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Abstract

Despite significant progress in Visual Question Answer-
ing over the years, robustness of today’s VQA models leave
much to be desired. We introduce a new evaluation protocol
and associated dataset (VQA-Rephrasings) and show that
state-of-the-art VQA models are notoriously brittle to lin-
guistic variations in questions. VQA-Rephrasings contains
3 human-provided rephrasings for 40k questions spanning
40k images from the VQA v2.0 validation dataset. As a
step towards improving robustness of VQA models, we pro-
pose a model-agnostic framework that exploits cycle con-
sistency. Specifically, we train a model to not only answer
a question, but also generate a question conditioned on the
answer, such that the answer predicted for the generated
question is the same as the ground truth answer to the orig-
inal question. Without the use of additional annotations, we
show that our approach is significantly more robust to lin-
guistic variations than state-of-the-art VQA models, when
evaluated on the VQA-Rephrasings dataset. In addition,
our approach outperforms state-of-the-art approaches on
the standard VQA and Visual Question Generation tasks on
the challenging VQA v2.0 dataset.

1. Introduction
Visual Question Answering (VQA) applications allow a

human user to ask a machine questions about images – be it
a user interacting with a visual chat-bot or a visually im-
paired user relying on an assistive device. As this tech-
nology steps out of the realm of curated datasets towards
real-world settings, it is desirable that VQA models be ro-
bust to and consistent across reasonable variations in the
input modalities. While there has been significant progress
in VQA over the years [1, 17, 2, 9, 19, 41, 3, 4], today’s
VQA models are, however, far from being robust.

VQA is a task that lies at the intersection of language
and vision. Existing works have studied the robustness and
sensitiveness of VQA models to meaningful semantic vari-
ations in images [9], changing answer distributions [2] and
adversarial attacks [39] to images. However, to the best of
our knowledge, no work has studied the robustness of VQA

        Prediction 
What is in the basket?

             What does the basket mainly contain?

 banana

remote

     What is contained in the basket?

                   What can be seen inside the basket?

   paper     

  pizza       

Is it safe to turn left?

   Would turning left considered safe in this picture?

   Yes

   No

         Can one safely turn left?

                    Would it be safe to turn left?

    Yes     

    No       

Figure 1. Existing VQA models are brittle. Shown above are ex-
amples from our new large-scale VQA-Rephrasings dataset that
enables systematic evaluation of robustness of VQA models to lin-
guistic variations in the input question. Also shown are answers
predicted by a state-of-the-art VQA model [41]. We see that the
model predicts different answers for different reasonable rephras-
ings of the same question. We propose a novel model-agnostic
framework that exploits cycle consistency in question answering
and question generation to make VQA models more robust, with-
out using additional annotation. Moreover, it outperforms state-
of-the-art models on the standard VQA and Visual Question Gen-
eration tasks on the VQA v2.0 dataset.

models to linguistic variations in the input question. This is
important both from the perspective of VQA being a bench-
mark to test multi-modal AI capabilities (do our VQA mod-
els really “understand” the question when answering it?)
and for applications (human users are likely to phrase the
same query in a variety of different linguistic forms). How-
ever, today’s state-of-the-art VQA models are brittle to such
linguistic variations as can be seen in Fig. 1.

One approach to make VQA models more robust is to
collect a dataset with diverse rephrasings of questions to
train VQA models. Alternatively, an automatic approach
that does not require additional human intervention but re-
sults in a VQA model that is robust to linguistic variations
observed in the natural language questions is desirable.

We propose a novel model-agnostic framework that re-
lies on cycle consistency to learn robust VQA models with-
out requiring additional annotation. Specifically, we train
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the model to not just answer a question, but also to generate
diverse, semantically similar variations of questions condi-
tioned on the answer. We enforce that the answer predicted
for a generated question matches the ground truth answer
to the original question. In other words, the model is being
trained to predict the same (correct) answer for a question
and its (generated) rephrasing.

