)−min `(q,.)

max `(q,.)−min `(q,.) .

Simulation 3: Distribution of sub-optimality of bad local valleys. Here, q is sampled uniformly
on Q and s0 is sampled from a N (0, Idn), where Idn is the n× x identity matrix. Figure 3 (left and
middle) (reproduced in Figure 4) illustrates the results of the distribution of η given that η > 0. In
these plots, the suboptimality of bad local valleys are considered in the distribution.

Figure 4: Distribution of sub-optimality of bad local valleys. Left: ERR. Right:AP.

Simulation 4: Percentage of optimization runs stuck in bad local valleys. Here, we want to
answer the question: How often can we expect the optimization of the surrogate to be stuck in a bad
local valley when the task loss has several local minima? To answer this, q is sampled uniformly
amongst distributions for which `(q, .) has at least two local minima, and s0 is set to 0 as it proved an
empirically good intialization. Figure 3 (right) (reproduced here as Figure 5) illustrates the percentage
of runs that are stuck in local minima as a function of the number of items n for the ERR and the AP.
For n = 3 5-10% of the runs are stuck in local minima, and is growing with the number of items n
until n = 6. Moreover, the bad local valleys of ΦNC

L found, actually corresponds to rankings that are
bad local minima for the task loss itself. This suggests that these local minima of the surrogate loss
reflect an intrinsic difficulty of the optimization for calibrated surrogate losses rather than an artifact
of ΦNC

L . We thus conjecture that optimization is difficult for other surrogate losses as well.

H.2 Preliminaries for the study of surrogate losses

The two subsequent sections study properties of surrogate losses calibrated with non-CEU losses. We
summarize here basic results that the two sections use.

We first summarize the assumptions we use:

(A5). The four following statements hold:

i) (A1), (A2) and (A3) hold,
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Figure 5: Percentage of optimizations runs on ΦNC
L that end up stuck in a bad local valley over

distribution for which the task loss as several local minima.

ii) ∃q0 such that argmin `(q0, .) is not connected,

iii) Φ : Y × Rn → R is such that ∀y ∈ Y , s 7→ Φ(y, s) is βΦ-Lipschitz and uniformly bounded
by BΦ,

iv) Φ is L-calibrated.

The assumption above implies Lipschitzness of the excess inner risk φ(q, s)− φ(q) with respect to
both q ∈ Q and s ∈ Rn:
Lemma 48. If Φ is bounded and Lipschitz as defined in Assumption (A5) iii), then:

∀q, q′,∀s, s′, |φ(q, s)− φ(q)− φ(q′, s′)− φ(q′)| ≤ 2‖q − q′‖1BΦ + βΦ‖s− s′‖2

Proof. First consider A = φ(q, s) − φ(q) − φ(q′, s′) − φ(q′). Let ε > 0 and s∗ such that φ(q) ≥
φ(q, s∗)− ε. We have

A ≤ φ(q, s)− φ(q, s∗) + ε− φ(q′, s) + φ(q′, s∗)

≤ ‖q − q′‖1 max
y
|Φ(y, s)− Φ(y, s∗)|+ φ(q′, s)− φ(q′, s) + ε

≤ 2‖q − q′‖1BΦ + βΦ‖s− s′‖2 + ε ,

where the first inequality holds since φ(q′, s∗) ≥ φ(q′) and the second from Hölder’s inequality.
Following the same steps, we find the same upper bound for φ(q′, s′)− φ(q′)− φ(q, s)− φ(q). The
final result is obtained in the limit ε→ 0.

