
Proceedings of Machine Learning Research vol 144:1–17, 2021 3rd Annual Conference on Learning for Dynamics and Control

On the model-based stochastic value gradient for
continuous reinforcement learning

Brandon Amos1� Samuel Stanton2 Denis Yarats1,2 Andrew Gordon Wilson2

1Facebook AI Research 2NYU �Correspondence to: bda@fb.com

Editors: A. Jadbabaie, J. Lygeros, G. J. Pappas, P. A. Parrilo, B. Recht, C. J. Tomlin, M. N. Zeilinger

Abstract
For over a decade, model-based reinforcement learning has been seen as a way to leverage
control-based domain knowledge to improve the sample-efficiency of reinforcement learning
agents. While model-based agents are conceptually appealing, their policies tend to lag
behind those of model-free agents in terms of final reward, especially in non-trivial environ-
ments. In response, researchers have proposed model-based agents with increasingly complex
components, from ensembles of probabilistic dynamics models, to heuristics for mitigating
model error. In a reversal of this trend, we show that simple model-based agents can be
derived from existing ideas that not only match, but outperform state-of-the-art model-free
agents in terms of both sample-efficiency and final reward. We find that a model-free
soft value estimate for policy evaluation and a model-based stochastic value gradient for
policy improvement is an effective combination, achieving state-of-the-art results on a high-
dimensional humanoid control task, which most model-based agents are unable to solve. Our
findings suggest that model-based policy evaluation deserves closer attention. The source
code to reproduce our experiments is available online at github.com/facebookresearch/svg.
Keywords: Reinforcement learning, model-based control, value gradient

1. Introduction

The task of designing a reinforcement learning (RL) agent that can learn to optimally interact
with an unknown environment has wide-reaching applications in, e.g., robotics (Kober et al.,
2013; Polydoros and Nalpantidis, 2017), control (Lillicrap et al., 2015; Kiumarsi et al., 2017),
finance (Fischer, 2018), and gaming (Vinyals et al., 2019; Berner et al., 2019; Justesen et al.,
2019). Many long-standing challenges remain after decades of research (Sutton and Barto,
2018) and the field is unsettled on a single method for solving classes of tasks. Subtle
variations in the settings can significantly impact how agents need to learn, explore, and
represent their internal decision process and the external world around them.

Model-based methods explicitly construct a surrogate of the true environment, which
can be queried with hypothetical sequences of actions to assess their outcome. In contrast,
model-free methods rely entirely on online and historical ground-truth data, and implicitly
incorporate the environment dynamics into action value estimates. Historically, the abstrac-
tions of model-based methods are more amenable to the incorporation of expert domain
knowledge (Todorov et al., 2012), and often find higher reward policies than their model-free
counterparts when only a small amount of ground-truth data can be collected (Deisenroth
and Rasmussen, 2011; Chua et al., 2018; Wang and Ba, 2019; Janner et al., 2019; Kaiser
et al., 2019). However model-based methods struggle to match the performance of model-free

© 2021 B. Amos, S. Stanton, D. Yarats & A.G. Wilson.

http://github.com/facebookresearch/svg

On the model-based stochastic value gradient for continuous reinforcement learning

Figure 1: A model-based SAC-SVG agent learns a near-optimal humanoid gait by using short-
horizon model rollouts. More videos are online at sites.google.com/view/2020-svg.

agents when the latter are allowed unlimited interactions with the environment. While recent
work has greatly improved the asymptotic performance of model-based agents, on the most
challenging tasks they still often significantly under-perform model-free approaches.

While the incorporation of an explicit world model can introduce helpful inductive biases
to RL agents, imperfect learned models introduce additional, unwanted biases. An imperfect
model may assign high expected reward to catastrophic actions, or it may conjure fantasies of
hypothetical states having no correspondence to any realizable agent configuration. Precisely
which biases are introduced, and the resulting impact on the agent, depends heavily on how
the model is used. In some cases, the model aids action selection online, and in others it
augments an existing replay buffer with fictional experience. The reproducibility crisis in
reinforcement learning (Islam et al., 2017; Henderson et al., 2018; Engstrom et al., 2020;
Sinha et al., 2020) makes evaluating and understanding the tradeoffs difficult.

In this work we seek to answer a key question: “What is the simplest model-based agent
that can achieve state-of-the-art results on current benchmark tasks?” We show that if the
model is used only for policy improvement, then a simple combination of a stochastic value
gradient (SVG) (Heess et al., 2015), entropy regularization, soft value estimates (Haarnoja
et al., 2018), and a single deterministic dynamics model are sufficient to match and surpass
the final performance of model-based and model-free methods. This finding is particularly
notable because our baselines are substantially stronger than those reported in previous work.
We also show that the performance improvements of our approach cannot be attributed to
model architecture alone. Finally, we demonstrate that policy evaluation can be significantly
more sensitive to model bias than policy improvement, even for short rollouts.

2. Related work on model-based continuous reinforcement learning

In most model-based methods for continuous control, the dynamics model serves some or
all of the following functions: (1) a source of low-bias on-policy value estimates, obtained
by explicitly unrolling the policy for the full horizon or by refining a bootstrapped value
estimate; (2) a source of multistep value gradients for policy improvement; or (3) a source
of fictional transition data with which to augment expensive ground-truth transition data
for standard model-free updates. Nearly every combination of these three functions can be
found in the literature. If bootstrapped value estimates are not used, and the model fulfills

2

http://sites.google.com/view/2020-svg

On the model-based stochastic value gradient for continuous reinforcement learning

Table 1: Key differences between related work on imagination, value-expansion, and policy
distillation for continuous control. We use MVE to denote some form of value-
expansion, which may not necessarily have an explicit terminal value approximation.