Advantages of our proposed approach are two fold. First,
enforcing consistent correctness across diverse rephrasings
allows models to generalize to unseen semantically equiva-
lent variations of questions at test time. The model achieves
this by generating linguistically diverse rephrasings of ques-
tions on-the-fly and training with these variations. Second,
a model trained generatively to generate a valid question
given a candidate answer and image has a stronger multi-
modal understanding of vision and language. Questions
tend to have less learnable biases [26]. As a result, mod-
els that can jointly perform the task of question generation
and question answering are less prone to taking “shortcuts”
and exploiting linguistic priors in questions. Indeed, we find
that models trained with our approach outperform existing
state-of-the-art models on both VQA and Visual Question
Generation (VQG) tasks on VQA v2.0 [9].

We also observed that one reason for limited devel-
opment of VQA models robust to linguistic variations
in input questions is due to the lack of a benchmark to
measure robustness. A lack of such a benchmark makes
it hard to quantitatively realize the inflated capabilities
and limited multi-modal understanding of modern VQA
models . To enable quantitative evaluation of robustness
and consistency of VQA models across linguistic variations
in input questions, we collect a large-scale dataset –
VQA-Rephrasings (Section 4) based of the VQA v2.0
dataset [9]. VQA-Rephrasings contains 3 human-provided
rephrasings for ∼40k questions on ∼40k images from the
validation split of the VQA v2.0 dataset. We also propose
metrics to measure the robustness of VQA models across
different question rephrasings. Further, we benchmark
several state-of-the-art VQA models [3, 5, 19, 41] on
our proposed VQA-Rephrasings dataset to highlight the
fragility of VQA models to question rephrasings. We
observe a significant drop when VQA models are required
to be consistent in addition to being correct (Section 5),
which reinforces our belief that existing VQA models do
not understand language ”enough”. We show that VQA
models trained with our approach are significantly more
robust across question rephrasings than their existing
counterparts on the proposed VQA-Rephrasings dataset.

In this paper, our contributions are the following:

• We propose a model-agnostic cycle-consistent training
scheme that enables VQA models to be more robust
to linguistic variations observed in natural language

open-ended questions.
• To evaluate the robustness of VQA models to lin-

guistic variations, we introduce a large-scale VQA-
Rephrasings dataset and an associated consensus
score. VQA-Rephrasings consists of 3 rephrasings for
∼40k questions on ∼40k images from the VQA v2.0
validation dataset, resulting in a total of ∼120k ques-
tion rephrasings by humans.
• We show that models trained with our approach out-

perform state-of-the-art on the standard VQA and
Visual Question Generation tasks on the VQA v2.0
dataset and are significantly more robust to linguistic
variations on VQA-Rephrasings.

2. Related Work

Visual Question Answering. There has been tremen-
dous progress in building models for VQA using LSTMs
[13] and convolutional networks [22]. VQA models span-
ning paradigms like attention networks [40, 19], module
networks [14, 4, 17], relational networks [32] and multi-
modal fusion [5] have been proposed. Our method is model-
agnostic and is applicable with any VQA architecture.

Robustness. Robustness of VQA models has been stud-
ied in several contexts [2, 39, 9]. For example, [2] studies
the robustness of VQA models to changes in the answer dis-
tributions across training and test settings; [42] analyzes the
extent of visual grounding in VQA models by studying ro-
bustness of VQA models to meaningful semantic changes
in images; [39] shows that despite the use of an advanced
attention mechanism, it is easy to fool a VQA model with
very minor changes in the image. Our work, however,
aims to complete the study in robustness by benchmark-
ing and improving robustness of VQA models to linguis-
tic and compositional variations in questions in the form
of rephrasings. Robustness has also been studied in natu-
ral language processing (NLP) systems [7, 12] in contexts
of bias [35, 34], domain-shift [23] and syntactic variations
[15]. We study this in the context of visual question an-
swering which is a multi-modal task which grounds lan-
guage into the visual world.

