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Abstract

Scaling machine learning methods to very large datasets
has attracted considerable attention in recent years, thanks
to easy access to ubiquitous sensing and data from the
web. We study face recognition and show that three dis-
tinct properties have surprising effects on the transferabil-
ity of deep convolutional networks (CNN): (1) The bottle-
neck of the network serves as an important transfer learn-
ing regularizer, and (2) in contrast to the common wisdom,
performance saturation may exist in CNN’s (as the number
of training samples grows); we propose a solution for al-
leviating this by replacing the naive random subsampling
of the training set with a bootstrapping process. More-
over, (3) we find a link between the representation norm
and the ability to discriminate in a target domain, which
sheds lights on how such networks represent faces. Based
on these discoveries, we are able to improve face recog-
nition accuracy on the widely used LFW benchmark, both
in the verification (1:1) and identification (1:N) protocols,
and directly compare, for the first time, with the state of the
art Commercially-Off-The-Shelf system and show a sizable
leap in performance.

1. Introduction
Face identification is a recognition task of great practi-

cal interest for which (i) much larger labeled datasets ex-
ist, containing billions of images; (ii) the number of classes
can reach tens of millions or more; and (iii) complex fea-
tures are necessary in order to encode subtle differences
between subjects, while maintaining invariance to factors
such as pose, illumination, and aging. Performance im-
provements in recent years have been staggering, and au-
tomatic recognition systems cope much better today with
the challenges of the field than they did just a few years
ago. These challenges are well documented and include
changing illumination, pose and facial expression of the
subject, occlusion, variability of facial features due to ag-
ing, and more. In the past, impressive performance was

only demonstrated for carefully registered face images that
did not exhibit much variability, a set up commonly referred
to as constrained conditions. Current state-of-the-art meth-
ods for unconstrained face recognition and verification (the
task of predicting whether two face images belong to the
same person or not) [22, 2, 18] employ a similar protocol:
they use a fairly large collection of images to learn a ro-
bust representation or metric, and then they perform trans-
fer learning to predict the identity or the similarity between
two face images. These methods are trained on hundreds
of thousands or a few million images and recognize up to
a few thousand different subjects. This is orders of mag-
nitude larger than what was ever attempted in the past, yet
two or three orders of magnitude smaller than the actual
datasets available today. Our starting point is the DeepFace
architecture [22], which is based on recent advances in deep
learning. Our contribution is not only to redefine the state
of the art on a public benchmark using an improved system,
but also: (i) we study the role of the bottleneck as a trans-
fer learning regularizer and (ii) we propose a new way to
utilize large datasets by replacing the standard random sub
sampling procedure with a bootstrapping procedure; (iii) we
discover a three-way link between the representation norm,
the image quality, and the classification confidence.

These discoveries lead to an improvement in verifica-
tion performance on a widely used benchmark dataset, the
LFW dataset [10]. We then turn our attention to the 1:N
identification problem, in which the image is identified out
of a gallery of N persons. While the usage of verification
datasets has advanced the field of computer vision greatly,
the 1:N scenario is much more directly related to face iden-
tification applications. For instance, vendor tests, e.g., [7],
focus on 1:N protocols. As a result, the research commu-
nity was unable to directly compare academic contributions
to the most prominent commercial systems. By making use
of a recently proposed 1:N benchmark built on top of the
LFW images [1], we are able to perform this comparison
for the first time.
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2. Previous work
The U.S. National Institute of Standards and Technol-

ogy (NIST) publicly reports every several years its inter-
nal benchmark on face recognition; systems taking part in
the competition are developed by leading commercial ven-
dors as well as a few research labs. For instance, in the
MBE 2010 report [7], the three top-ranked Commercial Off
The Shelf (COTS) correctly matched probed faces against a
large collection (“gallery” in the commonly used terminol-
ogy) of 1.6 million identities with an 82%-92% accuracy
rate. The datasets used by [7, 11] are not publicly available,
and therefore it is hard to compare the performance of aca-
demic systems on the same benchmarks. Fortunately, the
same COTS system was recently tested [1] on a 1:N iden-
tification benchmark constructed using the images of the
public Labeled Faces in the Wild (LFW) [10] dataset. On
this benchmark, the rank-1 accuracy of the COTS system
dropped to about 56% [1], even though the gallery has only
a couple of thousands identities. This finding demonstrates
that although constrained face recognition has reached an
impressive accuracy, the unconstrained one is still far from
being solved.