Policy Learning Value Learning Dynamics
Update Objective Model Ensemble Observation Space

PILCO (Deisenroth and Rasmussen, 2011) G MBPG - GP No Proprio
MVE (Feinberg et al., 2018) G MF MVE Det NN No Proprio
STEVE (Buckman et al., 2018) G MF MVE Prob NN Yes Proprio
IVG (Byravan et al., 2019) G MVE MF Det NN No Pixel+Proprio
Dreamer (Hafner et al., 2019) G MVE MVE Prob NN No Pixel

GPS (Levine and Koltun, 2013) BC MVE - Local No Proprio
POPLIN (Wang and Ba, 2019) BC MVE - Prob NN Yes Proprio

METRPO (Kurutach et al., 2018) G MF+rollout data MF+rollout data Det NN Yes Proprio
MBPO (Janner et al., 2019) G MF+rollout data MF+rollout data Prob NN Yes Proprio

SAC (Haarnoja et al., 2018) G MF MF -
SAC-SVG(H) — this paper G MVE MF Det NN No Proprio
G=Gradient-based BC=Behavioral Cloning MF=Model Free MVE=Model-Based Value Expansion GP=Gaussian Process

functions (1) and (2), one obtains a generalized form of PILCO (Deisenroth and Rasmussen,
2011). Introducing bootstrapped value estimates and removing (1), one obtains the value
gradient (Heess et al., 2015; Byravan et al., 2019; Hafner et al., 2019; Clavera et al., 2020).
The model with (1) can also be used in a search procedure (Springenberg et al., 2020; Marino
et al., 2020). Conversely if (1) is retained and (2) is removed, the MVE method (Feinberg
et al., 2018) is recovered. Dyna-Q (Sutton, 1990) is an early method which uses the model
exclusively for (3), followed more recently by NAF (Gu et al., 2016), ME-TRPO (Kurutach
et al., 2018), and MBPO (Janner et al., 2019). Other contributions focus on the effect of
ensembling some or all of the learned models, such as PETS (Chua et al., 2018), STEVE
(Buckman et al., 2018), and POPLIN (Wang and Ba, 2019). We overview the current state of
the literature and summarize some key dimensions in table 1. Our paper fits into this space
of related work to show that if set up correctly, the value gradient is a competitive baseline.

We have focused this section on continuous spaces and refer to Schrittwieser et al. (2020);
Hamrick et al. (2020) for further discussions and related work in discrete spaces.

3. Preliminaries, notation, and background in reinforcement learning

Here we present the non-discounted setting for brevity and refer to Thomas (2014); Haarnoja
et al. (2018) for the full details behind the γ-discounted setting.

3.1. Markov decision processes and reinforcement learning

A Markov decision process (MDP) (Szepesvári, 2010; Puterman, 2014) is a discrete-time
stochastic control process widely used in robotics and industrial systems. We represent an
MDP as the tuple (X ,U , p, r), where X is the state space, U is the control or action space,
the transition dynamics p := Pr(xt+1|xt, ut) capture the distribution over the next state
xt+1 given the current state xt and control ut, r : X × U → R is the reward map. The
termination map d : X × U → [0, 1] indicates the probability of the system terminating after
executing (xt, ut). We refer to the dynamics, rewards, and termination map as the world

3

On the model-based stochastic value gradient for continuous reinforcement learning

model, e.g. following Ha and Schmidhuber (2018), and consider MDPs with known and
unknown world models. We focus on MDPs with continuous and real-valued state spaces
X = Rm and bounded control spaces U = [−1, 1]n. We consider parameterized stochastic
policies πθ(xt) := Pr(ut|xt) that induce state and state-control marginals ρπt (·) for each time
step t, which can be constrained to start from an initial state x0 as ρπt (·|x0). For finite-horizon
non-discounted MDPs, the value V or action-conditional value Q of a policy π is

V π(x) :=
∑
t

E
(xt,ut)∼ρπt (·|x)

r(xt, ut), Qπ(x, u) := r(x, u) + E
x′∼ρπ1 (·|x)

V π(x′), (1)

which may be extended to regularize the policy’s entropy with some temperature α ≥ 0 as

V π,α(x) :=
∑
t

E
(xt,ut)∼ρπt (·|x)

r(xt, ut)− α log π(ut|xt). (2)

The value function of a given policy can be estimated (i.e. policy evaluation) by explicitly
rolling out the world model for H steps with

V π
0:H(x) :=

∑
t<H

E
(xt,ut)∼ρπt (·|x)

r(xt, ut) + E
xH∼ρπH(·|x)

Ṽ (xH),

Qπ0:H(x, u) := r(x, u) + E
x′∼ρπ1 (·|x)

V π
0:H−1(x′).

(3)

The final value estimator Ṽ can take the form of a simple terminal reward function or a
parametric function approximator trained through some variant of Bellman backup such as
fitted Q-iteration (Antos et al., 2008). Following Feinberg et al. (2018), we refer to eq. (3) as
the model-based value expansion (MVE).

Policy improvement updates the policy to attain a better expected value. In the RL
setting, the world model is often unknown and the value estimate is approximated in a
model-free way that does not attempt to explicitly model the world. In many actor-critic
methods, policy improvement is done with gradient ascent using the value gradient ∇θV π(x).
With stochastic policies, ∇θV π(x) is the stochastic value gradient (SVG) (Heess et al., 2015).
For consistency, we refer to methods that update the policy with an H-step value expansion
as SVG(H), even though other papers refer to this by other names (Byravan et al., 2019;
Hafner et al., 2019; Clavera et al., 2020).

3.2. The soft actor-critic for learning continuous control policies

The soft actor-critic (SAC) method (Haarnoja et al., 2018) learns a state-action value
function Qθ, stochastic policy πθ, and a temperature α to find an optimal policy for a
continuous-valued MDP (X ,U , p, r, γ). SAC optimizes a γ-discounted maximum-entropy
objective as in Ziebart et al. (2008); Ziebart (2010); Fox et al. (2015). The policy πθ is a
parameterized tanh-Gaussian that given xt, generates samples ut = tanh(µθ(xt) + σθ(xt)ε),
where ε ∼ N (0, 1) and µθ and σθ are models that generate the pre-squashed mean and
standard deviation. The critic Qθ optimizes the soft (single-step) Bellman residual

JQ(D) := E
(xt,ut)∼D

[(Qθ(xt, ut)−Qtarg

θ̄
(xt, ut))

2], (4)

4

On the model-based stochastic value gradient for continuous reinforcement learning

where D is a distribution of transitions, e.g. an offline replay buffer containing recent
experience, θ̄ is an exponential moving average of the weights (Mnih et al., 2015),