(Visual) Question Generation. Generating questions
conditioned on an image was introduced in [29] and a large-
scale VQG dataset was collected by [30] to evaluate visually
grounded question generation capabilities of models. More
recently, there has been work on generating questions that
are diverse [16, 40]. While these techniques generate ques-
tions about an image in an answer-agnostic manner, tech-
niques like [26] propose a variational LSTM based model
trained with reinforcement learning to generate answer-
specific questions for an image. More recently, [24] gen-
erates answer-specific questions for specific question-types
by modelling question generation as a dual task of question
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Figure 2. (a) Abstract representation of the proposed cycle-consistent training scheme: Given a triplet of image I , question Q, and
ground truth answer A, a VQA model is a transformation F : (Q, I) 7→ A′ used to predict the answer A′. Similarly, a VQG model
G : (A′, I) 7→ Q′ is used to generate a rephrasing Q′ of Q. The generated rephrasing Q′ is passed through F to obtain A′′ and consistency
is enforced between Q and Q′ and between A′ and A′′. Image I is not shown for clarity. (b) Detailed architecture of our visual question
generation module G. The predicted answer A′ and image I are embedded to a lower dimension using task-specific encoders and the
resulting feature maps are summed up with additive noise and fed to an LSTM to generate questions rephrasings Q′.

answering. Unlike [24], our method is not restricted to gen-
erating questions only for specific question types. Different
from previous works, the goal of our VQG component is to
automatically generate question rephrasings that make the
VQA models more robust to linguistic variations. To the
best of our knowledge, we are the first to demonstrate that
the VQG module can be used to improve VQA accuracy in
a cycle-consistent setting.

Cycle-Consistent Learning. Using cycle-consistency to
regularize the training of models has been used extensively
in object tracking [36], machine translation [10], unpaired
image-to-image translation [43] and text-based question an-
swering [37]. Consistency enables learning of robust mod-
els by regularizing transformations that map one intercon-
nected modality or domain to the other. While cycle con-
sistency has been used vastly in the domains involving a
single modality (text-only or image-only), it hasn’t been ex-
plored in the context of multi-modal tasks like VQA. Cycle-
consistency in VQA can be also thought of as an online
data-augmentation technique where the model is trained on
several generated rephrasings of the same question.

3. Approach

We now introduce our cycle-consistent scheme to train
robust VQA models. Given a triplet of image I , question
Q, and ground truth answer A, a generic VQA model can
be formulated as a transformation F : (Q, I) 7→ A′, where
A′ is the answer predicted by the model as in Fig. 2(a). Sim-
ilarly, a generic VQG model can be formulated as a trans-
formation G : (A, I) 7→ Q′ as in Fig. 2(b). For a given
(I,Q,A) triplet, we first obtain an answer prediction A′ us-
ing the VQA model F for the original question Q. We then
use the predicted answer A′ and the image I to generate a

question Q′ which is semantically similar to Q using the
VQG model G. Lastly, we obtain a answer prediction A′′

for the generated question Q′.
Our design of consistency components is inspired by two

beliefs. Firstly, a model which can generate a semantically
and syntactically correct question given a answer and an im-
age, has a better understanding of the cross-modal connec-
tions among the image, the question and the answer, which
make them a valid (I,Q,A) triplet. Secondly, assuming the
generated question Q′ is a valid rephrasing of the original
question, a robust VQA model should answer this rephras-
ing with the same answer as the original question Q. In
practice, however, there are several challenges that inhibit
enforcement of cycle-consistency in VQA. We discuss these
challenges and describe the key components of our frame-
work geared to tackle them in the following sections.

3.1. Question Generation Module

Since VQA is a setting where there is high disparity in
the information content of involved modalities (a question
and answer pair is a very lossy compressed representation of
the image), learning transformations that map one modality
to another is non-trivial. In cycle-consistent models dealing
with single-modalities, transformations need to be learned
across different domains of the same modality (image or
text) with roughly similar information contents. However
in a multi-modality transformation like VQG, learning a
transformation from a low information modality (such as
answer) to high information modality (question) needs ad-
ditional supervision. We provide this additional supervision
to the VQG model in the form of attention. To generate a
rephrasingQ′, the VQG is guided to attend at regions of the
image which were used by the VQA model to answer the
original question Q. Unlike [24], this enables our models
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to generate questions more similar to the original question
from answers like “yes”, which could possibly have a large
space of plausible questions.

We model the question generation module G in a fash-
ion similar to a conditional image captioning model. The
question generation module consists of two linear encoders
that transform attended image features obtained from VQA
model and the distribution over answer space to lower di-
mensional feature vectors. We sum these feature vectors
with additive noise and pass them through an LSTM which
is trained to reconstruct the original question and optimized
by minimizing the negative log likelihood with teacher-
forcing. Note that unlike [26, 24] we do not pass the one-
hot vector representing the answer obtained, or an embed-
ding of the answer obtained to the question generation, but
rather the predicted distribution over answers. This enables
the question generation module to learn to map the model’s
confidence over answers to the generated question.