Face verification, which is the task of determining
whether two face images belong to the same subject, has
greatly advanced in recent years, especially in the uncon-
strained setting. In fact, recent contributions [20, 22, 19]
reported nearly human level performance on the LFW ver-
ification task using deep neural networks, but no test is re-
ported on the probe-gallery identification task.

Scaling up face recognition is a non-trivial challenge.
The baseline DeepFace system [22] has about 100 million
parameters to start with. It is very hard to distribute effi-
ciently [8, 12]. It produced features that are lower dimen-
sional than engineered features [2] but still contain several
thousand dimensions; and it needs massive amounts of data
to generalize well [13, 21]. There is no known method to
effectively train such a large system on billions of images
with millions of labels, using thousands of features. In the
machine learning literature, several methods have been pro-
posed to deal with very large datasets. The simplest method
is to randomly down-sample the dataset, which is a clearly
sub-optimal approach. A more suitable alternative is to
employ bootstrapping procedures that aim at focusing on
the hardest cases ignoring or down-weighing the easy ones,
like in boosting [5]. The approach we advocate for is, in
essence, a bootstrapping one since we focus the training ef-
fort on a cleverly selected subset of the samples that are
hard to classify. However, the selection process is made
much more efficient than in standard bootstrapping because
we do not need to first evaluate each training sample in or-
der to perform our selection.
As part of our sample selection process, we utilize the simi-
larity between classes based on the parameters of their clas-

Figure 1. The initial baseline network architecture. A front end of
convolutional, pooling, convolutional layers is followed by three locally
connected layers and two fully connected layers.

sifiers. Similarity of classifiers has been used in the liter-
ature in other contexts. In [16] multiple SVM classifiers,
each based on a single positive sample, are used to construct
a powerful descriptor of the learned class. Note that in our
case, the final descriptor is trained in one multi-class clas-
sification network, whereas SVMs are only used to select
labels for training this network.

Our contribution continues a line of work that has gained
considerable recent attention – understanding the underly-
ing mechanisms behind the “unreasonable” success of deep
networks. In [27] the deep activations are propagated back
to the image in order to give insights into the role of the
intermediate layers and the operation of the classification
layer. In [21], optimization is used to trick the CNN to mis-
classify clear input images and to compute the stability of
each layer. Recently, [26] studied empirically the tradeoff
between the generality and specificity of each layer.

These contributions mostly focus on image classification
trained on ImageNet, a highly varied dataset with a few mil-
lion images and 1,000 classes. Faces, since they have a clear
structure, training data in abundance, and well understood
challenges, provide a unique opportunity for understanding
the basic properties of CNN-based transfer learning.

3. Transfer Learning in Faces
In this section, we describe our framework, starting with

an initial face representation, which was trained similarly to
DeepFace [22], and exploit discoveries in this network to
scale the training up to, the previously unexplored range of,
hundreds of millions of training images.

DeepFace was shown to achieve good generalization.
However, the association between the transferability of the
network to its design was left largely unexplored. We re-
port three properties that strongly affect the quality of the
transfer. First, we show that the dimensionality of the rep-
resentation layer (F7), which we will refer to as bottleneck,
dramatically affects transferability. Second, we find that se-
lecting random samples from a very large pool of samples
leads to performance saturation, which can be alleviated by
replacing the naive random subsampling practice with a se-
mantic bootstrapping method. Third, we link measurable
properties of the transferred representations to the expected
performance at the target domain.



Figure 2. The bottleneck. The representation layer splits the network
between the part that converts the input into a generic face descriptor and
the part that performs linear classification to specific K classes. FC7 and
FC8 are the low-rank matrices that project to- and from the bottleneck.

3.1. Baseline DeepFace Representation

A total of four million face images belonging to 4,030
anonymized identities (classes), were aligned with a 3D
model and used for learning an initial face representation,
based on a deep convolutional neural network. As shown
in Fig. 1, the network consists of a front-end two con-
volutional layers with a single max-pooling layer in be-
tween (C1-M2-C3), followed by three locally-connected
layers L4-L5-L6, without weight sharing, and two fully-
connected layers F7-F8. The output of F8 is fed to a
4030-way softmax which produces a distribution over the
class labels. Denote by oi(x) the i-th output of the net-
work on a given input x, the probability assigned to the
i-th class is the output of the softmax function: pi(x) =
exp(oi(x))/

∑
j exp(oj(x)). The ReLU(a) = max(0, a)

nonlinearity [4] is applied after every layer (except for F8)
and optimization is done through stochastic gradient de-
scent and standard back-propagation [17, 15], minimizing
the cross-entropy loss. If k is the index of the true label
for a given input x, the loss associated with this sample is:
L(x) = − log pk(x). Once trained, the representation used
is the normalized feature vector of layer F7 [22].