Qtarg

θ̄
(xt, ut) := r(xt, ut) + γ E

xt+1∼p
Vθ̄(xt+1), (5)

is the critic target, the soft value function is

Vθ̄(x) := E
u∼πθ(x)

[Qθ̄(x, u)− α log πθ(u|x)] , (6)

and log πθ(u|x) is the log-probability of the action. SAC also uses double Q learning (Hasselt,
2010) and does policy optimization with the objective

J SAC
π,α (D) := E

x∼D
[DKL(πθ(·|x) || Qθ,α(x, ·))] = E

x∼D,u∼π(x)
[α log π(u|x)−Q(x, u)] , (7)

where Qθ,α(x, ·) ∝ exp{ 1
αQθ,α(x, ·)} and the last equality comes from expanding the KL

definition. The temperature α is adapted following Haarnoja et al. (2018) to make the
policy’s entropy match a target value H̄ ∈ R by optimizing

Jα(D) := E
xt∼D,ut∼πθ(xt)

[
−α log πθ(ut|xt)− αH̄

]
. (8)

4. SVG(H) with entropy regularization and a model-free value estimate

In this section we discuss a simple model-based extension of model-free SAC. We find that
one is immediately suggested by reframing the SAC actor update within the SVG framework.
We also describe our dynamics model architecture, which is better suited for multistep value
gradients than the MLPs often employed in model-based RL agents.

4.1. Connecting the SAC actor update and stochastic value gradients

Although motivated differently in Haarnoja et al. (2018), the SAC actor update is equivalent
to entropy-regularized SVG(0) with a soft value estimate. This is seen by comparing the
entropy-regularized value estimate in eq. (2) with the SAC actor objective in eq. (7).

Given the empirical success of model-free SAC agents, it is natural to think about a
model-based extension. Since the model-free SAC actor update is entropy-regularized SVG(0),
simply using the same soft value estimate and entropy adjustment heuristic from SAC, and
increasing the SVG horizon from 0 to H immediately provides such an extension. The
approach retains some of the desirable characteristics of SAC, such as the effectiveness of the
soft value estimate in encouraging exploration, but adds the ability of multi-step SVG to use
on-policy value expansions for policy improvement. Algorithm 1 summarizes the approach,
which we will refer to SAC-SVG(H), with more details provided in app. A. Briefly put, for
policy improvement we minimize the entropy-regularized value estimate

J SVG
π,α (D) := E

x∼D
−V π,α

0:H (x) (9)

by ascending the stochastic value gradient, differentiating eq. (9) with respect to θ. V π,α
0:H

is an entropy-regularized value expansion that explicitly unrolls the model for H steps and
uses the model-free SAC value estimate at the terminal rollout state-action pair. We adapt
the temperature α to make the policy’s expected entropy match a target value H̄ ∈ R by
optimizing the Jα from SAC in eq. (8).

5

On the model-based stochastic value gradient for continuous reinforcement learning

4.2. Approximate world models for deterministic systems

𝑥"

ℎ$ℎ"

%𝑥$

ℎ&

%𝑥&

ℎ'…

%𝑥'

𝑢" 𝑢$

We learn a deterministic transition dynamics model fθ
that maps the current state and a sequence of actions to
the next sequence of states, i.e. fθ : X ×UH−1 → XH−1.
Our dynamics fθ is autoregressive over time and predicts
state deltas with a GRU (Cho et al., 2014) carrying
forward a hidden state. We start with the current system
state x1 and an initial hidden state h1 and use h1 = 0 in
all of our experiments. Given {xt, ht, ut}, we encode the state and action into zt := f enc

θ (xt, ut).
We then use a multi-layer GRU to update the hidden state with ht+1 := GRU(zt, ht), and
we then decode the hidden state with x̂t+1 := xt + fdec

θ (ht+1). We model f enc
θ and fdec

θ with
multi-layer MLPs. App. A describes more experimental details and our hyper-parameters.
For every task we consider, we use a 2-layer MLPs with 512 hidden units and 2-layer GRU.

Learning the dynamics uses multi-step squared error loss

Jf (D) := E
(x1:H ,u1:H−1)∼D

[
||fθ(x1, u1:H−1)− x2:H ||22

]
, (10)

where fθ(x1, u1:H−1) unrolls the GRU and predicts the next states x̂2:H and the expectation
E(x1:H ,u1:H−1)∼D is over H-step sequences uniformly from the replay buffer. We approximate
all expectations for the models in this section with a batch size of 1024.

We learn the reward map rθ : X × U → R as a neural network with a squared error loss

Jr(D) := E
(xt,ut,rt)∼D

[
||rθ(xt, ut)− rt||22

]
. (11)

We learn the termination map dθ : X × U → [0, 1] that predicts the probability of the
system terminating after executing (xt, ut), which we observe as dt+1 ∈ {0, 1}. We model
dt+1 as a Bernoulli response with likelihood

Pr(dt+1|xt, ut) := dθ(xt, ut)
dt+1(1− dθ(xt, ut))1−dt+1 . (12)

We use a multi-layer neural network to model dθ in the logit space and minimize the negative
log-likelihood with the objective

Jd(D) := E
(xt,ut,dt+1)∼D

[− log dθ(dt+1|xt, ut)] . (13)

We only learn the terminations that are not time-based. Equation (13) could be weighted to
deal with an imbalance between termination and non-termination conditions, but in practice
we found this weighting to not be important.

Discussion. Our deterministic dynamics model using a GRU for predicting multi-
step dynamics is simple in comparison to the ensembles of probabilistic models other
recent methods use (Chua et al., 2018; Buckman et al., 2018; Janner et al., 2019). The
improvements from these models could benefit our base model as well, but our design choice
here for simplicity enables us to 1) sample states uniformly from the replay buffer without
needing to obtain the most recent hidden state associated with it, 2) still model transitions
in a latent space of the GRU, and 3) optimize the multi-step likelihood.