Throughout the paper, Q-consistency implies addition
of a VQG module G on top of the base VQA model
F to generate rephrasings Q′ from the image I and the
predicted answer A′ with an associated Q-consistency
loss LG(Q,Q

′). Similarly, A-consistency implies pass-
ing all questions generated Q′ by the VQG Model G to
the VQA model F and an associated A-consistency loss
Lcycle(A,A

′′). The overall loss can be written as:

Ltotal = LF (A,A
′) + λGLG(Q,Q

′)

+λCLcycle(A,A
′′)

(1)

where LF (A,A
′) and Lcycle(A,A

′′) (i.e. A-Consistency
Loss) are cross-entropy losses, LG(Q,Q

′) (i.e. Q-
Consistency Loss) is sequence generation loss [28] and λG,
λC are tunable hyperparameters.

3.2. Gating Mechanism

One of the assumptions of our proposed cycle-consistent
training scheme is that the generated question is always se-
mantically and syntactically correct. However, in practice
this is not always true. Previous attempts [18] at naively
generating questions conditioned on the answer and using
them without filtering to augment the training data have
been unsuccessful. Like the visual question answering
module, the visual question generation module is also not
perfect. Therefore not all questions generated by the ques-
tion generator are coherent and consistent with the image,
the answer and the original question. To overcome this is-
sue, we propose a gating mechanism, which automatically
filters undesirable questions generated by the VQG model
before passing them to the VQA model for A-consistency.
The gating mechanism is only relevant when used in con-
junction with A-consistency. We retain only those ques-
tions which either the VQA model F can answer correctly

or have a cosine similarity with the original question encod-
ing greater than a threshold Tsim.

3.3. Late Activation

One key component of designing cycle consistent mod-
els is to prevent mode collapse. Learning cycle-consistent
models in complex settings like VQA needs a carefully
chosen training scheme. Since cycle-consistent models
have several interconnected sub-networks learning differ-
ent transformations, it is important to ensure that each of
these sub-networks are working in harmony. For example,
if the VQA model F and VQG model G are jointly trained
and consistency is enforced in early stages of training, it
is possible that both models can just “cheat” by both pro-
ducing undesirable outputs. We overcome this by activating
cycle-consistency at later stages of training, to make sure
both VQA and VQG models have been sufficiently trained
to produce reasonable outputs. Specifically, we enable the
loss associated with cycle-consistency after a fixed Aiter it-
erations in the training process.

We find these design choices for question generation
module, gating mechanism and late activation to be crucial
for effectively training our model. We demonstrate this em-
pirically via ablation studies in Table 2. As we want to in-
crease the robustness of the VQA model to all generated
variations, the weights between VQA models which an-
swer the original question and the generated rephrasing are
shared. Our formulation of cycle-consistency in VQA can
be also thought of as an online data-augmentation technique
where the model is trained on several generated rephras-
ings of the same question and hence is more robust to such
anomalies during inference. We show that with clever train-
ing strategy, coupled with attention and carefully chosen ar-
chitecture for question generation, incorporating cycle con-
sistency for VQA is possible and not only leads to models
that are better performing, but also more robust and consis-
tent. In addition, we show that this robustness also imparts
VQA models the ability to better predict their own failures.

4. VQA-Rephrasings Dataset
In this section, we introduce the VQA-Rephrasings

dataset, which is the first dataset that enables evaluation
of VQA models for robustness and consistency to different
rephrasings of questions with the same meaning.

We use the validation split of VQA v2.0 [9] as our base
dataset which contains a total of 214,354 questions span-
ning over 40,504 images. We randomly sample 40,504
questions (one question per image) from the base dataset
to form a sampled subset. We collect 3 rephrasings of
each question in the sampled subset using human annota-
tors in two stages. In the first stage, humans were primed
with the original question and the corresponding true an-
swer and asked to rephrase the question such that answer
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● Does this harbor cater to luxury 
yachts or fishing boats?

● Are there more yachts or fishing 
boats?

● What type of boats are mainly in 
the harbour?

● Would this harbour be better for 
yachts or fishing boats?

