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Abstract

In stochastic multi-armed bandit (MAB), the
reward distribution of each arm is assumed
to be stationary. This assumption is often
violated in practice (e.g., in recommendation
systems), where the reward of an arm may
change whenever is selected (i.e., rested bandit
setting). In this paper, we consider the non-
parametric rotting bandit setting, where re-
wards can only decrease. We introduce the fil-
tering on expanding window average (FEWA)
algorithm that constructs moving averages of
increasing windows to identify arms that are
more likely to return high rewards when pulled
once more. We prove that for an unknown
horizon T , and without any knowledge on the
decreasing behavior of the K arms, FEWA

achieves problem-dependent, Õ(log (KT )),

and problem-independent, Õ(
√
KT ), regret

bounds. This result substantially improves
over the algorithm proposed by Levine et al.
(2017), which suffers regret Õ(K1/3T 2/3), and
it matches standard bounds for the stochastic
MAB setting, thus showing that the rotting
bandit is not harder. Finally, we report sim-
ulations confirming the theoretical improve-
ments of FEWA.

1 Introduction

The multi-arm bandit (MAB) framework (Bubeck and
Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2019)
formalizes the exploration-exploitation dilemma in on-
line learning, where an agent has to trade off the explo-
ration of the environment to gather information and
the exploitation of the current knowledge to maximize
reward. In the stochastic setting (Thompson, 1933;
Auer et al., 2002a), each arm is characterized by a
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stationary reward distribution and whenever an arm is
pulled, an i.i.d. sample from the corresponding distri-
bution is observed. Despite the extensive algorithmic
and theoretical study of this setting, the stationarity
assumption is often too restrictive in practice (e.g.,
the preferences of users may change over time). The
adversarial setting (Auer et al., 2002b) addresses this
limitation by removing any assumption on how the
rewards are generated and learning agents should be
able to perform well for any arbitrary sequence of re-
wards. While algorithms such as Exp3 (Auer et al.,
2002b) are guaranteed to achieve small regret in this
setting, their behavior is conservative as all arms are
repeatedly explored to avoid incurring too much regret
because of unexpected changes in arms’ values, which
corresponds to unsatisfactory performance in practice,
where arms’ values, while non-stationary, are far from
being adversarial. Garivier and Moulines (2011) pro-
posed a variation of the stochastic setting, where the
distribution of each arm is piecewise stationary. Sim-
ilarly, Besbes et al. (2014) introduced an adversarial
setting where the total amount of change in arms’ val-
ues is bounded. These settings fall into the so-called
restless bandit scenario, where the arms’ value evolves
independently from the decisions of the agent. On the
other hand, in many problems, the value of an arm
changes only when it is pulled (i.e., the rested bandit
scenario). For instance, the value of a service may
deteriorate only when it is actually used (e.g., if a rec-
ommender system shows always the same item to the
users, they may get bored (Warlop et al., 2018)). Simi-
larly, a student can master a frequently taught topic
in an intelligent tutoring system and extra learning on
that topic would be less effective. A particularly inter-
esting case is represented by the rotting bandits, where
the value of an arm may decrease whenever pulled. Hei-
dari et al. (2016) studied this problem when rewards
are deterministic (i.e., no noise) and showed how a
greedy policy (i.e., selecting the arm that returned the
largest reward the last time it was pulled) is optimal
up to a small constant factor depending on the number
of arms K and the largest per-round decay in the arms’
value L. Bouneffouf and Féraud (2016) considered the
stochastic setting when the dynamics of the rewards is
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known up to a constant factor. Finally, Levine et al.
(2017) defined both non-parametric and parametric
noisy rotting bandits, for which they derive algorithms
with regret guarantees. In the non-parametric case,
where the decrease in reward is neither constrained
nor known, they introduce the sliding-window average
(wSWA) algorithm, which is shown to achieve a regret

to the optimal policy of order Õ(K1/3T 2/3), where T
is the number of rounds in the experiment.

In this paper, we study the non-parametric rotting
setting of Levine et al. (2017) and introduce Filtering
on Expanding Window Average (FEWA) algorithm, a
novel method that constructs moving average estimates
of increasing windows to identify the arms that are more
likely to perform well if pulled once more. Under the
assumption that the reward decay are bounded, we
show that FEWA achieves a regret of Õ(

√
KT ), thus

significantly improving over wSWA and matching the
minimax rate of stochastic bandits up to logarithmic
factor. This shows that learning with non-increasing
rewards is not more difficult than in the stationary case.
When rewards are constant we also recover standard
problem-dependent regret guarantees (up to constants),
while in the rotting bandit scenario with no noise,
the regret reduces to the one of Heidari et al. (2016).
Numerical simulations confirm our theoretical results
and show the superiority of FEWA over wSWA.

2 Preliminaries

We consider a rotting bandit scenario similar to (Levine
et al., 2017). At each round t, an agent chooses an
arm i(t) ∈ K = {1, ...,K} and it receives a noisy
reward ri(t),t. The reward associated to each arm i
is a σ2-sub-Gaussian r.v. with expected value µi(n),
which depends on the number of times n it was pulled
before (µi(0) is the initial expected value).1 Let
Ht ,

{{
i(s), ri(s),s

}
,∀s < t

}
be the sequence of arms

pulled and rewards observed until round t, then

ri(t),t , µi(t)(Ni(t),t) + εt with E[εt|Ht] = 0

and ∀λ ∈ R, E
[
eλεt

]
≤ eσλ

2

2 ,

where Ni,t =
∑t−1
s=1 I{i(t) = i} is the number of times

arm i is pulled before round t. We use ri(n) to denote
the random reward of arm i when pulled for the n+1-th
time, i.e., ri(t),t = ri(t)(Ni(t),t). We introduce a non-
parametric rotting assumption with bounded decay.

Assumption 1. The reward functions µi are non-
increasing with bounded decays −L ≤ µi(n + 1) −
µi(n) ≤ 0. The initial expected value is bounded as
µi(0) ∈ [0, L]. We refer to this set of functions as LL.

1Our definition slightly differs from Levine et al. (2017).
Here µi(n) denotes the expected value of arm i after n pulls
instead of when it is pulled for the n-th time.

The learning problem. A learning policy π is a
function from the history of observations to arms, i.e.,

π(Ht) ∈ K. In the following, we often use π(t)
def
=π(Ht).

The performance of a policy π is measured by the
(expected) rewards accumulated over time,

JT (π) ,
T∑
t=1

µπ(t)
(
Nπ(t),t

)
.

Since π depends on the (random) history observed over
time, JT (π) is also random. We define the expected
cumulative reward as JT (π) = E

[
JT (π)

]
. We restate a

useful characterization of the optimal (oracle) policy.

Proposition 1 (Heidari et al. (2016)). If the expected
value of each arm {µi(n)}i,n is known, the policy π?

maximizing the expected cumulative reward JT (π) is
greedy at each round, i.e.,

π?(t) = arg max
i
µi(Ni,t). (1)

We denote by J? = JT (π?) = JT (π?), the cumulative
reward of the optimal policy.

The objective of a learning algorithm is to implement a
policy π with performance as close to π?’s as possible.
We define the (random) regret as

RT (π) , J? − JT (π). (2)

Notice that the regret is measured against an optimal
allocation over arms rather than a fixed-arm policy as
it is a case in adversarial and stochastic bandits. There-
fore, even the adversarial algorithms that one could
think of applying in our setting (e.g., Exp3 of Auer
et al., 2002a) are not known to provide any guarantee
for our definition of regret. On the other hand, for
constant µi(n), our problem and definition of regret
reduce to standard stochastic bandits.

Let N?
i,T be the (deterministic) number of times that

arm i is pulled by the oracle policy π? up to time T
(excluded). Similarly, for a policy π, let Nπ

i,T be the
(random) number pulls of arm i. The cumulative re-
ward can be rewritten as

JT (π) =

T∑
t=1

∑
i∈K

I{π(t)=i}µi
(
Nπ
i,t

)
=
∑
i∈K

Nπi,T∑
s=0

µi(s).