6

On the model-based stochastic value gradient for continuous reinforcement learning

Table 2: SAC-SVG(H) excels in the locomotion tasks considered in Wang and Ba (2019).
We report the mean evaluation rewards and standard deviations across ten trials.

th
is

pa
pe

r

Ant Hopper Swimmer Cheetah Walker2d PETS Cheetah

SAC-SVG(1) 3691.00 ± 1096.77 1594.43 ± 1689.01 348.40 ± 8.32 6890.20 ± 1860.49 -291.54 ± 659.52 5321.23 ± 1507.00
SAC-SVG(2) 4473.36 ± 893.44 2851.90 ± 361.07 350.22 ± 3.63 8751.76 ± 1785.66 447.68 ± 1139.51 5799.59 ± 1266.93
SAC-SVG(3) 3833.12 ± 1418.15 2024.43 ± 1981.51 340.75 ± 13.46 9220.39 ± 1431.77 877.77 ± 1533.08 5636.93 ± 2117.52
SAC-SVG(4) 2896.77 ± 1444.40 2062.16 ± 1245.33 348.03 ± 6.35 8175.29 ± 3226.04 1852.18 ± 967.61 5807.69 ± 1008.60
SAC-SVG(5) 3221.66 ± 1576.25 608.58 ± 2105.60 340.99 ± 4.58 6129.02 ± 3519.98 1309.20 ± 1281.76 4896.22 ± 1033.33
SAC-SVG(10) 1389.30 ± 981.59 -2511.05 ± 881.26 303.16 ± 10.57 2477.25 ± 2596.43 -2328.08 ± 735.48 4248.25 ± 802.54
POPLIN-P (Wang and Ba, 2019) 2330.1 ± 320.9 2055.2 ± 613.8 334.4 ± 34.2 4235.0 ± 1133.0 597.0 ± 478.8 12227.9 ± 5652.8
SAC* (Haarnoja et al., 2018) 548.1 ± 146.6 788.3 ± 738.2 204.6 ± 69.3 3459.8 ± 1326.6 164.5 ± 1318.6 1745.9 ± 839.2
SAC (our run) 510.56 ± 76.38 2180.33 ± 977.30 351.24 ± 5.27 6514.83 ± 1100.61 1265.13 ± 1317.00 3259.99 ± 1219.94
PETS* (Chua et al., 2018) 1165.5 ± 226.9 114.9 ± 621.0 326.2 ± 12.6 2288.4 ± 1019.0 282.5 ± 501.6 4204.5 ± 789.0
METRPO* (Kurutach et al., 2018) 282.2 ± 18.0 1272.5 ± 500.9 225.5 ± 104.6 2283.7 ± 900.4 -1609.3 ± 657.5 -744.8 ± 707.1
TD3* (Fujimoto et al., 2018c) 870.1 ± 283.8 1816.6 ± 994.8 72.1 ± 130.9 3015.7 ± 969.8 -516.4 ± 812.2 218.9 ± 593.3

Training Timesteps 200000 200000 50000 200000 200000 50000
*Denotes the baseline results reported in Wang and Ba (2019).

5. Experimental results on MuJoCo locomotion control tasks1

We evaluate SAC-SVG(H) on all of the MuJoCo (Todorov et al., 2012) locomotion exper-
iments considered by POPLIN, MBPO, and STEVE, all current state-of-the-art related
approaches. Note that although we compare against those methods, elements of each could be
introduced to SAC-SVG(H) and improve the performance at the cost of increased complexity.
We provide a sweep over horizon lengths for the POPLIN tasks and fix H = 2 in the MBPO
tasks. For every horizon length, we perform a hyper-parameter search only over the target
entropy schedule, which we further describe in app. A. Our SAC baseline uses the same state
normalization and target entropy schedule as our SAC-MVE runs in every environment.

Table 2 shows the results of our method in comparison to POPLIN (Wang and Ba, 2019)
on the locomotion tasks they consider from Wang et al. (2019), POPLIN uses the ground-truth
reward for these tasks and learns a model — we learn both. We outperform POPLIN in most
of the locomotion tasks, though it has a strong exploration strategy and works exceedingly
well in the cheetah environment from PETS (Chua et al., 2018). Notably our SAC baseline
often also outperforms the SAC baseline reported in Wang and Ba (2019). We are able to
find a policy that generates an optimal action with a single rollout sample rather than the
thousands of rollouts POPLIN typically uses and find that setting H = 2 usually improves
upon our SAC baseline (H = 0). Figure 2 shows our results in comparison to MBPO and
STEVE, which evaluate on the MuJoCo tasks in the OpenAI gym (Brockman et al., 2016)
that are mostly the standard v2 tasks with early termination and alive bonuses, and with a
truncated observation space for the humanoid and ant that discards the inertial measurement
units. SAC-SVG(H) consistently matches the best performance and convergence rates across
every task and is able to learn a running gait on the humanoid (fig. 1).

1. Our source code is online at github.com/facebookresearch/svg and builds on the SAC implementation
from Yarats and Kostrikov (2020). Videos of our agents are available at sites.google.com/view/2020-svg.

7

http://github.com/facebookresearch/svg
http://sites.google.com/view/2020-svg

On the model-based stochastic value gradient for continuous reinforcement learning

0.0 0.2 0.4 0.6 0.8 1.0
Interactions 1e6

1000

1500

2000

2500

3000

3500

4000
Re

wa
rd

Hopper

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Interactions 1e6

0

1000

2000

3000

4000

5000

6000

Re
wa

rd

Walker2d

0.0 0.5 1.0 1.5 2.0
Interactions 1e6

0

2000

4000

6000

8000

10000

Re
wa

rd

Ant

0.0 0.5 1.0 1.5 2.0
Interactions 1e6

0
2500
5000
7500

10000
12500
15000

Re
wa

rd

Cheetah

0 1 2 3 4 5
Interactions 1e6

0

2000

4000

6000

8000

10000

Re
wa

rd

Humanoid

SAC-SVG(2) — this paper
SAC
MBPO
STEVE
Alive bonus for surviving
Convergence

Figure 2: SAC-SVG(H) excels in the locomotion tasks considered in Janner et al. (2019).
We report the mean evaluation rewards and standard deviations across ten trials.