● Do the pillows match the 
bedspread?

● Does the bedspread match the 
pillows?

● Is the pattern on pillows and 
bedspread similar?

● Are the pillows matching the 
bedspread?

● How many parking meters do 
you see?

● Do you know how many parking 
meters are there?

● What number of parking meters 
are seen in the photo.

● What is the quantity of parking 
meters present?

How many birds are there? (2)
Is the bird looking at the camera? (no)
What kind of birds are there? (crane)

Is the man wearing a backpack? (yes)
What is the dog doing? (sleeping)
How many people in the picture? (2)

What is the name of the airline? (lufthansa)
What is the plane doing? (landing)
Is it a cloudy day? (yes)

What is the name of the computer? (toshiba)
Is the computer on? (yes)
How many books are on the table? (1)

(a) (b)
Figure 3. (a) Qualitative examples from our VQA-Rephrasings dataset. The first question (shown in gray) in each block is the
original question from VQA v2.0 validation set, the questions that follow (shown in black) are rephrasings collected in VQA-Rephrasings.
(b) Qualitative examples of answer conditioned question generation (input answer) by our VQG module

to the rephrased question remains the same as the original
answer. To ensure rephrasings from first stage are syntacti-
cally correct and semantically inline with the original ques-
tion, we filter the collected responses in the next stage.

In the second stage, humans were primed with the orig-
inal question and it’s rephrasing and were asked to label
the rephrasing invalid if: (a) the plausible answer to the
original question and it’s rephrasing is different (i.e. if the
question and it’s rephrasing have different intents) or (b)
if the rephrasing is grammatically incorrect. We collected
121,512 rephrasings from the original 40504 questions in
the first stage. Of these, 1320 rephrasings were flagged as
invalid in the second stage and were rephrased again in the
first stage. The final dataset consists of 162,016 questions
(including the original 40,504 questions) spanning 40,504
images with an average of∼3 rephrasings per original ques-
tion. A few qualitative examples from the collected dataset
can be seen in Fig. 3(a). Additional details about the data
collection, interfaces used and exhaustive dataset statistics
can be found in supplementary materials.

Consensus Score. Intuitively, for a VQA model to be
consistent across various rephrasings of the same question,
the answer to all rephrasings should be the same. We mea-
sure this by a Consensus Score CS(k). For every group Q
consisting of n rephrasings, we sample all subsets of size
k. The consensus score CS(k) is defined as the ratio of the
number of subsets where all the answers are correct and the
total number of subsets of size k. The answer to a question
is considered correct if it has a non-zero VQA Accuracy θ
as defined in [1]. CS(k) is formally defined as:

CS(k) =
∑

Q′⊂Q,|Q′|=k

S(Q′)
nCk

(2)

S(Q′) =

{
1 if ∀q ∈ Q′ θ(q) > 0,

0 otherwise.
(3)

Where nCk is number of subsets of size k sampled from
a set of size n. As consensus score is a all-or-nothing score,
to achieve a non-zero consensus score at k for a group of
questions Q, the model has to answer at least k questions
correctly in a group of questions Q. When k = |Q| (e.g.
when k = 4 in VQA-Rephrasings), the model needs to an-
swer all rephrasings of a question and the original question
correctly in order to get a non-zero consensus score. It is
evident that a model with higher average consensus score at
high values of k is quantitatively more robust to linguistic
variations in questions than a model with a lower score.

5. Experiments
5.1. Consistency Performance

We start by benchmarking a variety of existing VQA
models on our proposed VQA-Rephrasings dataset.

MUTAN [5] 1 parametrizes bilinear interactions be-
tween visual and textual representations using a multi-
modal low-rank decomposition. MUTAN uses skip-thought
[20] sentence embeddings to encode the question and
Resnet-152 [11] to encode images. MUTAN achieves
63.20% accuracy on VQA v2.0 test-dev. Among all models
we analyze, MUTAN is the only model which uses sentence
embeddings to encode questions.