3.2. Bottleneck and Transferability

We show that the dimensionality of the last fully-
connected layers (F7 & F8) critically affects the balance be-
tween generality and specificity. As illustrated in Fig 2, in
a K-way multiclass network with binary targets, the clas-
sification layer (F8) is a collection of K linear (dependent)
classifiers.

By compressing the preceding representation layer (F7)
through a lower rank weight matrix, we reduce the abil-
ity of the network to encode training-set specific informa-
tion in this layer, thereby shifting much of the specificity
to the subsequent classification layer (F8). For the purpose
of transfer learning, the classification layer is ignored once
training finishes, and the network is regarded as a feature

extractor. A compact bottleneck, therefore, decreases the
network specialization and increases the representation gen-
erality. However, a narrower bottleneck increases the diffi-
culty of optimizing the network when training from scratch.
For the architecture described in Sec. 3.1, we are able to
effectively train with bottlenecks of dimensionality as low
as 1024, but not lower. For smaller dimensions the train-
ing error stopped decreasing early on. However, we note
a useful property: by pre-loading the weights of the initial
network, except for the last layer, we were able to learn
much smaller embeddings effectively, as furthered detailed
in Sec. 5. Remarkably, a bottleneck of only 256 dimensions
yielded convincingly better accuracies on the target domain
in all configurations.

This might be counter intuitive, since the common wis-
dom [3] is that the representation should be as large as the
number of samples can support. However, as we show,
decreasing the representation size is beneficial even if the
number of training samples is virtually unlimited. The rea-
son is that we learn our representation in one domain and
test it on another, which does not share the same underly-
ing distribution. Therefore, regularization is warranted. In
addition to generalization, such compact representations en-
able us, efficiency wise, to scale up the experiments by an
order of magnitude, exploring much larger configurations
as we describe next.

3.3. Semantic Bootstrapping

A conjecture is made in [13] that “results can be im-
proved simply by waiting for faster GPUs and bigger
datasets to become available”. Our findings reveal that this
holds only to a certain degree. Unlike the popular ImageNet
challenge, where a closed collection of 1.6 million images
is split into train and test, we can access a much larger
dataset in order to test, for the first time, both the trans-
ferability and scalability properties of deep convolutional
nets at scales three orders of magnitude larger. We find that
using the standard Stochastic Gradient Descent (SGD) and
back-propagation leads to performance saturation in the tar-
get domain when the training set size in the source domain
grows beyond a certain point, as shown in Sec. 5. This holds
even when we change the architecture of network, by either
adding more layers and/or increasing their capacity. By ju-
diciously selecting samples as opposed to picking them at
random, we were able to improve performance further.

We leverage the compressed representation presented
above in order to train efficiently. The dataset at our dis-
posal contains 10 million anonymized subjects with 50 im-
ages each in average. This is to be compared to around
4000 identities and 4 million images (DB1) in [22]. This
new dataset was randomly sampled from a social network.
By running string matching, we verified that the identities
do not intersect those of LFW.



Having this larger dataset at our disposal, we search for
impostor samples to be used in a second round of training,
as normally done in bootstrapping. The most basic method
would be to sample a large pool of face representations,
each represented by the compact feature, and select the
nearest neighbors from other identities (“impostors”). How-
ever, for reasons specified below, a significant improvement
in both scalability and reliability is obtained by working in
the space of linear models, trained discriminatively on top
of the compressed representations, as opposed to directly
working with the compressed features.

As a first step, we represent each class by a single classi-
fier, i.e., for each identity, we learn a hyperplane trained in
a binary classification setting of one-vs-all, where the posi-
tive instances (representations) are of the same identity and
the negatives are a random subset of other identities. Each
identity is associated with an average of 50 face images.
Therefore, working with linear models, instead of the un-
derlying instances, enables us to scale the exploration of
impostor identities by another order of magnitude. In terms
of efficiency, training such linear models can be easily par-
allelized, and it is very efficient especially when using com-
pact features.

In addition to being more scalable, this semantic distance
performs better than instance-based bootstrapping, proba-
bly due to its added robustness to human labeling errors of
the ground-truth. When sampling pairs of same/not same
samples based on instance similarity, we notice that many of
the pairs sampled, in particular those that are labeled as the
’same’ identity, are of different individuals due to labeling
errors. Performing, for example, metric learning on such
data leads to reduced performance compared to the base-
line representation. Specifically, a Siamese network trained
on 4M nearest neighbor pair instances, belonging either to
the same class or not (=impostors), obtained substantially
worse results than the baseline system. This observation is
also consistent with the fact that the initial representation
is already on-par with humans w.r.t. pair-wise verification
performance, thereby flushing out the ground-truth errors.