Then, we can conveniently rewrite the regret as

RT (π) =
∑
i∈K

(N?i,T∑
s=0

µi(s)−
Nπi,T∑
s=0

µi(s)

)

=
∑
i∈up

N?i,T∑
s=Nπi,T+1

µi(s)−
∑
i∈op

Nπi,T∑
s=N?i,T+1

µi(s),

(3)
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where up =
{
i ∈ K|Nπ?

i,T > Nπ
i,T

}
and op ={

i ∈ K|Nπ?

i,T < Nπ
i,T

}
are the sets of arms that are re-

spectively under-pulled and over-pulled by π w.r.t. the
optimal policy.

Regret bounds. We report existing regret bounds for
two special cases. We start with the minimax regret
lower bound for stochastic bandits.

Proposition 2. (Auer et al., 2002b, Thm. 5.1) For
any learning policy π and any horizon T , there exists
a stochastic stationary problem {µi(n) = µi}i with K
σ-sub-Gaussian arms such that π suffers a regret

E[RT (π)] ≥ σ

10
min

(√
KT, T

)
.

where the expectation is w.r.t. both the randomization
over rewards and algorithm’s internal randomization.

Heidari et al. (2016) derived regret lower and upper
bounds for deterministic rotting bandits (i.e., σ = 0).

Proposition 3. (Heidari et al., 2016, Thm. 3) For any
learning policy π, there exists a deterministic rotting
bandits (i.e., σ = 0) satisfying Assumption 1 with
bounded decay L such that π suffers an expected regret

E[RT (π)] ≥ L

2
(K − 1).

Let πσ0 be the greedy policy that selects at each round
the arm with the largest reward observed so far, i.e.,
πσ0(t) = arg maxi(µi(Ni,t− 1)). For any deterministic
rotting bandits (i.e., σ = 0) satisfying Assumption 1
with bounded decay L, πσ0 suffers an expected regret

E[RT (πσ0)] ≤ L(K − 1).

Any problem in these two settings above is a rotting
problem with parameters (σ, L). Therefore, the perfor-
mance of any algorithm on the general rotting problem
is also bounded by two lower bounds.

3 FEWA: Filtering on Expanding
Window Average

Since the expected rewards µi change over time, the
main difficulty in the non-parametric rotting bandit
setting is that we cannot rely on all samples observed
until time t to predict which arm is likely to return
the highest reward in the future. In fact, the older
a sample, the less representative for future rewards.
This suggests constructing estimates using the more
recent samples. Nonetheless, discarding older rewards
reduces the number of samples used in the estimates,
thus increasing their variance. In Alg. 1 we introduce
FEWA (or πF) that at each round t, relies on estimates
using windows of increasing length to filter out arms

Algorithm 1 FEWA

Input: σ, K, δ0, α
1: pull each arm once, collect reward, and initialize
Ni,K ← 1

2: for t← K + 1,K + 2, . . . do
3: δt ← δ0/(Kt

α)
4: h← 1 {initialize bandwidth}
5: K1 ← K {initialize with all the arms}
6: i(t)← none

7: while i(t) is none do
8: Kh+1 ← Filter(Kh, h, δt)
9: h← h+ 1

10: if ∃i ∈ Kh such that Ni,t = h then
11: i(t)← arg mini∈Kh Ni,t
12: end if
13: end while
14: receive ri(Ni,t+1)← ri(t),t
15: Ni(t),t ← Ni(t),t−1 + 1
16: Nj,t ← Nj,t−1, ∀j 6= i(t)
17: end for

Algorithm 2 Filter

Input: Kh, h, δt
1: c(h, σ, δt)←

√
(2σ2/h) log (1/δt)

2: for i ∈ Kh do
3: µ̂hi (Ni,t)← 1

h

∑h
j=1 ri(Ni,t − j)

4: end for
5: µ̂hmax,t ← maxi∈Kh µ̂

h
i (Ni,t)

6: for i ∈ Kh do
7: ∆i ← µ̂hmax,t − µ̂hi (Ni,t)
8: if ∆i ≤ 2c(h, σ, δt) then
9: add i to Kh+1

10: end if
11: end for
Output: Kh+1

that are suboptimal with high probability and then
pulls the least pulled arm among the remaining arms.

We first describe the subroutine Filter in Alg. 2, which
receives as input a set of active arms Kh, a window h,
and a confidence parameter δ, and returns an updated
set of arm Kh+1. For each arm i that has been pulled n
times, the algorithm constructs an estimate µ̂hi (n) that
averages the h ≤ n most recent rewards observed from i.
The subroutine Filter discards from Kh all the arms
whose mean estimate (built with window h) is lower
than the empirically best arm by more than twice a
threshold c(h, δt) constructed by standard Hoeffding’s
concentration inequality (see Prop. 4).

The Filter subroutine is used in FEWA to incremen-
tally refine the set of active arms, starting with a
window of size 1, until the condition at Line 10 is met.
As a result, Kh+1 only contains arms that passed the
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filter for all windows from 1 up to h. Notice that it
is crucial to start filtering arms from a small window
and to keep refining the previous set of active arms,
instead of completely recomputing them for every new
window h. In fact, the estimates constructed using
a small window use recent rewards, which are closer
to the future value of an arm. As a result, if there
is enough evidence that an arm is suboptimal already
at a small window h, it should be directly discarded.
On the other hand, a suboptimal arm may pass the
filter for small windows as the threshold c(h, σ, δt) is
large for small h (i.e., as few samples are used in con-
structing µ̂hi (Ni,t), the estimation error may be high).
Thus, FEWA keeps refining Kh for larger windows in
the attempt of constructing more accurate estimates
and discard more suboptimal arms. This process stops
when we reach a window as large as the number of
samples for at least one arm in the active set Kh (i.e.,
Line 10). At this point, increasing h would not bring
any additional evidence that could refine Kh further
(recall that µ̂hi (Ni,t) is not defined for h > Ni,t). Fi-
nally, FEWA selects the active arm i(t) whose number
of samples matches the current window, i.e., the least
pulled arm in Kh. The set of available rewards and the
number of pulls are then updated accordingly.

Runtime and memory usage. At each round t,
FEWA needs to store and update up to t averages
per-arm. Since moving from an average computed on
window h to h+ 1 can be done incrementally at a cost
O(1), the worst-case time and memory complexity per
round is O(Kt), which amount to a total O(KT 2) cost,
which may not be practical for large T .2

In App. E we detail EFF-FEWA, an efficient variant of
FEWA. EFF-FEWA is built around two main ideas.3

First, at any time t we can avoid calling Filter for all
possible windows h starting from 1 with an increment
of 1. In fact, the confidence interval c(h, σ, δt) decreases
as 1/

√
h and we could select windows h with an expo-

nential increment so that confidence intervals between
two consecutive calls to Filter have a constant ratio.
In practice, we replace the window increment (Line 9
of FEWA) by a geometric window h = 2j . This modi-
fication alone is not enough to reduce the amount of
computation. While we reduce the number of estimates
that we construct, updating µ̂hi from h = 2j to h = 2j+1

still requires spanning over past samples, thus leading
to the same O(Kt) complexity in the worst-case. In
order to reduce the overall complexity, we avoid re-

2This analysis is worst-case. In many cases, the number
of samples for the suboptimal arms may be much smaller
than O(t). For instance, in stochastic bandits it is as little
as O(log t), thus reducing the complexity to O(KT log T ).