The following result give the main implications of calibration of Φ. It are extended version of
Lemma 44 for surrogate losses instead of task losses. It gives basic properties of segments joining a
distribution q0 with a disconnected argmin, with distributions of type q(z) where z ∈ argmin `(q0, ., .).
The lemma has several parts that are used in different proofs.
Lemma 49. Under Assumption (A5), let q0 ∈ Q such that argmin `(q0, .) is disconnected.

i) Let z, z′ ∈ argmin `(q0, .) such that z and z′ are not in the same connected components of
argmin `(q0, .). Let q̄ be defined as in Lemma 44. Then ∃δ0 such that for every continuous
function f : [0, 1]→ Rn such that {z, z′} ⊆ pred(f([0, 1])), we have:

max
α∈[0,1]

(
φ(q̄(α), f(α))− φ(q̄(α))

)
≥ δ.

ii) Let q̄ : [0, 1]→ Q defined by:

∀α ∈ [0, 1], q̄(α) = (1− α)q0 + αq(z).

34



Let G0 = min
z 6∈argminq0

min
q∈{q0,q(z)}

(
`(q, z)− `(q)

)
. Then G0 > 0.

Moreover, let η0 ∈ (0, G0

2‖L‖∞
). Then ∃δ0 > 0 such that:

∀α ∈ [0, 1],∀q ∈ B1(q̄(α), η), ∀s ∈ levδ0φ(q, .),pred(s) ⊆ argmin `(q0, .).

iii) For any q ∈ Q such that argmin `(q, .) = {z}, there is δ0 > 0 and η0 > 0 such that:

∀s ∈ levδ0φ(q, .),∀q′ ∈ B1(q, η0), pred(s) = {z}.

Proof. Point i). Using uniform calibration (Theorem 30, let ε0 be defined as in Lemma 44, and let δ0
such that ∀q ∈ Q, s ∈ levδ0`(q, .),pred(s) ⊆ levε0`(q, .). Combining with Lemma 44, we have:

∀α ∈ [0, 1],∀s ∈ levδ0φ(q̄(α), .),pred(s) ⊆ argmin `(q0, .). (7)

Since connectedness is preserved by continuous functions, any continuous function f : [0, 1]→ Rn
such that {z, z′} ⊆ pred(f([0, 1])) must have pred(f([0, 1])) 6⊆ argmin `(q0, .). Using (7), this
means ∃α, f(α) 6∈ levδ0φ(q̄(α), .), which is equivalent to the desired result.

Point ii). With the same arguments as Lemma 44, for every α ∈ [0, 1], if z ∈ levG0
`(q̄(α), .) then

z ∈ argmin `(q0, .).

Now, let us take η ∈ (0, G0

2‖L‖∞
). For every α ∈ [0, 1], the Lipschitzness of q 7→ `(q, z)− `(q), which

follows from similar arguments as Lemma 48, gives:

∀α ∈ [0, 1],∀q ∈ B1(q̄(α), η),∀z 6∈ argmin `(q0, .), `(q, z)− `(q) ≥ G0 − 2η‖L‖∞ > 0 (8)

By uniform calibration (Theorem 30), there is δ0 > 0 such that ∀δ ∈ (0, δ0),∀q ∈ Q,∀s ∈
levδφ(q, .),pred(s) ⊆ levG0−2η‖L‖∞`(q, .). With this choice of δ0, using (8) gives the result.

Point iii). The proof is exactly the same a before: Let ε = minz′ 6=z(`(q, z
′)− `(z)). We have ε > 0

by the assumption argmin `(q, .) = {z}. Let η0 ∈ (0, ε
2‖L‖∞

). We have

∀q′ ∈ B1(q, η),min
z′ 6=z

(`(q′, z′)− `(z)) ≥ ε− 2η‖L‖∞ > 0.

And thus ∀q′ ∈ B1(q, η), {z} = argmin `(q, .)
′. By uniform calibration (Th. 30), using δ0 > 0 such

that ∀q′ ∈ Q,∀s ∈ levδ0φ(q′, .), s ∈ levε−2η‖L‖∞`(q
′, .) gives the result.