0.0 0.2 0.4 0.6 0.8 1.0
Interactions 1e6

0.0

0.5

1.0

1.5

2.0

2.5

M
SE

Walker2d

0 1 2 3 4 5
Interactions 1e6

0.0

0.5

1.0

1.5

2.0

2.5

M
SE

Humanoid

Recurrent Network — this paper
FCNet Ensemble
Train Loss
Holdout Loss
Test Loss

Figure 3: We compare the multi-step MSE of a 5-component ensemble of MLPs trained on
one-step transitions to that of a single recurrent network, trained on multi-step
transition sequences. The gap between the holdout curve and the test curve is
error due to distribution shift between the train and test distributions. Since the
ensemble of MLPs generalizes better in the supervised setting, our performance
improvement cannot be attributed to a simple change in model architecture.

5.1. Ablations

5.1.1. Model architectures and ensembling

PETS, POPLIN, and MBPO all relied on very similar implementations of bootstrapped
ensembles of MLPs to model dynamics. Since we use a different architecture, it is important to
consider the impact of the change on the agent’s performance. Simply comparing the reward
curves resulting from different model choices does not provide any insight into why some
methods perform better than others. In particular, such head-to-head comparisons cannot
differentiate between a model’s overall ability to generalize and more subtle interactions with
the rest of the agent, such as the effect on exploration.

8

On the model-based stochastic value gradient for continuous reinforcement learning

0.0 0.2 0.4 0.6 0.8 1.0
Interactions 1e6

1000

2000

3000

4000
Re

wa
rd

Hopper

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Interactions 1e6

0

1000

2000

3000

4000

5000

6000

Re
wa

rd

Walker2d

0.0 0.5 1.0 1.5 2.0
Interactions 1e6

0

2000

4000

6000

8000

10000

Re
wa

rd

Ant

0.0 0.5 1.0 1.5 2.0
Interactions 1e6

2500

5000

7500

10000

12500

15000

Re
wa

rd

Cheetah

0 1 2 3 4 5
Interactions 1e6

0

2000

4000

6000

8000

10000

Re
wa

rd

Humanoid

Actor SVG(H) — this paper
Critic MVE
Critic MVE + Actor SVG(H)

Figure 4: We ablate model rollouts on critic updates and actor updates. Since value learning
is particularly sensitive to dynamics model error, on more complex tasks a slightly
inaccurate model can halt MVE agent improvement.

To explore the difference in generalization ability between different architectures, we
removed the dependence of the data collection process on the dynamics model by comparing
the architectures on an independent episodic replay buffer, generated by a standard model-
free SAC trial. By sequentially adding episodes to the model’s training and holdout datasets,
retraining the model, and testing on a fixed test split, we isolated the generalization charac-
teristics of the models while simulating the online nature of the RL data-collection process.
The results of this experiment are presented in fig. 3. An ensemble of MLPs generalizes
better than a single recurrent network of similar capacity. We selected the recurrent network
for its amenability to multistep value gradient backpropagation. While we could ensemble
our recurrent architecture, we observe that a single model obtains competitive results, and
have chosen to prioritize simplicity. Interestingly, even though the single recurrent model
overfits much more heavily to the training data, the asymptotic reward of our humanoid
agent is significantly higher and qualitatively different than the agent in Janner et al. (2019).
Hence it is not clear how well the model needs to generalize, since short-horizon rollouts are
typically initiated with states from the replay buffer (i.e. the model’s training data).

5.1.2. Value expansions in the actor and critic

In fig. 4, we consider the effect of introducing the critic MVE update of Feinberg et al.
(2018) when combined with either the standard model-free SAC actor update or SVG(H).
Of particular interest is the first combination, since it bears close resemblance to an ablation
performed in Janner et al. (2019) on the Hopper environment. In Feinberg et al. (2018), both
the dynamics model and the actor/critic models are updated with 4 minibatch gradient steps
at each timestep. MBPO periodically trained the dynamics model to convergence on the full

9

On the model-based stochastic value gradient for continuous reinforcement learning

replay buffer, generated a large batch of fictional transitions, and proceeded to repeatedly
update the actor/critic models on those stored transitions.

The contrast between our results and those of the MBPO ablation are instructive. Whereas
Janner et al. (2019) reported that MVE significantly underperformed MBPO in terms of
final reward, even when H = 1, we find that MVE is competitive on all environments until a
certain point in learning, after which performance gradually degrades. A likely explanation
lies in the MVE dynamics model update. As the replay buffer grows, the dynamics model
update is less likely to sample recent transitions in each minibatch, resulting in a gradual
increase in model error (fig. 7). As in fig. 3, the increase in dynamics model error cannot
be attributed to the capacity of the model architecture, since the supervised training error
on an equivalent replay buffer is significantly lower than the online training error. This
observation highlights the impact of model error when the model-generated transitions are
used to update the critic, and supports van Hasselt et al. (2019) argument that inaccurate
parametric forward dynamics models may be particularly detrimental to value learning.

6. Conclusion

SAC-SVG(H) combines the most effective ideas from recent MBRL research, resulting in a
simple, robust model-based agent. A few key future directions and applications are in:

1. Policy refinement or semi-amortization as in Marino et al. (2020) interprets the policy
as solving a model-based control optimization problem and can be combined with
differentiable control (Okada et al., 2017; Amos et al., 2018; Pereira et al., 2018; Agrawal
et al., 2019; East et al., 2020). Fine-tuning can also be performed at an episode-level
as in Nagabandi et al. (2018) to adapt the dynamics to the observations in the episode.

2. Constrained MDPs (Dalal et al., 2018; Koller et al., 2018; Chow et al., 2018; Dean
et al., 2019; Bohez et al., 2019), where the model-based value expansion and SVG can
guide the agent away from undesirable parts of the state space.

3. Extensions of other model-free algorithms. While we only considered SVG extensions
to SAC as presented in Haarnoja et al. (2018), similar SVG variations can be added
to the policy learning in other model-free methods such as Abdolmaleki et al. (2018);
Fujimoto et al. (2018b); Lee et al. (2019); Lee et al. (2020); Yarats et al. (2019).

4. Unsupervised pretraining or self-supervised learning using world models (Ha and Schmid-
huber, 2018; Shyam et al., 2018; Pathak et al., 2019; Sharma et al., 2020; Sekar et al.,
2020) push against the tabula rasa viewpoint of agents starting from zero knowledge
about the environment it is interacting with and would allow them to start with a
reasonable idea of what primitive skills the system enables them to do.