3A similar yet different approach has appeared inde-
pendently in the context of streaming mining (Bifet and
Gavaldà, 2007).

computing µ̂hi at each call of Filter and we replace
it with precomputed estimates. Whenever Ni,t = 2j

for some j, we create an estimate ŝ ci,j by averaging all
the last Ni,t samples. These estimates are then used
whenever Filter is called with h = 2j . Instead of
updating ŝ ci,j at each new sample, we create an associ-
ated pending estimate ŝ pi,j which averages all the more
recent samples. More formally, let t be the time when
Ni,t = 2j , then ŝ pi,j is initialized at 0 and it then stores
the average of all the samples observed from t to t′,
when Ni,t′ = 2j+1 (i.e., ŝ pi,j is averaging at most 2j

samples). At this point, the 2j samples averaged in ŝ ci,j
are outdated and they are replaced by the new aver-
age ŝ pi,j , which is then reinitialized to 0. The sporadic
update of the precomputed estimates and the small
number of them allows to drastically reduce per-round
time and space complexity to O(K log t). Furthermore,
EFF-FEWA preservers the same regret guarantees as
FEWA. In the worst case, ŝ ci,j may not cover the last

2j−1 − 1 samples, which can make it quite inaccurate.
Nonetheless, the precomputed estimates with smaller
windows (i.e., j′ < j) are updated more frequently,
thus effectively covering the 2j−1 − 1 samples “missed”
by ŝ ci,j . As a result, the active sets returned by Filter
are still accurate enough to derive regret guarantees
that are only a constant factor worse than FEWA.

4 Regret Analysis

We first state the major theoretical result of the paper,
a problem-independent regret bound for FEWA and
sketch its proof in Sect. 4.1. Then, we derive problem-
dependent guarantees in Sect. 4.2.

Theorem 1. For any rotting bandit scenario with
means {µi(n)}i,n satisfying Asm. 1 with bounded de-
cay L and any time horizon T , FEWA run with α = 5
and δt = 1/(Kt5), suffers an expected regret 4

E[RT (πF)] ≤ 13σ(
√
KT +K)

√
log(KT ) +KL.

Comparison to Levine et al. (2017). The regret

of wSWA is bounded by Õ(µ
1/3
maxK1/3T 2/3) for rotting

functions bounded in [0, µmax]. In our setting, we do
not restrict rewards to stay positive but we bound the
per-round decay by L, thus leading to rotting func-
tions bounded in [−LT,L]. As a result, when applying
wSWA to our setting, we should set µmax = L(T + 1),
which leads to O(T ) regret, thus showing that accord-
ing to its original analysis wSWA may not be able to
learn in our general setting. On the other hand, we
could use FEWA in the setting of Levine et al. (2017)
by setting L = µmax as the largest drop that could
occur. In this case, FEWA suffers a regret of Õ(

√
KT ),

thus significantly improving over wSWA in this setting

4See Corollary 3 and 4 for the high-probability result.
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as well. The improvement is mostly due to the fact
that FEWA exploits filters using moving averages with
increasing windows to discard arms that are subopti-
mal w.h.p. Since this process is done at each round,
FEWA smoothly tracks changes in the value of each
arm, so that if an arm becomes worse later on, other
arms would be recovered and pulled again. On the
other hand, wSWA relies on a fixed exploratory phase
where all arms are pulled in a round-robin fashion and
the tracking is performed using averages constructed
with a fixed window. Moreover, FEWA in anytime,
while the fixed exploratory phase of wSWA requires
either to know T or to resort to a doubling trick, which
often performs poorly in practice.

Comparison to deterministic rotting bandit.
For σ = 0, our upper bound reduces to KL, thus
matching the prior (upper and lower) bound of Heidari
et al. (2016) for deterministic rotting bandits. More-
over, the additive decomposition of regret shows that
there is no coupling between the stochastic problem
and the rotting problem as terms depending on the
noise level σ are separated from the terms depending
on the rotting level L, while in wSWA these are coupled
in a L1/3σ2/3 factor in the leading term.

Comparison to stochastic bandit. The regret of
FEWA matches the worst-case optimal regret bound
of the standard stochastic bandits (i.e., µi(n)s are con-
stant) up to a logarithmic factor. Whether an algorithm
can achieve O(

√
KT ) regret bound is an open question.

On one hand, FEWA needs confidence bounds to hold
for different windows at the same time, which requires
an additional union bound and thus larger confidence
intervals w.r.t. UCB1. On the other hand, our worst-
case analysis shows that some of the difficult problems
that reach the worst-case bound of Thm. 1 are real-
ized with constant functions, which is the standard
stochastic bandits, for which MOSS-like (Audibert and
Bubeck, 2009) algorithms achieve regret guarantees
without the log T factor. Thus, the necessity of the
extra log T factor for the worst-case regret of rotting
bandits remains an open problem.

4.1 Sketch of the proof

We provide a sketch of the proof of the regret bound.
We first introduce the expected value of the estimators
used in FEWA. For any n and 1 ≤ h ≤ n, we define

µhi (n) , E
[
µ̂hi (n)

]
=

1

h

h∑
j=1

µi(n− j).

Notice at round t, if the number of pulls to arm i is
Ni,t, then µ1

i (Ni,t) = µi(Ni,t−1), which is the expected
value of arm i the last time it was pulled. We intro-
duce Hoeffding’s concentration inequality and the high
probability event that we leverage in the analysis.

Proposition 4. For any fixed arm i, number of pulls n
and window h, we have with probability 1− δ,

∣∣µ̂hi (n)− µhi (n)
∣∣ ≤ c(h, δ) ,√2σ2

h
log

1

δ
· (4)

For any round t and confidence δt , δ0/(Kt
α), let

ξt,
{
∀i ∈ K,∀n ≤ t,∀h ≤ n,

∣∣µ̂hi (n)− µhi (n)
∣∣≤c(h, δt)}

be the event under which the estimates constructed by
FEWA at round t are all accurate up to c(h, δt). Taking
a union bound gives P(ξt) ≥ 1−Kt2δt/2.

Active set. We derive a crucial lemma that provides
support to the arm selection process obtained by a
series of refinements through the Filter subroutine.
Recall that at any round t, after pulling arms {NπF

i,t }i
the greedy (oracle) policy would select an arm

i?t

({
NπF
i,t

}
i

)
∈ arg max

i∈K
µi
(
NπF
i,t

)
.

We denote by µ+
t (πF) , maxi∈K µi(N

πF
i,t ), the reward

obtained by pulling i?t . The dependence on πF in the
definition of µ+

t (πF) stresses the fact that we consider
what the oracle policy would do at the state reached
by πF. While FEWA cannot directly match the perfor-
mance of the oracle arm, the following lemma shows
that reward averaged over the last h pulls of any arms
in the active set is close to the performance of the
oracle arm up to four times c(h, δt).

Lemma 1. On the h.p. event ξt, if an arm i passes
through a filter of window h at round t, i.e., i ∈ Kh,
then the average of its h last pulls satisfies

µhi (NπF
i,t ) ≥ µ+

t (πF)− 4c(h, δt). (5)

This result heavily relies on the non-increasing assump-
tion of rotting bandit. In fact, for any arm i and any
window h we have

µhi (NπF
i,t ) ≥ µ1

i (N
πF
i,t ) ≥ µi(NπF

i,t ).

While the inequality above for i∗t trivially satisfies Eq. 5,
Lem. 1 is proved by integrating the possible errors
introduced by the filter in selecting active arms due to
the error of the empirical estimates.

Relating FEWA to the oracle policy. While Lem. 1
provides a link between the value of the arms returned
by the filter and the oracle arm, i?t is defined according
to the number of pulls obtained by FEWA up to t,
which may significantly differ from the sequence of
pulls of the oracle policy. In order to bound the regret,
we need to relate the actual performance of the optimal
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policy to the value of the arms pulled by FEWA. Let
hi,t ,

∣∣NπF
i,t −Nπ?

i,t

∣∣ be the absolute difference in the
number of pulls between πF and the optimal policy
up to t. Since

∑
iN

πF
i,t =

∑
iN

π?

i,t = t, we have that∑
i∈op hi,t =

∑
i∈up hi,t which means that there are as

many total overpulls than underpulls. Let j ∈ up be
an underpulled arm5 with NπF

j,T < Nπ?

j,T , then, for all
s ∈ {0, . . . , hj,t}, we have the inequality

µ+
T (πF) = max

i∈K
µi(N

πF

i,T ) ≥ µj(NπF

j,T + s). (6)

As a result, from Eq. 3 we have the regret upper bound

RT (πF) ≤
∑
i∈op

hi,T−1∑
h=0

(
µ+(πF)− µi(Nπ?

i,T + h)
)
, (7)

where the inequality is obtained by bounding µi(t
′) ≤

µ+
T (πF) in the first summation and then using∑
i∈op hi,T =

∑
i∈up hi,T . While the previous expres-

sion shows that we can just focus on over-pulled arms
in op, it is still difficult to directly control the expected
reward µi(N

π?

i,T + h), as it may change at each round
(by at most L). Nonetheless, we notice that its cumu-
lative sum can be directly linked to the average of the
expected reward over a suitable window. In fact, for
any i ∈ op and hi,T ≥ 2, we have

(hi,T − 1)µ
hi,T−1
i (Ni,T − 1) =

hi,T−2∑
t′=0

µi(N
π?

i,T + t′).