H.3 Lower bound on approximation error of surrogate loss by Lipschitz functions

The proposition below is a stronger version of Proposition 13. It makes it precise that the conditional
distribution over Y is infinitely many times differentiable with bounded derivatives at any order
(denoted x 7→ P (.|x) ∈ W∞([0, 1]Q)), and that there is a single point in [0, 1] on which the argmin
of ` is not a singleton (and thus disconnected) (condition |{α ∈ [0, 1] : |argmin `(pY |X=α|, .)| >
1}| = 1). This makes sure that the distibution is not too peculiar.

Proposition 50. Under Assumption (A5), there is a probability measure P over [0, 1] × Y where
the marginal distribution over [0, 1], and x 7→ P (.|x) ∈ W∞([0, 1]Q) such that |{α ∈ [0, 1] :
|argmin `(pY |X=α|, .)| > 1}| = 1, and constants c, c′ > 0, such that for all β ≥ 0

inf
f :[0,1]→Rn
f :β−Lipschitz

RΦ,P (f)− inf
g:X→Rn

RΦ,P (g) ≥ min
(
c′,

c

8BΦ + βΦβ

)
.

Proof. Let q0 such that argmin `(q0, .) is disconnected and let z, z′ ∈ argmin `(q0, .) such that z and
z′ belong to two different connected components of argmin `(q0, .). Let q̄(α) defined as in Lemma
44. Clearly, q̄ ∈ W∞([0, 1]|Y|), i.e., q̄ has bounded derivatives of any order. Also there is only one
value of α (α = 1

2 ) for which argmin `(q̄(α), .) is not a singleton.

Let f be β-Lipschitz. We consider two cases:
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• If {z, z′} ⊂ pred(f([0, 1])):

First, we show that α 7→ φ(q̄(α), f(α)) − φ(q̄(α)) is Lipschitz. Notice that
‖q̄(α)− q̄(α′)‖1 ≤ 2|α− α′| when α and α′ are in the same help-segment of [0, 1]. When
they are not, say α ∈ [0, 1

2 ) and α′ ∈ [ 1
2 , 1], we have

‖q̄(α)− q̄(α′)‖1 ≤ ‖(2− α− α
′)q0‖1 + 2

∥∥∥∥(
1

2
− α)q(z)

∥∥∥∥
1

+ 2

∥∥∥∥(
1

2
− α′)q(z′)

∥∥∥∥
1

≤ 4
(
|1
2
− α|+ |1

2
− α′|

)
= 4(α′ − α).

We thus have that α 7→ φ(q̄(α), f(α))− φ(q̄(α)) is 8BΦ + βΦβ-Lipschitz by Lemma 48.

Moreover, by point i) of Lemma 49, choose δ > 0 such that maxα∈[0,1] φ(q̄(α), f(α)) −
φ(q̄(α)) ≥ δ. The minimum of the integral

∫
[0,1]

φ(q̄(α), f(α)) − φ(q̄(α))dα is attained
for a trapezoidal or triangle shape, with the maximum attained at a bound (0 or 1), of length
min(1, δ

8BΦ+βΦβ
) (because the domain is of length 1). We can conclude

RΦ,P (f)− inf
g:X→Rn

RΦ,P (g) =

∫
[0,1]

(
φ(q̄(α), f(α))−φ(q̄(α))

)
dα ≥ 1

2
min(δ,

δ2

8BΦ + βΦβ
)

• If {z, z′} 6⊆ pred(f([0, 1])):

Assume for instance z 6∈ pred(f([0, 1])). Let ε = minz′′ 6=z `(q
(z), z′′) − `(q(z)). For

α < 1/4, using `(q̄(α)) = `(q̄(α), z), we have:

`(q̄(α),pred(f(α)))− `(q̄(α)) ≥ (1− 2α)
(
`(q(z),pred(f(α)))− `(q(z), z)

)
≥ 1

2
ε.