5. Going beyond the single-agent, single-task, online setting. Some of the core ideas
behind model-based value expansion can be applied to more sophisticated settings. In
multi-agent settings, an agent can consider short-horizon rollouts of the opponents. In
the batch RL setting (Fujimoto et al., 2018a; Kumar et al., 2019; Wu et al., 2019) the
short-horizon rollouts can be used to constrain the agent to only considering policies
that keep the observations close to the data manifold of observed trajectories.

10

On the model-based stochastic value gradient for continuous reinforcement learning

Acknowledgments

We thank Alex Terenin, Maximilian Nickel, and Aravind Rajeswaran for insightful discussions
and acknowledge the Python community (Van Rossum and Drake Jr, 1995; Oliphant, 2007)
for developing the core set of tools that enabled this work, including PyTorch (Paszke et al.,
2019), Hydra (Yadan, 2019), Jupyter (Kluyver et al., 2016), Matplotlib (Hunter, 2007),
seaborn (Waskom et al., 2018), numpy (Oliphant, 2006; Van Der Walt et al., 2011), pandas
(McKinney, 2012), and SciPy (Jones et al., 2014). This research is supported by an Amazon
Research Award, NSF I-DISRE 193471, NIH R01 DA048764-01A1, NSF IIS-1910266, and
NSF 1922658 NRT-HDR: FUTURE Foundations, Translation, and Responsibility for Data
Science. Samuel Stanton is additionally supported by an NDSEG fellowship from the United
States Department of Defense.

References
Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin

Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Akshay Agrawal, Shane Barratt, Stephen Boyd, and Bartolomeo Stellato. Learning convex optimization
control policies, 2019.

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable mpc for end-to-end
planning and control. In Advances in Neural Information Processing Systems, pages 8289–8300, 2018.

András Antos, Csaba Szepesvári, and Rémi Munos. Fitted q-iteration in continuous action-space mdps. In
Advances in neural information processing systems, pages 9–16, 2008.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Steven Bohez, Abbas Abdolmaleki, Michael Neunert, Jonas Buchli, Nicolas Heess, and Raia Hadsell. Value
constrained model-free continuous control. arXiv preprint arXiv:1902.04623, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient
reinforcement learning with stochastic ensemble value expansion. In Advances in Neural Information
Processing Systems, pages 8224–8234, 2018.

Arunkumar Byravan, Jost Tobias Springenberg, Abbas Abdolmaleki, Roland Hafner, Michael Neunert,
Thomas Lampe, Noah Siegel, Nicolas Heess, and Martin Riedmiller. Imagined value gradients: Model-
based policy optimization with transferable latent dynamics models. arXiv preprint arXiv:1910.04142,
2019.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-based
approach to safe reinforcement learning. In Advances in neural information processing systems, pages
8092–8101, 2018.

11

On the model-based stochastic value gradient for continuous reinforcement learning

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in
a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing
Systems, 2018.

Ignasi Clavera, Violet Fu, and Pieter Abbeel. Model-augmented actor-critic: Backpropagating through paths.
arXiv preprint arXiv:2005.08068, 2020.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval Tassa. Safe
exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. Safely learning to control the constrained
linear quadratic regulator. In 2019 American Control Conference (ACC), pages 5582–5588. IEEE, 2019.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on machine learning (ICML-11), pages 465–472, 2011.

Sebastian East, Marco Gallieri, Jonathan Masci, Jan Koutník, and Mark Cannon. Infinite-horizon differentiable
model predictive control. arXiv preprint arXiv:2001.02244, 2020.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. Implementation matters in deep policy gradients: A case study on ppo and trpo. arXiv
preprint arXiv:2005.12729, 2020.

V Feinberg, A Wan, I Stoica, MI Jordan, JE Gonzalez, and S Levine. Model-based value expansion for
efficient model-free reinforcement learning. In Proceedings of the 35th International Conference on Machine
Learning (ICML 2018), 2018.

Thomas G Fischer. Reinforcement learning in financial markets-a survey. Technical report, FAU Discussion
Papers in Economics, 2018.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates.
arXiv preprint arXiv:1512.08562, 2015.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration.
CoRR, 2018a.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. arXiv preprint arXiv:1802.09477, 2018b.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018c.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with
model-based acceleration. In International Conference on Machine Learning, pages 2829–2838, 2016.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances in
Neural Information Processing Systems 31. Curran Associates, Inc., 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Witherspoon,
Thomas Anthony, Lars Buesing, Petar Veličković, and Théophane Weber. On the role of planning in
model-based deep reinforcement learning. arXiv preprint arXiv:2011.04021, 2020.

12

On the model-based stochastic value gradient for continuous reinforcement learning

Hado V Hasselt. Double q-learning. In Advances in neural information processing systems, pages 2613–2621,
2010.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information Processing
Systems, pages 2944–2952, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):90, 2007.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of benchmarked
deep reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133, 2017.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. arXiv preprint arXiv:1906.08253, 2019.

Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific tools for Python. 2014.

Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep learning for video game playing.
IEEE Transactions on Games, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad Czechowski,
Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based reinforcement learning
for atari. arXiv preprint arXiv:1903.00374, 2019.

Bahare Kiumarsi, Kyriakos G Vamvoudakis, Hamidreza Modares, and Frank L Lewis. Optimal and
autonomous control using reinforcement learning: A survey. IEEE transactions on neural networks and
learning systems, 29(6):2042–2062, 2017.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter notebooks-a
publishing format for reproducible computational workflows. In ELPUB, pages 87–90, 2016.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. Learning-based model predictive
control for safe exploration. In 2018 IEEE Conference on Decision and Control (CDC), pages 6059–6066.
IEEE, 2018.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. In Advances in Neural Information Processing Systems, pages 11761–11771,
2019.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble trust-region
policy optimization. arXiv preprint arXiv:1802.10592, 2018.

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep reinforcement
learning with a latent variable model. arXiv e-prints, 2019.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified framework for
ensemble learning in deep reinforcement learning. arXiv preprint arXiv:2007.04938, 2020.

Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on Machine Learning,
pages 1–9, 2013.

13

On the model-based stochastic value gradient for continuous reinforcement learning

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Joseph Marino, Alexandre Piché, Alessandro Davide Ialongo, and Yisong Yue. Iterative amortized policy
optimization. arXiv preprint arXiv:2010.10670, 2020.

Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. " O’Reilly
Media, Inc.", 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv
preprint arXiv:1803.11347, 2018.

Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path integral networks: End-to-end differentiable
optimal control. arXiv preprint arXiv:1706.09597, 2017.

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):10–20, 2007.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information processing systems, pages 8026–8037, 2019.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement. arXiv
preprint arXiv:1906.04161, 2019.

Marcus Pereira, David D Fan, Gabriel Nakajima An, and Evangelos Theodorou. Mpc-inspired neural network
policies for sequential decision making. arXiv preprint arXiv:1802.05803, 2018.

Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement learning: Applications
on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak. Planning
to explore via self-supervised world models. arXiv preprint arXiv:2005.05960, 2020.

Archit Sharma, Shane Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware unsupervised
skill discovery. In Proceeding of the International Conference on Learning Representations (ICLR), Addis
Ababa, Ethiopia, pages 26–30, 2020.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. arXiv preprint
arXiv:1810.12162, 2018.

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep dense architectures
in reinforcement learning. arXiv preprint arXiv:2010.09163, 2020.

14

On the model-based stochastic value gradient for continuous reinforcement learning

Jost Tobias Springenberg, Nicolas Heess, Daniel Mankowitz, Josh Merel, Arunkumar Byravan, Abbas
Abdolmaleki, Jackie Kay, Jonas Degrave, Julian Schrittwieser, Yuval Tassa, et al. Local search for policy
iteration in continuous control. arXiv preprint arXiv:2010.05545, 2020.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Machine learning proceedings 1990, pages 216–224. Elsevier, 1990.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence and
machine learning, 4(1):1–103, 2010.

Philip Thomas. Bias in natural actor-critic algorithms. In International conference on machine learning,
pages 441–448, 2014.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in reinforcement
learning? In Advances in Neural Information Processing Systems, pages 14322–14333, 2019.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en Informatica
Amsterdam, 1995.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba.
Benchmarking model-based reinforcement learning. arXiv e-prints, 2019.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Joel Ostblom, Saulius Lukauskas, David C
Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole, Jordi Warmenhoven, Julian de Ruiter,
Cameron Pye, Stephan Hoyer, Jake Vanderplas, Santi Villalba, Gero Kunter, Eric Quintero, Pete Bachant,
Marcel Martin, Kyle Meyer, Alistair Miles, Yoav Ram, Thomas Brunner, Tal Yarkoni, Mike Lee Williams,
Constantine Evans, Clark Fitzgerald, Brian, and Adel Qalieh. mwaskom/seaborn: v0.9.0 (july 2018), July
2018. URL https://doi.org/10.5281/zenodo.1313201.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. CoRR,
2019.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019. URL
https://github.com/facebookresearch/hydra.

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://github.com/
denisyarats/pytorch_sac, 2020.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving sample
efficiency in model-free reinforcement learning from images. arXiv preprint arXiv:1910.01741, 2019.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal entropy. 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

15

https://doi.org/10.5281/zenodo.1313201
https://github.com/facebookresearch/hydra
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

On the model-based stochastic value gradient for continuous reinforcement learning

Algorithm 1 Our combination of SAC and SVG(H). Components of SAC are in colored in
black and the model-based SVG components are in purple.

Hyperparameters: #updates Mstep,Mseq, target network update τ , planning horizon H
Models: Actor πθ, critic ensemble Qθ, temperature α, dynamics fθ, reward rθ, termination dθ

Initialize the replay buffer D
for environment step t = 1..T do

Sample ut ∼ π(xt) and execute ut on the system to obtain (rt, xt+1, dt+1) and append it to D
for Mstep updates do
Dstep ← {(xs, us, rs, xs+1, ds+1)}s ∼step D . Sample a batch of single-step transitions
θπ ← grad_update(θπ,∇θπJ SVG

π,α (Dstep)) . Fit the SVG(H) actor with (9)
α← grad_update(α,∇αJα(Dstep)) . Update the temperature with (8)
θQ ← grad_update(θQ,∇θQJQ(Dstep)) . Fit the critic ensemble with (4)
θr ← grad_update(θr,∇θrJr(Dstep)) . Fit the reward model with (11)
θd ← grad_update(θd,∇θdJd(Dstep)) . Fit the termination model with (13)
θ̄Q ← τθQ + (1− τ)θ̄Q . Update the target critic ensemble weights

end for
for Mseq updates do
Dseq ← {xs:s+H}s ∼seq D . Sample a batch of multi-step transitions
θf ← grad_update(θf ,∇θfJf (Dseq)) . Fit the multi-step dynamics model with (10)

end for
end for

Appendix A. More experimental details

This section provides more details behind our experiments, including a time-dependent target
entropy in app. A.1, a description of our hyper-parameters in app. A.2, further analysis and
descriptions of a walker experiment in app. A.3, and full plots of our POPLIN experiments in
fig. 5. Algorithm 1 overviews the algorithm describing our combination of SAC and SVG(H).

A.1. Time-dependent target entropy

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

10

8

6

4

2

0

Ta
rg

et
 E

nt
ro

py

β= 0

β= 0.1

β= 0.25

β= 0.5

β= 1

β= 2

β= 5

β= 10

β= 64

Figure 6: Example target entropy de-
cay schedules when train-
ing for 1M timesteps with
a target entropy starting of
0 and ending at −10.

We explicitly decay the policy’s target entropy H̄
rather than keeping it fixed the entire episode as done
in vanilla SAC. The target entropy is important for
balancing exploration and exploitation and manually
decaying it helps control the agent in data-limited
settings. This allows us to start the training with a
high-entropy policy that we explicitly anneal down to
a lower entropy by the end of training. We do this
with the exponential decay

H̄t = (H̄init − H̄final)(1− t/T)β + H̄final, (14)

where T is the number of training timesteps, H̄init

is the initial target entropy, H̄final is the final target
entropy, and β is the decay factor. We plot an example
of this in fig. 6.