Bottom-Up Top-Down Attention (BUTD) [3] 2 in-
corporates bottom-up attention in VQA by extracting fea-
tures associated with image regions proposed by Faster-
RCNN [33] pretrained on Visual Genome [21]. BUTD

1https://github.com/Cadene/vqa.pytorch
2https://github.com/hengyuan-hu/bottom-up-attention-vqa
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Model CS(k) VQA Accuracy
k=1 k=2 k=3 k=4 ORI REP

MUTAN [5] 56.68 43.63 38.94 32.76 59.08 46.87

BUTD [3] 60.55 46.96 40.54 34.47 61.51 51.22
BUTD + CC 61.66 50.79 44.68 42.55 62.44 52.58

Pythia [41] 63.43 52.03 45.94 39.49 64.08 54.20
Pythia + CC 64.36 55.45 50.92 44.30 64.52 55.65

BAN [19] 64.88 53.08 47.45 39.87 64.97 55.87
BAN + CC 65.77 56.94 51.76 48.18 65.87 56.59

Table 1. Consensus performance on VQA-Rephrasings dataset.
CS(k) as defined in Eq. 2 is consensus score which is non-zero
only if at least k rephrasings are answered correctly, zero other-
wise; averaged across all group of questions. ORI represent a split
of questions from VQA-Rephrasings which are original questions
from VQA v2.0 and their corresponding rephrasings are repre-
sented by the split REP. Models trained with our cycle-consistent
(CC) framework consistently outperform their baseline counter-
parts at all values of k.

model won the VQA Challenge in 2017 and achieves
66.25% accuracy on VQA v2.0 test-dev.

Pythia [41] 3 extends the BUTD model by incorporat-
ing co-attention [27] between question and image regions.
Pythia uses features extracted from Detectron [8] pretrained
on Visual Genome. An ensemble of Pythia models won the
2018 VQA Challenge using extra training data from Visual
Genome [21] and using Resnet[11] features. In this study,
we use Pythia models which do not use Resnet features.

Bilinear Attention Networks (BAN) [19] 4 combines
the idea of bilinear models and co-attention [27] between
image regions and words in questions in a residual setting.
Similar to [3], it uses Faster-RCNN [33] pretrained on Vi-
sual Genome [21] to extract image features. In all our exper-
iments, for a fair comparison, we use BAN models which do
not use additional training data from Visual Genome. BAN
achieves the current state-of-the-art single-model accuracy
of 69.64 % on VQA v2.0 test-dev without using additional
training data from Visual Genome.

Implementation Details For all models trained with our
cycle-consistent framework, we use the values Tsim=0.9,
λG=1.0, λC=0.5 and Aiter=5500. When reporting results
on the validation split and VQA-Rephrasings we train on
the training split and when reporting results on the test split
we train on both training and validation splits of VQA v2.0.
Note that we never explicitly train on the collected VQA-
Rephrasings dataset and use it purely for evaluation pur-
poses. We use publicly available implementations of each
backbone VQA model.

We measure the robustness of each of these models on
3https://github.com/facebookresearch/pythia
4https://github.com/jnhwkim/ban-vqa

Model val test-dev

MUTAN [5] 61.04 63.20

BUTD [3] 65.05 66.25
+ Q-consistency 65.38 66.83

+ A-consistency 60.84 62.18
+ Gating 65.53 67.55

Pythia [41] 65.78 68.43
+ Q-consistency 65.39 68.58

+ A-consistency 62.08 63.77
+ Gating 66.03 68.88

BAN [19] 66.04 69.64
+ Q-consistency 66.27 69.69

+ A-consistency 64.96 66.31
+ Gating 66.77 69.87

Table 2. VQA Performance and ablation studies on VQA v2.0
validation and test-dev splits. Each row in blocks represents a
component of our cycle-consistent framework added to the pre-
vious row. First row in each block represents the baseline VQA
model F . Q-consistency implies addition of a VQG module G
to generate rephrasings Q′ from the image I and the predicted an-
swer A′ with an associated VQG loss Lvqg(Q,Q′). A-consistency
implies passing all the generated questions Q′ to the VQA model
F and an associated loss Lcycle(A,A′). Gating implies the use
of gating mechanism to filter undesirable generated questions in
Q′ and passing the remaining to VQA model F . Models trained
with our cycle-consistent (last row in each block) framework con-
sistently outperform baselines.