At this point we can control the regret for each i ∈ op
in Eq. 7 by applying a corollary of Lem. 1.

Corollary 1. Let i ∈ op be an arm overpulled by
FEWA at round t and hi,t , NπF

i,t − Nπ?

i,t ≥ 1 be the
difference in the number of pulls w.r.t. the optimal policy
π? at round t. On the h.p. event ξt, we have

µ+
t (πF)− µhi,ti (Ni,t) ≤ 4c(hi,t, δt). (8)

4.2 Problem-Dependent Bounds

Since our setting generalizes the standard stochastic
bandit setting, a natural question is whether we pay any
price for this generalization. While the result of Levine
et al. (2017) suggested that learning in rotting bandits
could be more difficult, in Thm. 1 we actually proved
that FEWA nearly matches the problem-independent
regret Õ(

√
KT ). We may wonder whether this is true

for the problem-dependent regret as well.

Remark 1. Consider a stationary stochastic bandit
setting with expected rewards {µi}i and µ? , maxi µi.

5If such arm does not exist, then πF suffers no regret.

Corollary 1 guarantees that for δt ≥ 1/(KTα),

µ? − µi ≤ 4c(hi,T − 1, δt) = 4

√
2ασ2 log(KT )

hi,T − 1

or equivalently, hi,T ≤ 1 +
32ασ2 log(KT )

(µ? − µi)2
· (9)

Therefore, our algorithm matches the lower bound of
Lai and Robbins (1985) up to a constant, thus showing
that learning in the rotting bandit is never harder than
in the stationary case. Moreover, this upper bound is
at most α larger than the one for UCB1 (Auer et al.,
2002a).6 The main source of suboptimality is the use
of a confidence bound filtering instead of an upper-
confidence index policy. Selecting the less pulled arm
in the active set is conservative as it requires uniform
exploration until elimination, resulting in a factor 4 in
the confidence bound guarantee on the selected arm
(vs 2 for UCB), which implies 4 times more overpulls
than UCB (see Eq. 9). We conjecture this may not be
necessarily needed and it is an open question whether
it is possible to derive either an index policy or a better
selection rule. The other source of suboptimality w.r.t.
UCB is the use of larger confidence bands because of
the higher number of estimators computed at each
round (Kt2 instead of Kt for UCB).

Remark 1 also reveals that Corollary 1 can be used
to derive a general problem-dependent result in the
rotting case. In particular, with Corollary 1 we upper-
bound the maximum number of overpulls by a problem
dependent quantity

h+i,T , max

{
h ≤ 1 +

32ασ2 log(KT )

∆2
i,h−1

}
, (10)

where ∆i,h , min
j∈K

µj
(
N?
j,T − 1

)
− µhi

(
N?
i,t + h

)
.

We then use Corollary 1 again to upper-bound the
regret caused by h+i,T overpulls for each arm, leading
to Corollary 2 (see proof in App. D).

Corollary 2. For δt , 1/(Kt5) and Cα , 32ασ2, the
regret of FEWA is bounded as

E[RT (πF)] ≤
∑
i∈K

(
C5 log(KT )

∆i,h+
i,T−1

+
√
C5 log(KT ) + L

)
.

5 Numerical Simulations

The 2-arm setting. We report numerical simulations
designed to provide insights on the difference between

6To make the results comparable, we need to replace
2σ2 by 1/2 in (Auer et al., 2002a) for sub-Gaussian noise.
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Figure 1: Comparison between FEWA and wSWA in the two-arm single-decrement case. Left: Regret at
T = 10, 000 for different values of L. Middle-right: Average regret during the game for L = 0.2 (i.e., worst case
for FEWA) and L = 4.24 (case of L� σ).

wSWA and FEWA. We consider rotting bandits with
two arms defined as

µ1(n) = 0, ∀n ≤ T and µ2(n) =

{
L
2 if n < T

4
,

−L2 if n ≥ T
4 ·

The rewards are then generated by applying a Gaus-
sian i.i.d. noise N (0, σ = 1). The single point of non-
stationarity in the second arm is designed to satisfy
Asm. 1 with a bounded decay L. It is important to
notice that in this specific case, L also plays the role of
defining the gap ∆ between the arms, which is known
to heavily impact the performance in the stochastic
bandit and in the rotting bandit setting (see Cor.2). In
particular, for any learning strategy, the gap between
the two arms is always ∆ = |µ1(n1)− µ2(n2)| = L/2.
We also recall that in the stochastic bandit case, the
problem independent bound O(

√
KT ) is obtained by

the worst-case choice of ∆ =
√
K/T . In the two-

arm setting defined above, the optimal allocation is
N?

1,T = 3T/4 and N?
2,T = T/4.

The algorithms. Both algorithms have a parameter
α to tune. In wSWA, α is a multiplicative constant
to tune the window. We try four different values of α,
including the recommendation of Levine et al. (2017),
α = 0.2. In general, the smaller the α, the smaller the
averaging window and the more reactive the algorithm
is to large drops. Nonetheless, in stationary regimes,
this may correspond to high variance and poor regret.
On the other hand, a large value of α may reduce
variance but increase the bias in case of rapidly rotting
arms. Thm. 3.1 of Levine et al. (2017) reveals this
trade-off in the regret bound of wSWA, which has
a factor (αµmax + α−1/2), which µmax is the largest

value of any arm. The best choice of α is then µ
−2/3
max ,

which reduces the previous constant to µ
1/3
max. In our

experiment, µmax = L and we could expected that for
any fixed α, wSWA may perform well in cases when

α ≈ µ
−2/3
max , while the performance may significantly

degrade when µmax is much larger.

In FEWA, α tunes the confidence δt = 1/(tα) used
in c(h, δt). While our analysis suggests α = 5, the
analysis of confidence intervals, union bounds, and
filtering algorithms is too conservative for a typical
case. Therefore, we use more aggressive values α ∈
{0.03, 0.06, 0.1}.

Experiments. In Fig. 1, we compare the performance
of the two algorithms and their dependence on L. The
first plot shows the regret at T for various values of
L and different algorithms. The second and the third
plots show the regret as a function of time for L = 0.2
and L = 4.24, which correspond to the worst case
performance for FEWA and to the L� σ regime. All
our experiments are run for T = 10000 and averaged
over 500 runs.

Before discussing the results, we point out that in
the rotting setting, the regret can both increase and
decrease over time. Consider two simple policies: π1,
which first pulls arm 1 for N?

1,T times and the then
pulls arm 2 for N?

2,T times, and π2 which reverses the
order (first arm 2 and then arm 1). If we take π2 as
reference, π2 would have an increasing regret for the
first T/4 rounds, which then would plateau from T/4
up to 3T/4 as both π1 and π2 are pulling arm 1. Then
from 3T/4 to T , the regret of π1 would reverse back
to 0 since π2 would keep selecting arm 1 getting a
reward of 0, while π1 transitions to pulling arm 2 with
a reward of L/2.