Bootstrapping is performed as follows: we randomly se-
lect 100 identities, as seeds, among the 10 million models.
For each seed, we search for the 1000 nearest models, where
the similarity between any two models h1, h2 is defined as
the cosine of the angle between the associated hyperplanes:
S(h1, h2) =< h1, h2 > /(‖h1‖ ‖h2‖). The union of all
images of all retrieved identities constitutes the new boot-
strapped dataset DB2, containing 55,000 identities overall.
Note that in contrast to negatives sampling [24], as normally
done in bootstrapping, DB2 consists of both easy & hard
samples - separating between seeds is as easy as before, but
much harder inside the neighborhood of each seed, by con-
struction.

In terms of efficiency, the training of 107 hyperplanes

Figure 3. The bootstrapping method. An initial 256D-compressed rep-
resentation trained on DB1 is used to find the semantically-nearest iden-
tities of randomly picked 100 seeds, in a large pool of pre-trained hyper-
planes. The union of all 100 groups of selected identities define the boot-
strapped dataset DB2. A larger capacity network with enlarged locally-
connected layers and a 1024D representation is then trained.

was completed in 2 days utilizing several 256G RAM com-
modity servers. Evaluating the distance between each seed
and a gallery pool of these 107 hyperplanes reduces to a
matrix-multiplication Wsi where W is a matrix of 107 ×
256 and seed si ∈ R256 is a single seed. The run time of
this step on a single server is about 1 second per seed query.
Overall, the entire subset selection process takes an hour on
a single high memory server.

3.4. Final Network Architecture

DB2 is a challenging dataset, and our objective is to
train feature representation that can discriminate between
the new selected identities. Increasing the dimensionality
of the representation and consequently training a bigger net-
work is, therefore, essential in order to model the subtle dif-
ferences between lookalike subjects found more abundantly
in the bootstrapped training set (see Sec 5).

Specifically, we pre-load C1 and C2 layers from the
initial network, and double the number of filters of each
locally-connected layer from 16 to 32. In addition, we en-
large the representation layer F7 from 256 to 1024. All new
layers, except for C1 and C2, are randomly initialized and
trained on DB2, with the same algorithm as before. The
two first convolutional layers C1 and C2 are merely fea-
ture extractors, which include less than 1% of the overall
weights. Empirically, we found that fixing these layers did
not affect performance while speeding up training consider-
ably. Unlike boosting and cascaded architectures [23], we
end up with a single classifier and are interested in learning
representations that are useful for transfer learning. Figure
3 visualizes the process.

4. The Representation Norm
One of the biggest benefits of DNNs is their ability to

learn representations that can generalize across datasets and
tasks [26]. Faces, since they have a clear structure, training
data in abundance, and well understood challenges, provide



Figure 4. Examples of L6 activations for various faces. In each pair
the original image is compared to the sum of the channels of its
L6 activations: (left) pairs depicting good quality images. (right)
examples of poor quality images (occluded and/or misaligned).
Bluer is lower, red is higher. Best viewed in color.

a unique opportunity to discover basic properties of this in-
creasingly popular form of transfer learning.

The input faces are aligned, and since the spatial struc-
ture of our deep architecture is preserved until the repre-
sentation layer, the feature maps remain a well localized
description of the underlying face. Inspecting the topmost
local layer (L6) provides easy to decipher information re-
garding the underlying image. Consider Fig. 4 that shows
the original image and its L6 (summing across all feature
maps) side by side. Occlusions and other types of local dis-
tortions in the input face image lead to weaker activations
in the corresponding areas of L6.

A pixel of the input image contributes to a value in a
deep layer only if there is a path, from this location in the
input layer to the deep layer, for which all activations pass
the ReLU thresholds. Paths originating in disrupted regions
tend to get blocked, leading to darkened matching regions
in the top local layers.

In fact, the information of which unit is activated in the
representation holds most of the discriminative information.
When applying a simple threshold at zero to the image rep-
resentation (F7), the resulting binary vector remains highly
discriminative. On the LFW benchmark, the performance
drop that follows the binarization of the representation is
typically only 1% or less.