our proposed VQA-Rephrasings dataset using the consen-
sus score (Eq. 2). Table 1 shows the consensus scores at dif-
ferent values of k for several VQA models. We see that all
models suffer significantly when measured for consistency
across rephrasings. For e.g., the performance of Pythia
(winner of 2018 VQA challenge) is reduced to a consen-
sus score of 39.49% at k = 4. Similar trends are observed
for MUTAN, BAN and BUTD. The drop increases with
increasing k, the number of rephrasings used to measure
consistency. Models like BUTD, BAN and Pythia which
use word-level encodings of the question suffer significant
drops. It is interesting to note that even MUTAN which
uses skip-thought based sentence encoding [20] suffers a
drop when checked for consistency across rephrasings. We
observe that BAN + CC model trained with our proposed
cycle-consistent training framework outperforms its coun-
terpart BAN and all other models at all values of k.

Fig 4 qualitatively compares the textual and visual atten-
tion (over image regions) over 4 rephrasings of a question.
The top row shows attention and predictions from a Pythia
model, while the bottom row shows attention and predic-
tions from the same Pythia model, but trained using our
framework. Our model attends at relevant image regions
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Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        blue

Ground Truth: yellow 
Predicted:        blue

Figure 4. Visualization of textual and image region attention across question variants: The top row shows attention and predictions
from a Pythia [41] model, the bottom row shows attention and predictions from the same Pythia model, but trained using our cycle-
consistent approach. Our model attends to relevant image regions for all rephrasings and answers them correctly. The baseline Pythia
counterpart, however, fails to attend over relevant image regions for some rephrasings.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER

iQAN* [24] 0.582 0.467 0.385 0.320 0.617 0.276 2.222
Pythia + CC* 0.708 0.561 0.438 0.339 0.627 0.284 2.301

iVQA [26] 0.430 0.326 0.256 0.208 0.468 0.205 1.714
Pythia + CC 0.486 0.368 0.287 0.226 0.556 0.225 1.843

Table 3. Question Generation Performance on VQA v2.0 validation set, * signifies results on a constrained subset as done in [24]. CC
represents models trained with our approach.

for all rephrasings and answers all of them correctly. This
qualitatively demonstrates the robustness of models trained
with our framework.

5.2. Visual Question Answering Performance

We now evaluate our approach and various ablations
on the standard task of question answering on VQA v2.0
dataset [9]. We compare the performance of several VQA
models on the validation and test-dev splits of VQA v2.0.
Table 2 shows the VQA scores of different models on vali-
dation and test-dev splits. We show that BUTD, Pythia and
BAN models trained with our cycle-consistent framework
outperform their corresponding baselines.

We show the impact of each component of our cycle-
consistent framework by performing ablation studies on
our models. We study the marginal effect of components
like question consistency (Q-consistency), answer consis-
tency (A-consistency) and gating mechanism by adding
them step-by-step to the base VQA model F . Q-consistency
implies addition of a VQG module G to generate rephras-
ings Q′ from the image I and the predicted answer A′ with
an associated VQG loss Lvqg(Q,Q

′). As shown in Table 2,

we see that addition of question consistency slightly im-
proves performance of each VQA model. Inline with ob-
servations in [24], this shows that indeed models which can
generate questions from the answer have better multi-modal
understanding and in turn are better at visual question an-
swering. A-consistency implies passing all the generated
questions Q′ to the VQA model F and an associated loss
Lcycle(A,A

′). As seen in Table 2, we see that naively pass-
ing all the generated questions to the VQA model F leads
to significant reduction in performance than the base model
F . This goes in line with our earlier discussion that not
all questions generated are valid rephrasings of the origi-
nal question and hence enforcing consistency between the
answers of two invalid pairs of questions naturally leads to
degradation in performance. Finally we show the effect of
using our gating mechanism to filter undesirable generated
questions in Q′ and passing the remaining to VQA model
F . We see that all VQA models perform consistently better
when using a gating than just using Q-consistency.