By uniform calibration (Theorem 30), there is δ′z such that ∀α ∈ [0, 1
4 ), φ(q̄(α), f(α))−

φ(q̄(α)) ≥ δ′z (or we would have pred(f(α)) = {z} = argmin `(q̄(α), .)). We then have∫
α∈[0,1]

(
φ(q̄(α), f(α))−φ(q̄(α))

)
dα ≥

∫
α∈[0, 14 ]

(
φ(q̄(α), f(α))−φ(q̄(α))

)
dα ≥ 1

4
δ′z

Similarly if z′ 6∈ pred(f([0, 1])).

Taking c′ = min( 1
4δ
′
z,

1
4δ
′
z′ ,

δ
2 ) and c = δ2

2 gives the result.

H.4 Local valleys of calibrated surrogate losses

We now prove that when the task loss does not have connected argmins, the set of distributions in Q
for which φ(q, .) has bad local valleys has non-zero measure.
Proposition 51. Under Assumption (A5), the set {q ∈ Q : φ(q, .) has bad local valleys} has non-
zero Lebesgue measure.

Proof. Let q0 be a distribution such that argmin `(q0, .) is disconnected, and let z ∈ argmin `(q0, .).
Let q̄, δ0 and η0 be defined as in point ii) of Lemma 49, i.e., q̄ is a segment between q0 and q(z).

First let δ1 ∈ (0, δ0), such that pred(levδ1φ(q0, .)) = argmin `(q0, .). Such a δ1 exists using the
equality of argmins for calibrated surogate losses (Theorem 28).

Let s′ ∈ levδ1φ(q0, .) such that pred(s′) is not in the same connected component of argmin `(q0, .)
as z. Using the Lipschitz property of q 7→ φ(q, s)− φ(q) (Lemma 48), we have:

∀α ∈ [0, 1],∀q ∈ B1(q̄(α), η), φ(q, s′)− φ(q) < δ1 + (2η + 4α)BΦ. (9)

Moreover, for every α > 0, using point iii) of Lemma 49 with q := q̄(α), we can find δα ∈ (0, δ1)
and ηα > 0 such that:

∀s ∈ levδαφ(q̄(α), .), ∀q ∈ B1(q̄(α), ηα),pred(s) = {z}.
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Thus, for any s′ ∈ levδ1φ(q0, .) such that pred(s′) is not in the same connected component as z is
not in levδα`(q̄(α), .), we have

∀α ∈ [0, 1],∀q ∈ B1(q̄(α), ηα), φ(q, s′)− φ(q) ≥ δα + (2ηα + 4α)BΦ. (10)

Finally, since z and z′ are not connected in argmin `(q0, .), for every continuous function f : [0, 1]→
Rn with z ∈ pred(f(0)) and z′ ∈ pred(f(1)), we must have pred(f([0, 1])) 6⊆ argmin `(q0, .)
(since continuous functions preserve connectedness), and thus, by our choice of δ0 from Lemma 49,
we have:

∀α ∈ [0, 1],∀q ∈ B1(q̄(α), η0) max
t∈[0,1]

(
φ(q, f(t))− φ(q)

)
≥ δ0. (11)

The proof finishes by taking α = δ0−δ1
12BΦ

, η = min(ηα, η0, α). With these values, we have that
∀q ∈ B1(q̄(α), η):

1. Using (9), there exists s′ ∈ levδ1+(2η+4α)BΦ
φ(q, .) such that pred(s′) is in argmin `(q0, .)

but not connected to z in argmin `(q0, .).

2. Using δ1 + (2η + 4α)BΦ < δ0 and (11), s′ above and its connected component C in
levδ1+(2η+4α)BΦ

φ(q, .) are not connected to any s such that pred(s) = {z}. Thus, the
connected component C is a local valley of `(q, .),

3. Using (10), the infimum over C is suboptimal. Thus C is a bad local valley.

Thus, the measure of bad local valleys is at least the measure of B1(q̄(α), η), and is thus > 0.
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