Results. Fig. 2 shows that the performance of wSWA

depends on the proper tuning of α w.r.t. µmax = L,
as predicted by Thm.3.1 of Levine et al. (2017). In
fact, for small values of L, the best choice is α = 0.2,
while for larger values of L a smaller α is preferable. In
particular, when L grows very large, the regret tends to
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Figure 2: The setting with 10 arms. Left : Average regret during the game. Right : Average ”regret per arm”
at the end of the game.

grow linearly with L. On the other hand, FEWA seems
much more robust to different values of L. Whenever
T and σ are large compared to L, Thm. 1 suggests
that the regret of FEWA is dominated by O(σ

√
KT ),

while the term KL becomes more relevant for large
value of the drop L. We also notice that as L defines
the gap between the value of µ1 and µ2, the problem-
independent bound is achieved for the worst-case choice
of L ∼ 2

√
K/T , when the regret of FEWA is indeed the

largest. Fig. 1 middle and right confirm these findings
for the extreme choice of the worst-case value of L and
the regime where the drop is much larger than the noise
level (i.e., where the term KL dominates the regret).
We conclude that FEWA is more robust than wSWA as
it almost always achieves the best performance across
different problems while being agnostic to the value of
L. On the other hand, wSWA’s performance is very
sensitive to the choice of α and the same value of the
parameter may correspond to significantly different
performance depending on L. Finally, we notice that
EFF-FEWA has a comparable regret with FEWA when
L is large, while for a small value of L, EFF-FEWA

suffers the cost of the delay in its statistics update,
which is larger for the last filter.

The 10-arm setting. We also tested our algorithm
in a rotting setting with 10 arms: the mean of 1 arm
is constant with value 0 while 9 arms after 1000 pulls
abruptly decrease from +∆i to−∆i. ∆i is ranging from
0.001 to 10 in a geometric sequence. In this setting, the
regret can be written RT (π) =

∑9
i=1 hi,T∆i. Hence,

one could define the regret per arm:

RiT (π) , ∆ihi,T .

In Figure 2, we compare the performance of different
algorithms on this setting. For each algorithm, we

retain only the best parameter (tested over a grid of
parameter). The left plot shows the average regret as
a function of time. The right plot shows the regret per
arm (indexed by their ∆i) at the end of the game.

Results. The 2-arm setting shows that wSWA has to
be tuned to the single decrement size to be competitive
while FEWA is always competitive. How the different
algorithms can manage several decrement size in the
same game? On the left figure, we see that FEWA

outperform wSWA at the end of the game. We remark
that the best tuning for wSWA corresponds to a rather
small window which is good around L = 2 in the 2-
arms settings. Similar result can be observed on the
right figure : wSWA slightly outperforms FEWA for
∆i = 0.3 and ∆i = 1. But this single window is too
large for ∆i = 3.2 and ∆i = 10. Indeed, we can see on
the left figure that for the two last doubling tricks, the
window is increased which leads to extra pulls of these
two arms and ultimately to sharp regret increment. We
also remark that EFF-FEWA is still penalized by arm
with rather small ∆i, for which the impact of the delay
is more important.

We also add SW-UCB and D-UCB (Garivier and
Moulines, 2011) with forgetting parameters tuned for
this experimental setup. While the two algorithms are
known benchmarks for non-stationary restless bandits,
they are both heavily penalized on our rested bandits
problem. Indeed, they keep exploring arms that have
not been pulled for many rounds which is detrimental
in our case as the arms stay constant when they are
not pulled. Hence, there is no good choice of their
forgetting parameters τ and γ as a fast forgetting rate
makes the policies repeatedly pull bad arms (whose
mean rewards do not change when they are not pulled
in our rested setup) while a slow forgetting rate makes
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the policies not being able to adapt to abrupt shifts.

6 Conclusion

We introduced FEWA, a novel algorithm for the non-
parametric rotting bandits. We proved that FEWA

achieves an Õ(
√
KT ) regret without any knowledge of

the decays by using moving averages with a window
that effectively adapts to the changes in the expected
rewards. This result greatly improves the wSWA algo-
rithm proposed by Levine et al. (2017), that suffered

a regret of order Õ(K1/3T 2/3). Thus our result shows
that the rotting bandit scenario is not harder than the
stochastic setting. Our technical analysis of FEWA

hinges on the adaptive nature of the window size. The
most interesting aspect of the proof technique is that
confidence bounds are used not only for the action
selection but also for the data selection, i.e., to identify
the best window to trade off the bias and the variance
in estimating the current value of each arm.
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changing data with adaptive windowing. In Interna-
tional Conference on Data Mining, 2007.

Djallel Bouneffouf and Raphael Féraud. Multi-armed
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A Proof of core FEWA guarantees

Lemma 1. On the h.p. event ξt, if an arm i passes through a filter of window h at round t, i.e., i ∈ Kh, then
the average of its h last pulls satisfies

µhi (NπF
i,t ) ≥ µ+

t (πF)− 4c(h, δt). (5)

Proof. Let i be an arm that passed a filter of window h at round t. First, we use the confidence bound for the
estimates and we pay the cost of keeping all the arms up to a distance 2c(h, δt) of µ̂hmax,t,

µhi (Ni,t) ≥ µ̂hi (Ni,t)− c(h, δt) ≥ µ̂hmax,t − 3c(h, δt) ≥ max
i∈Kh

µhi (Ni,t)− 4c(h, δt), (11)

where in the last inequality, we used that that for all i ∈ Kh,

µ̂hmax,t ≥ µ̂hi (Ni,t) ≥ µhi (Ni,t)− c(h, δt).

Second, since the means of arms are decaying, we know that

µ+
t (πF) , µi?t (Ni?t ,t) ≤ µi?t (Ni?t ,t − 1) = µ1

i?t
(Ni?t ,t) ≤ max

i∈K
µ1
i (Ni,t) = max

i∈K1

µ1
i (Ni,t). (12)

Third, we show that the largest average of the last h′ means of arms in Kh′ is increasing with h′,

∀h′ ≤ Ni,t − 1, max
i∈Kh′+1

µh
′+1
i (Ni,t) ≥ max

i∈Kh′
µh
′

i (Ni,t).

To show the above property, we remark that thanks to our selection rule, the arm that has the largest
average of means, always passes the filter. Formally, we show that arg maxi∈Kh′ µ

h′

i (Ni,t) ⊆ Kh′+1. Let

ih
′

max ∈ arg maxi∈Kh′ µ
h′

i (Ni,t). Then for such ih
′

max, we have

µ̂h
′

ih′max
(Nih′max,t

) ≥ µh
′

ih′max
(Nih′max,t

)− c(h′, δt) ≥ µh
′

max,t − c(h′, δt) ≥ µ̂h
′

max,t − 2c(h′, δt),

where the first and the third inequality are due to confidence bounds on estimates, while the second one is due to
the definition of ih

′

max.

Since the arms are decaying, the average of the last h′ + 1 mean values for a given arm is always greater than the
average of the last h′ mean values and therefore,

max
i∈Kh′

µh
′

i (Ni,t) = µh
′

ih′max
(Nih′max,t

) ≤ µh
′+1
ih′max

(Nih′max,t
) ≤ max

i∈Kh′+1

µh
′+1
i (Ni,t), (13)

because ih
′

max ∈ Kh′+1. Gathering Equations 11, 12, and 13 leads to the claim of the lemma,

µhi (Ni,t)
(11)

≥ max
i∈Kh

µhi (Ni,t)− 4c(h, δt)
(13)

≥ max
i∈K1

µ1
i (Ni,t)− 4c(h, δt)

(12)

≥ µ+
t (πF)− 4c(h, δt).

Corollary 1. Let i ∈ op be an arm overpulled by FEWA at round t and hi,t , NπF
i,t −Nπ?

i,t ≥ 1 be the difference
in the number of pulls w.r.t. the optimal policy π? at round t. On the h.p. event ξt, we have

µ+
t (πF)− µhi,ti (Ni,t) ≤ 4c(hi,t, δt). (8)

Proof. If i was pulled at round t, then by the condition at Line 10 of Algorithm 1, it means that i passes through
all the filters from h = 1 up to Ni,t. In particular, since 1 ≤ hi,t ≤ Ni,t, i passed the filter for hi,t, and thus we
can apply Lemma 1 and conclude

µhi (Ni,t) ≥ µ+
t (πF)− 4c(hi,t, δt). (14)
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B Proofs of auxiliary results

Lemma 2. Let hπi,t , |Nπ
i,T −Nπ?

i,T |. For any policy π, the regret at round T is no bigger than

RT (π) ≤
∑
i∈op

hπi,T−1∑
h=0

[
ξtπi (N?i,T+h)

](
µ+
T (π)− µi(Nπ?

i,T + h)
)

+

T∑
t=0

[
ξt

]
Lt.