16

On the model-based stochastic value gradient for continuous reinforcement learning

0.0 0.5 1.0 1.5 2.0
Interactions 1e5

1000

2000

3000

4000

5000
Re

wa
rd

Ant

0.0 0.5 1.0 1.5 2.0
Interactions 1e5

2000

1000

0

1000

2000

3000

Re
wa

rd

Hopper

0 1 2 3 4 5
Interactions 1e4

0

100

200

300

Re
wa

rd

Swimmer

0.0 0.5 1.0 1.5 2.0
Interactions 1e5

0

2000

4000

6000

8000

10000

Re
wa

rd

Cheetah

0.0 0.5 1.0 1.5 2.0
Interactions 1e5

2000

1000

0

1000

2000

Re
wa

rd

Walker2d

0 1 2 3 4 5
Interactions 1e4

2000

4000

6000

8000

10000

12000

Re
wa

rd

PETS Cheetah

SAC-SVG(H) SAC POPLIN

Figure 5: Results on the environments tasks considered in POPLIN. We run SAC-SVG for
ten trials and report the mean and standard deviation of the reward.

A.2. Hyper-parameters and random search

We share the hyper-parameters in table 3 between the tasks and only search over the horizon
and target entropy values, which we show in table 4. We only perform a hyper-parameter
search over the target entropy decay rates for each task, which is important to learn as
it impacts how the agent explores in the environment. We found SAC-SVG(H) to be
more sensitive to the target entropy decay rate and posit it is important to help the policy
interact with the model-based components in the earlier phases of training. We perform
a random search over 20 seeds for each task to find a target entropy schedule, where we
sample H̄init ∼ Cat({1, 0,−1,−2}), H̄final ∼ Cat

(
{H̄init,−5} ∪ {−2i|i ∈ {0, . . . , 6}}

)
, and

γ ∼ Cat
(
{2i|i ∈ {0, . . . , 6}}

)
, where Cat(·) is a uniform categorical distribution.

A.3. Walker experiment analysis when doing critic MVE

We provide additional data from selected walker trials that use value expansion on the critic
and SVG(H) expansion on the actor behind the summary shown in fig. 4. In MVE trials
that perform poorly we can see the model error increase until eventually the agent stops
improving. As noted in the previous section, this phenomenon highlights the impact of model
error when the model-generated transitions are used to update the critic, and lends credence
to the argument of van Hasselt et al. (2019), who also suggest that inaccurate parametric
forward dynamics models may be particularly detrimental to value learning.

17

On the model-based stochastic value gradient for continuous reinforcement learning

Table 3: Shared hyper-parameters for all tasks. SAC’s base hyper-parameters are in black
and our SVG(H) extensions are in purple.

Hyper-Parameter Value

Replay buffer capacity 1M interactions
All optimizers Adam

Actor and critic LRs 10−4

Temperature LR 5 · 10−4

Init temperature αinit 0.1
Critic target update rate τ 5 · 10−3

Critic target update freq every timestep
Actor update freq every timestep

Discount γ 0.99
Single-step updates Nstep 1

Single-step batch size 512
Actor and critic MLPs 2 hidden layers, 512 units
Actor log-std bounds [−5, 2]

Reward, term, and dx MLPs 2 hidden layers, 512 units
Dx recurrence 2-layer GRU, 512 units

Reward, term, and dx LRs 10−3

Multi-step updates Nseq 4
Multi-step batch size 1024

Table 4: Task-specific hyper-parameters for the POPLIN (left) and MBPO (right) tasks.
Environment H H̄init H̄final β

Ant 3 1 -4 0.0625
Hopper 3 1 1 -

Swimmer 3 -2 -16 16
Cheetah 4 0 -4 1
Walker2d 5 1 1 -

PETS Cheetah 5 -2 -4 0.0625

Environment H̄init H̄final β

Hopper 0 -1 0.5
Walker2d -2 -3 64

Ant 2 -4 1
Cheetah -2 -2 -

Humanoid -1 -1 -

18

On the model-based stochastic value gradient for continuous reinforcement learning

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

400

300

200

100

0
Actor Loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

0

100

200

300

400

Critic Loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Obs Loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Interations 1e6

10-1

2 × 10-1

Alpha Value

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Interactions 1e6

5

4

3

2

1

0

1

2

3
Actor Entropy

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Interactions 1e6

0

1000

2000

3000

4000

5000

Reward

Walker, Critic MVE

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

200

150

100

50

0
Actor Loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

0

100

200

300

400

500

Critic Loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Obs Loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Interations 1e6

10-1

1.2 × 10-1

1.4 × 10-1

1.6 × 10-1

1.8 × 10-1

2 × 10-1

2.2 × 10-1
Alpha Value

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Interactions 1e6

4

3

2

1

0

1

2

3
Actor Entropy

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Interactions 1e6

0

1000

2000

3000

4000

5000

6000

7000

8000

Reward

Walker, Critic MVE + SVG Actor

Figure 7: The full details behind the Walker runs when performing critic value expansion
with model-free actor updates (top) and critic value expansion with the SVG(H)
actor updates (bottom). We find value-expanding in the actor typically leads to
more stable behavior.

19

	1 Introduction
	2 Related work on model-based continuous reinforcement learning
	3 Preliminaries, notation, and background in reinforcement learning
	3.1 Markov decision processes and reinforcement learning
	3.2 The soft actor-critic for learning continuous control policies

	4 SVG(H) with entropy regularization and a model-free value estimate
	4.1 Connecting the SAC actor update and stochastic value gradients
	4.2 Approximate world models for deterministic systems

	5 Experimental results on MuJoCo locomotion control tasks Our source code is online at github.com/facebookresearch/svg and builds on the SAC implementation from yarats2020pytorchsac. Videos of our agents are available at sites.google.com/view/2020-svg.
	5.1 Ablations
	5.1.1 Model architectures and ensembling
	5.1.2 Value expansions in the actor and critic

	6 Conclusion
	A More experimental details
	A.1 Time-dependent target entropy
	A.2 Hyper-parameters and random search
	A.3 Walker experiment analysis when doing critic MVE