We also experimented with Pythia model configurations
where the VQG model uses unattended image features (un-
like the default setting which uses image features with at-
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tention from the VQA model). We found that with this con-
figuration, our approach still shows improved performance
over the baseline. However, the question generation qual-
ity is relatively poor, and the overall gain is smaller (3.58%
in consistency CS(k = 4) and 0.2% in VQA accuracy)
compared to when using attention (8.08% and 0.5% respec-
tively) – likely because attention helps in generating more-
focused rephrasings

5.3. Visual Question Generation Performance

Recall that our model also includes a VQG component
which generates questions conditioned on an answer and
image. Since the overall performance of our framework re-
lies highly on the performance of question generation mod-
ule, we evaluate our VQG component performance as well
on commonly used image captioning metrics. We compare
our VQG component to several answer-conditional VQG
models on the VQA v2.0 dataset. We use standard image
captioning metrics CIDEr [38], BLEU [31], METEOR [6]
and ROUGE-L [25] as used in [26]. We compare our ap-
proach to two recently proposed visual question generation
approaches. iVQA [26] uses a variational LSTM model
trained with reinforcement learning to generate answer-
specific questions for an image. Syntactic correctness, di-
versity and intent of the generated question are used to allo-
cate rewards. iQAN [24] generates answer-specific ques-
tions by modelling question generation as a dual task of
question answering and sharing parameters between ques-
tion answering and question generation modules. Since
iQAN can only generate a specific type of questions, for
a fair comparison, we compare to iQAN only on a subset of
the dataset containing questions from these specific types.
As shown in Table 3, we observe that our question gen-
eration module trained with cycle-consistency consistently
outperforms iVQA [26] and iQAN [24] on all metrics. A
few qualitative examples of answer conditioned questions
generated by our VQG model can be seen in Fig. 3(b).

5.4. Failure Prediction Performance

In previous results, we show that by training models
to generate and answer questions while being consistent
across both tasks leads to improvement in performance and
robustness. Another way of testing robustness of these mod-
els is to see if models can predict their own failures. A ro-
bust model is less confident about an incorrect answer and
vice versa. Motivated by this, we seek to verify if mod-
els trained with our cycle-consistent framework can iden-
tify their own failures i.e. correctly identify if they’re wrong
about a prediction. To this end, we use two failure predic-
tions schemes. First, we naively threshold the confidence
of the predicted answer. All answers above a particular
threshold are marked as correctly answered and vice versa.
Second, we design a failure prediction binary classification

Model Precision Recall F1

BUTD [3] 0.71 0.78 0.74
+ FP 0.74 0.85 0.79

BUTD + CC 0.73 0.79 0.76
+ FP 0.78 0.83 0.80

Pythia [41] 0.74 0.79 0.76
+ FP 0.76 0.88 0.82

Pythia + CC 0.77 0.81 0.77
+ FP 0.82 0.84 0.83

Table 4. Failure prediction performance on VQA v2.0 valida-
tion dataset. Each row in blocks represents a component added
to the previous row. CC represents models trained with our cycle-
consistent framework and FP represents models with an additional
binary classification Failure Prediction submodule to predict if the
predicted answer A′ is correct given a question and image pair (Q,
I). For models trained without the FP module, scores are obtained
by thresholding the answer confidences.

module (FP), which predicts for a given image I , question
Q and answer A′ (predicted by the base VQA model F ),
whether the predicted answer is correct for the given (I,Q)
pair. The FP module is trained keeping the parameters
of the base VQA model frozen. In Table 4, we show the
failure prediction performance of the baseline VQA models
and models trained with our proposed framework. It shows
that the cycle consistency framework, even without an ex-
plicit failure predictor module, makes the models more cal-
ibrated – more capable of detecting their own failures. In
both settings: (a) when using naive confidence threshold-
ing (not marked as “+ FP” in the Table) and (b) using a
specifically designed submodule to detect failures (marked
as “+ FP”), models trained with our cycle-consistent train-
ing are better than their corresponding baselines. We see
similar improvements in detecting failures for both BUTD
and Pythia models, which shows that our cycle-consistency
framework is model agnostic. This also shows that not only
does cycle-consistent training make models robust to lin-
guistic variations, but also allows them to be aware of their
failures.

6. Conclusion
In this paper, we propose a novel model-agnostic training

strategy to incorporate cycle consistency in VQA models to
make them robust to linguistic variations and self-aware of
their failures. We also collect a large-scale dataset, VQA-
Rephrasings and propose a consensus metric to measure ro-
bustness of VQA models to linguistic variations of a ques-
tion. We show that models trained with our training strategy
are robust to linguistic variations, and achieve state-of-the-
art performance in VQA and VQG on VQA v2.0 dataset.
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