We refer to the the first sum above as to Aπ and to the second on as to B.

Proof. We consider the regret at round T . From Equation 3, the decomposition of regret in terms of overpulls
and underpulls gives

RT (π) =
∑
i∈up

Nπ
?

i,T∑
t′=Nπi,T+1

µi(t
′)−

∑
i∈op

Nπi,T∑
t′=Nπ

?
i,T+1

µi(t
′).

In order to separate the analysis for each arm, we upper-bound all the rewards in the first sum by their maximum
µ+
T (π) , maxi∈K µi(N

π
i,T ). This upper bound is tight for problem-independent bound because one cannot hope

that the unexplored reward would decay to reduce its regret in the worst case. We also notice that there are as
many terms in the first double sum (number of underpulls) than in the second one (number of overpulls). This
number is equal to

∑
op h

π
i,T . Notice that this does not mean that for each arm i, the number of overpulls equals

to the number of underpulls, which cannot happen anyway since an arm cannot be simultaneously underpulled
and overpulled. Therefore, we keep only the second double sum,

RT (π) ≤
∑
i∈op

hπi,T−1∑
t′=0

(
µ+
T (πF)− µi(Nπ?

i,T + t′)
)
. (15)

Then, we need to separate overpulls that are done under ξt and under ξt. We introduce tπi (n), the round at which
π pulls arm i for the n-th time. We now make the round at which each overpull occurs explicit,

RT (π) ≤
∑
i∈op

hπi,T−1∑
t′=0

T∑
t=0

[
tπi

(
Nπ?

i,T + t′
)

= t
](
µ+
T (π)− µi(Nπ?

i,T + t′)
)

≤
∑
i∈op

hπi,T−1∑
t′=0

T∑
t=0

[
tπi

(
Nπ?

i,T + t′
)

= t ∧ ξt
](
µ+
T (π)− µi(Nπ?

i,T + t′)
)

︸ ︷︷ ︸
Aπ

+
∑
i∈op

hπi,T−1∑
t′=0

T∑
t=0

[
tπi

(
Nπ?

i,T + t′
)

= t ∧ ξt
](
µ+
T (π)− µi(Nπ?

i,T + t′)
)

︸ ︷︷ ︸
B

.

For the analysis of the pulls done under ξt we do not need to know at which round it was done. Therefore,

Aπ ≤
∑
i∈op

hπi,T−1∑
t′=0

[
ξt(N?i,t+t′)

](
µ+
T (π)− µi(Nπ?

i,T + t′)
)
.

For FEWA, it is not easy to directly guarantee the low probability of overpulls (the second sum). Thus, we
upper-bound the regret of each overpull at round t under ξt by its maximum value Lt. While this is done to ease
FEWA analysis, this is valid for any policy π. Then, noticing that we can have at most 1 overpull per round t,

i.e.,
∑
i∈op

∑hπi,T−1
t′=0

[
tπi
(
Nπ?

i,T + t′
)

= t
]
≤ 1, we get

B ≤
T∑
t=0

[
ξt

]
Lt
∑
i∈op

hπi,T−1∑
t′=0

[
tπi

(
Nπ?

i,T + t′
)

= t
]
≤

T∑
t=0

[
ξt

]
Lt.
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Therefore, we conclude that

RT (π) ≤
∑
i∈op

hπi,T−1∑
t′=0

[
ξtπi (N?i,t+t′)

](
µ+
T (π)− µi(Nπ?

i,T + t′)
)

︸ ︷︷ ︸
Aπ

+

T∑
t=0

[
ξt

]
Lt︸ ︷︷ ︸

B

.

Lemma 3. Let hi,t , hπF
i,t = |NπF

i,T −Nπ?

i,T |.For policy πF with parameters (α, δ0), AπF
defined in Lemma 2 is

upper-bounded by

AπF
,
∑
i∈op

hi,T−1∑
t′=0

[
ξtπFi (N?i,t+t

′)

](
µ+
T (πF)− µi(Nπ?

i,T + t′)
)

≤
∑
i∈opξ

(
4

√
2ασ2 log+(KTδ

−1/α
0 ) + 4

√
2ασ2

(
hξi,T − 1

)
log+(KTδ

−1/α
0 ) + L

)
.

Proof. First, we define hξi,T , max
{
h ≤ hi,T | ξtπFi (N?i,t+h)

}
, the last overpull of arm i pulled at round ti ,

tπF
i (N?

i,t + hξi,T ) ≤ T under ξt. Now, we upper-bound AπF by including all the overpulls of arm i until the hξi,T -th

overpull, even the ones under ξt,

AπF
,
∑
i∈op

h
πF
i,T−1∑
t′=0

[
ξtπFi (N?i,t+t

′)

](
µ+
T (πF)− µi(Nπ?

i,T + t′)
)
≤
∑
i∈opξ

hξi,T−1∑
t′=0

(
µ+
T (πF)− µi(Nπ?

i,T + t′)
)
,

where opξ ,
{
i ∈ op| hξi,T ≥ 1

}
. We can therefore split the second sum of hξi,T term above into two parts. The

first part corresponds to the first hξi,T − 1 (possibly zero) terms (overpulling differences) and the second part

to the last (hξi,T − 1)-th one. Recalling that at round ti, arm i was selected under ξti , we apply Corollary 1 to
bound the regret caused by previous overpulls of i (possibly none),

AπF
≤
∑
i∈opξ

µ+
T (πF)− µi

(
N?
i,T + hξi,T − 1

)
+ 4
(
hξi,T − 1

)
c
(
hξi,T − 1, δti

)
(16)

≤
∑
i∈opξ

µ+
T (πF)− µi

(
N?
i,T + hξi,T − 1

)
+ 4
(
hξi,T − 1

)
c
(
hξi,T − 1, δT

)
(17)

≤
∑
i∈opξ

µ+
T (πF)− µi

(
N?
i,T + hξi,T − 1

)
+ 4

√
2ασ2

(
hξi,T − 1

)
log+

(
KTδ

−1/α
0

)
, (18)

with log+(x) , max(log(x), 0). The second inequality is obtained because δt is decreasing and c(., ., δ) is decreasing
as well. The last inequality is the definition of confidence interval in Proposition 4 with log+(KTα) ≤ α log+(KT )

for α > 1. If Nπ?

i,T = 0 and hξi,T = 1 then

µ+
T (πF)− µi(Nπ?

i,T + hξi,T − 1) = µ+(πF)− µi(0) ≤ L,

since and µ+(πF) ≤ L and µi(0) ≥ 0 by the assumptions of our setting. Otherwise, we can decompose

µ+
T (πF)−µi(Nπ?

i,T + hξi,T − 1) = µ+
T (πF)− µi(Nπ?

i,T + hξi,T − 2)︸ ︷︷ ︸
A1

+µi(N
π?

i,T + hξi,T − 2)− µi(Nπ?

i,T + hξi,T − 1)︸ ︷︷ ︸
A2

.

For term A1, since arm i was overpulled at least once by FEWA, it passed at least the first filter. Since this
hξi,T -th overpull is done under ξti , by Lemma 1 we have that

A1 ≤ 4c(1, δti) ≤ 4c(1,K−1T−α) ≤ 4

√
2ασ2 log+

(
KTδ

−1/α
0

)
.
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The second difference, A2 = µi(N
π?

i,T + hξi,T − 2)− µi(Nπ?

i,T + hξi,T − 1) cannot exceed L, since by the assumptions
of our setting, the maximum decay in one round is bounded. Therefore, we further upper-bound Equation 18 as

AπF ≤
∑
i∈opξ

(
4

√
2ασ2 log+

(
KTδ

−1/α
0

)
+ 4

√
2ασ2

(
hξi,T − 1

)
log+

(
KTδ

−1/α
0

)
+ L

)
. (19)

Lemma 4. Let ζ(x) =
∑
n n
−x. Thus, with δt = δ0/(Kt

α) and α > 4, we can use Proposition 4 and get

E[B] ,
T∑
t=0

p
(
ξt
)
Lt ≤

T∑
t=0

Ltδ0
2tα−2

≤ Lδ0
ζ(α− 3)

2
·

C Minimax regret analysis of FEWA

Theorem 1. For any rotting bandit scenario with means {µi(n)}i,n satisfying Asm. 1 with bounded decay L and
any time horizon T , FEWA run with α = 5 and δt = 1/(Kt5), suffers an expected regret 7

E[RT (πF)] ≤ 13σ(
√
KT +K)

√
log(KT ) +KL.

Proof. To get the problem-independent upper bound for FEWA, we need to upper-bound the regret by quantities
which do not depend on {µi}i. The proof is based on Lemma 2, where we bound the expected values of terms
AπF

and B from the statement of the lemma. We start by noting that on high-probability event ξT , we have by
Lemma 3 and α = 5 that

AπF
≤
∑
i∈opξ

(
4
√

10σ2 log(KT ) + 4
√

10σ2(hi − 1) log(KT ) + L
)
.

Since opξ ⊆ op and there are at most K − 1 overpulled arms, we can upper-bound the number of terms in the
above sum by K − 1. Next, the total number of overpulls

∑
i∈op hi,T cannot exceed T . As square-root function is

concave we can use Jensen’s inequality. Moreover, we can deduce that the worst allocation of overpulls is the
uniform one, i.e., hi,T = T/(K − 1),

AπF
≤ (K − 1)(4

√
10σ2 log(KT ) + L) + 4

√
10σ2 log(KT )

∑
i∈op

√
(hi,T − 1)

≤ (K − 1)(4
√

10σ2 log(KT ) + L) + 4
√

10σ2(K − 1)T log(KT ). (20)

Now, we consider the expectation of term B from Lemma 2. According to Lemma 4, with α = 5 and δ0 = 1,

E[B] ≤ Lζ(2)

2
=
Lπ2

12
· (21)

Therefore, using Lemma 2 together with Equations 20 and 21, we bound the total expected regret as

E[RT (πF)] ≤ 4
√

10σ2(K − 1)T log(KT ) + (K − 1)(4
√

10σ2 log(KT ) + L) +
Lπ2

6
· (22)

Corollary 3. FEWA run with α > 3 and δ0 , 2δ/ζ(α− 2) achieves with probability 1− δ,

RT (πF) = AπF
≤ 4

√√√√2ασ2 log+

(
KT

δ
1/α
0

)(
K − 1 +

√
(K − 1)T

)
+ (K − 1)L.

7See Corollary 3 and 4 for the high-probability result.
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Proof. We consider the event
⋃
t≤T ξt which happens with probability

1−
∑
t≤T

Kt2δt
2
≤ 1−

∑
t≤T

Kt2δt
2
≤ 1− ζ(α− 2)δ0

2
·

Therefore, by setting δ0 , 2δ/ζ(α− 2), we have that B = 0 with probability 1− δ since
[
ξt

]
= 0 for all t. We can

then use the same analysis of AπF
as in Theorem 1 to get

RT (πF) = AπF ≤ 4

√√√√2ασ2 log+

(
KT

δ
1/α
0

)(
K − 1 +

√
(K − 1)T

)
+ (K − 1)L.

D Problem-dependent regret analysis of FEWA

Lemma 5. AπF
defined in Lemma 2 is upper-bounded by a problem-dependent quantity,

AπF
≤
∑
i∈K

(
32ασ2 log+(KTδ

−1/α
0 )

∆i,h+
i,T−1

+

√
32ασ2 log+(KTδ

−1/α
0 )

)
+ (K − 1)L.

Proof. We start from the result of Lemma 3,

AπF
≤
∑
i∈opξ

(
4

√
2ασ2 log(KTδ

−1/α
0 )

(
1 +

√
hξi,T − 1

))
+ (K − 1)L. (23)

We want to bound hξi,T with a problem dependent quantity h+i,T . We remind the reader that for arm i at round

T , the hξi,T -th overpull has been on ξti pulled at round ti. Therefore, Corollary 1 applies and we have

µ
hξi,T−1
i

(
Nπ?

i,T + hξi,T − 1
)
≥ µ+

T (πF)− 4c
(
hξi,T − 1, δti

)
≥ µ+

T (πF)− 4c
(
hξi,T − 1, δT

)

≥ µ+
T (πF)− 4

√√√√√2ασ2 log
(
KTδ

−1/α
0

)
hξi,T − 1

≥ µ−T (π?)− 4

√√√√√2ασ2 log
(
KTδ

−1/α
0

)
hξi,T − 1

,

with µ−T (π?) , mini∈K µi
(
N?
i,T − 1

)
being the lowest mean reward for which a noisy value was ever obtained by

the optimal policy. µ−T (π?) < µ+
T (πF) implies that the regret is 0. Indeed, in that case the next possible pull with

the largest mean for πF is strictly larger than the mean of the last pull for π?. Thus, there is no underpull at this
round for πF and RT (πF) = 0 according to Equation 3. Therefore, we can assume µ−T (π?) ≥ µ+

T (πF) for the regret

bound. Next, we define ∆i,h , µ−T (π?) − µhi
(
N?
i,t + h

)
as the difference between the lowest mean value of the

arm pulled by π? and the average of the h first overpulls of arm i. Thus, we have the following bound for hξi,T ,

hξi,T ≤ 1 +
32ασ2 log

(
KTδ

−1/α
0

)
∆i,hξi,T−1

·

Next, hξi,T has to be smaller than the maximum such h, for which the inequality just above is satisfied if we

replace hξi,T by h. Therefore,

hξi,T ≤ h
+
i,T , max

h ≤ T ∣∣ h ≤ 1 +
32ασ2 log+

(
KTδ

−1/α
0

)
∆2
i,h−1

· (24)
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Since the square-root function is increasing, we can upper-bound Equation 18 by replacing hξi,T by its upper

bound h+i,T to get

AπF
≤
∑
i∈opξ

(
4

√
2ασ2 log+(KTδ

−1/α
0 )

(
1 +

√
h+i,T − 1

)
+ L

)

≤
∑
i∈opξ

√32ασ2 log+(KTδ
−1/α
0 )

1 +

√
32ασ2 log+(KTδ

−1/α
0 )

∆i,h+
i,T−1

+ L

.
The quantity opξ is depends on the execution. Notice that there are at most K − 1 arms in opξ and that op ⊂ K.
Therefore, we have

AπF
≤
∑
i∈K

32ασ2 log+

(
KTδ

−1/α
0

)
∆i,h+

i,T−1
+

√
32ασ2 log+

(
KTδ

−1/α
0

)+ (K − 1)L.

Corollary 2. For δt , 1/(Kt5) and Cα , 32ασ2, the regret of FEWA is bounded as

E[RT (πF)] ≤
∑
i∈K

(
C5 log(KT )

∆i,h+
i,T−1

+
√
C5 log(KT ) + L

)
.

Proof. Using Lemmas 2, 4, and 5 we get

E[RT (πF)] = E[AπF
] + E[B] ≤

∑
i∈K

(
32ασ2 log(KT )

∆i,h+
i,T−1

+
√

32ασ2 log(KT )

)
+ (K − 1)L+

Lπ2

6

≤
∑
i∈K

(
32ασ2 log(KT )

∆i,h+
i,T−1

+
√

32ασ2 log(KT ) + L

)
·

Corollary 4. FEWA run with α > 3 and δ0 , 2δ/ζ(α− 2) achieves with probability 1− δ,

RT (πF) ≤
∑
i∈K

32ασ2 log+

(
KTζ(α−2)1/α

(2δ)1/α

)
∆i,h+

i,T−1
+

√
32ασ2 log+

(
KTζ(α− 2)1/α

(2δ)1/α

)+ (K − 1)L.

Proof. We consider the event ∪t≤T ξt which happens with probability

1−
∑
t≤T

Kt2δt
2
≤ 1−

∑
t≤T

Kt2δt
2
≤ 1− ζ(α− 2)δ0

2
·

Therefore, by setting δ0 , 2δ/ζ(α− 2), we have that with probability 1− δ, B = 0 since
[
ξt

]
= 0 for all t. We

use Lemma 5 to get the claim of the corollary.

E Efficient algorithm EFF-FEWA

In Algorithm 3, we present EFF-FEWA, an algorithm that stores at most 2K log2(t) of statistics. More precisely,
for j ≤ log2(NπEF

i,t ), we let ŝ pi,j and ŝ ci,j be the current and pending j-th statistic for arm i. We then present an
analysis of EFF-FEWA.
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Figure 3: Illustration of the functioning of EFF-FEWA. The red circles denotes the number of pulls of arm i
at which a new estimate ŝ ci,j is created corresponding to a window h = 2j , while the green boxes indicate the

number of pulls for which ŝci,j is updated with the last 2j samples.

Algorithm 3 EFF-FEWA

Input: K, δ0, α
1: pull each arm once, collect reward, and initialize Ni,K ← 1
2: for t← K + 1,K + 2, . . . do
3: δt ← δ0/(Kt

α)
4: j ← 0 {initialize bandwidth}
5: K1 ← K {initialize with all the arms}
6: i(t)← none

7: while i(t) is none do
8: K2j+1 ← EFF Filter(K2j , j, δt)
9: j ← j + 1

10: if ∃i ∈ K2j such that Ni,t ≤ 2j then
11: i(t)← i
12: end if
13: end while
14: receive ri(Ni,t+1)← ri(t),t
15: EFF Update(i(t), ri(Ni,t+1), t+ 1)
16: end for

Algorithm 4 EFF Filter

Input: K2j , j, δt, σ

1: c(2j , δt)←
√

2σ2/2j log δ−1t
2: ŝ cmax,j ← maxi∈Kh ŝ

c
i,j

3: for i ∈ Kh do
4: ∆i ← ŝ cmax,j − ŝ ci,j
5: if ∆i ≤ 2c(2j , δt) then
6: add i to K2j+1

7: end if
8: end for
Output: K2j+1
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Algorithm 5 EFF Update

Input: i, r, t
1: Ni(t),t ← Ni(t),t−1 + 1

2: Rtotal
i ← Rtotal

i + r {keep track of total reward}
3: if ∃j such that Ni,t = 2j then
4: ŝ ci,j ← Rtotal

i /Ni,t {initialize new statistics}
5: ŝ pi,j ← 0
6: ni,j ← 0
7: end if
8: for j ← 0 . . . log2(Ni,t) do
9: ni,j ← ni + 1

10: ŝ pi,j ← ŝ pi,j + r

11: if ni,j = 2j then
12: ŝ ci,j ← ŝ pi,j/2

j

13: ni,j ← 0
14: ŝ pi,j ← 0
15: end if
16: end for

On one hand, at any time t, ŝ ci,j is the average of 2j−1 consecutive reward samples for arm i within the last 2j − 1

sample. These statistics are used in the filtering process as they are representative of exactly 2j−1 recent samples.
On the other hand, ŝ pi,j stores the pending samples that are not yet taken into account by ŝ ci,j . Therefore, each

time we pull arm i, we update all the pending averages. When the pending statistic is the average of the 2j−1

last samples then we set ŝ ci,j ← ŝ pi,j and we reinitialize ŝ pi,j ← 0.

How does that modify Lemma 1? We let µh
′,h′′

i be the average of the samples between the h′-th last one and the

h′′-th last one (included) with h′′ > h′. FEWA was controlling µ1,h
i for each arm, EFF-FEWA controls µ

h′i,h
′
i+2j−1

i

with different h′i ≤ 2j−1 − 1 for each arm. However, since the means of arms are non-increasing, we can consider
the worst case when the arm with the highest mean available at that round is estimated on its last samples (the
smaller one) and the bad arms are estimated on their oldest possibles samples (the larger one).

Lemma 6. On the favorable event ξt, if an arm i passes through a filter of window h at round t, the average of
its h last pulls cannot deviate significantly from the best available arm i?t at that round,

µ2j−1,2j−1
i ≥ µ+

t (πF)− 4c(h, δt).

Then, we modify Corollary 1 to have the following efficient version of it.

Corollary 5. Let i ∈ op be an arm overpulled by EFF-FEWA at round t and hπEF
i,t , NπEF

i,t −Nπ?

i,t ≥ 1 be the
difference in the number of pulls w.r.t. the optimal policy π? at round t. On the favorable event ξt, we have that

µ+
t (πEF)− µh

πEF
i,t (Ni,t) ≤

4
√

2√
2− 1

c(hπEF
i,t , δt).

Proof. If i was pulled at round t, then by the condition at Line 10 of Algorithm 3, it means that i passes through
all the filters until at least window 2f such that 2f ≤ hπEF

i,t < 2f+1. Note that for hπEF
i,t = 1, then EFF-FEWA has
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the same guarantee as FEWA since the first filter is always up to date. Then for hπEF
i,t ≥ 2,

µ
1,h

πEF
i,t

i (Ni,t) ≥ µ1,2f−1
i (Ni,t) =

∑f
j=1 2j−1µ2j−1,2j−1

i

2f − 1
(25)

≥ µ+
t (πEF)−

4
∑f
j=1 2j−1c(2j−1, δ)

2f − 1
= µ+

t (πEF)− 4c(1, δt)

∑f
j=1

√
2
j−1

2f − 1
(26)

= µ+
t (πEF)− 4c(1, δt)

√
2
f − 1

(2f − 1)(
√

2− 1)
≥ µ+

t (πEF)− 4c(1, δt)
1

√
2
f
(
√

2− 1)
(27)

= µ+
t (πEF)− 4

√
2√

2− 1
c
(
2f+1, δt

)
≥ µ+

t (πEF)− 4
√

2√
2− 1

c
(
hπEF
i,t , δt

)
, (28)

where Equation 25 uses that the average of older means is larger than average of the more recent ones and then
decomposes 2f − 1 means onto a geometric grid. Then, Equation 26 uses Lemma 6 and make the dependence of
c(2j−1, δ) on j explicit. Next, Equations 27 and 28 use standard algebra to derive a lower bound and that c(h, δ)
decreases with h.

Armed with the above, we use the same proof as the one we have for FEWA and derive minimax and problem-
dependent upper bounds for EFF-FEWA using Corollary 5 instead of Corollary 1.

Corollary 6 (minimax guarantee for EFF-FEWA). For any rotting bandit scenario with means {µi(n)}i,n
satisfying Assumption 1 with bounded decay L and any time horizon T , EFF-FEWA with δt = 1/(Kt5), α = 5,
and δ0 = 1, has its expected regret upper-bounded as

E[RT (πEF)] ≤ 13σ

( √
2√

2− 1

√
KT +K

)√
log(KT ) +KL.

Corollary 7 (problem-dependent guarantee for EFF-FEWA). For δt = 1/(Kt5), the regret of EFF-FEWA is
upper-bounded as

RT (πEF) ≤
∑
i∈K

(
C5

2
3−2
√
2

log(KT )

∆i,h+
i,T−1

+
√
C5 log(KT ) + L

)
,

with Cα , 32ασ2 and h+i,T defined in Equation 10.

F Numerical Simulations: Stochastic Bandit

In Figure 4 we compare the performance of FEWA against UCB1 (Auer et al., 2002a) on two-arm bandits with
different gaps. These experiments confirm the theoretical findings of Theorem 1 and Corollary 2: FEWA has
comparable performance with UCB1. In particular, both algorithms have a logarithmic asymptotic behavior and
for α = 0.06, the ratio between the regret of two algorithms is empirically lower than 2. Notice, the theoretical
factor between the two upper bounds is 5 (for α = 5). This shows the ability of FEWA to be competitive for
stochastic bandits.
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Figure 4: Comparing UCB1 and FEWA with ∆ = 0.14 and ∆ = 1.