Since image disruptions lead to localized L6 inactivity,
and since F7 is a linear projection of L6 followed by a
threshold, these disruptions lead to a reduced norm of the
representation vector F7. This can be seen in Fig. 5(a), in
which the link between the norm of a pair of face represen-
tations is compared to the certainty of the classifier mapping
pairs of images to the same/not-same identity. Curiously
enough, while the representation in a ReLU-network is di-
rectly linked to the norm of the representation, the link be-
tween the image mean intensity value and its representation

norm is much weaker, as can be seen, for all LFW images
in Fig. 5(b).

A more direct way to explore the link between the repre-
sentation norm and the image discriminativity is to consider
the entropy of the classification layer, i.e., the outputs of
the softmax layer. This is shown in Fig. 5(c), where for all
LFW images the representation norm is plotted against the
entropy of the probabilities obtained by the original deep-
face network, trained on the 50,000 identities of DB2. This
link is very strong and a correlation below -0.65 is obtained
between the norm and the entropy.

In order to explain the link between the representation
norm and the entropy, we use the first order Taylor expan-
sion of the classifier output. Let r be the vector of activa-
tions of F7. Let z be the vector of F8 activations obtained
for r, then, z = Wr, where W contains the weights map-
ping F7 to F8. The softmax function maps z to probabilities:
pi = ezi∑

j ezj
≈ 1+zi

N+
∑

j zj
, where the last approximation

holds for small zi, since ex ≈ 1 + x for small x.
The approximation of the entropy is therefore H(p) ≈

−
∑

i
1+zi

N+
∑

j zj
log 1+zi

N+
∑

j zj
. Since the softmax vector of

z is the same as the softmax vector of z + b for all b, we
assume, w.l.o.g, that the mean of z is zero and obtain that
H(p) ≈ −

∑
i
1+zi
N log 1+zi

N . By the approximation above,
log(1 + zi) ≈ zi and we obtain:

H(p) ≈ −
∑
i

1 + zi
N

(zi − log(N)) .

We now consider a family of scaled version of r: sr,
where s is a scale factor. Since z = Wr, the activations of
F8 also scale with s, and the entropy approximation of the
scaled activations become−

∑
i
1+szi
N (szi− log(N)). This

expression is dominated, for small values of s, by a linear
function of s, which explains the behavior seen on the left
side of Fig. 5(c).

To conclude, lower representation norms are negatively
associated with prediction confidence. In the region of low
norms, there is a linear relation between the norm and the
prediction entropy, and this can be further used also to reject
samples at classification time.

5. Experiments
We first evaluate the learned representations on cropped1

faces of the Labeled Faces in the Wild (LFW) public
dataset [10], using multiple protocols. We also validate our
findings on an internal dataset, probing 100K faces among
10K subjects with a probe-gallery identification protocol.

The LFW dataset consists of 13,233 web photos of 5,749
celebrities, and is commonly used for benchmarking face

1Using the biased [14, 19] background to improve performance is not
in the scope of this work.



(a) (b) (c) (d)
Figure 5. Connecting the representation norm to image distinguishability. (a) The classifier score (signed distance from the separating
hyperplane) for same not-same prediction on the LFW benchmark vs. min(||rl||, ||rr||), where rl and rr are the representations of the
image pair. Red denotes misclassification. As can be seen, lower confidence predictions and mistakes tend to have lower representation
norms. (b) The mean intensity value of the face region vs. the representation norm. High intensity images are not typically linked
with higher representation norms. (c) Representation norm vs. prediction entropy. The higher the representation norm is, the lower the
uncertainty is expected to be. (d) Retrieval rank vs. mean representation norm on our internal validation set (Sec. 5.4). Misclassified probes
(rank>1) tend to have a lower norm than correctly matched probes (rank=1).

verification. In this work, we focus on two new Probe-
Gallery unsupervised protocols proposed in [1] (the origi-
nal splits are used):

1. A closed set identification task, where the gallery set
includes 4,249 identities, each with only a single ex-
ample, and the probe set includes 3,143 faces belong-
ing to the same set of identities. The performance is
measured by the Rank-1 identification accuracy.

2. An open set identification task, where not all probe
faces have a true mate in the gallery. The gallery in-
cludes 596 identities, each with a single example, and
the probe set includes 596 genuine probes and 9,491
impostor ones. Here the performance is measured by
the Rank-1 Detection and Identification Rate (DIR),
which is the fraction of genuine probes matched cor-
rectly in Rank-1 at a 1% False Alarm Rate (FAR) of
impostor probes that are not rejected.

As the verification protocol, we follow the LFW unre-
stricted protocol [9] (which uses only the same-not-same
labels), and similarly to [22] train a kernel SVM (with C=1)
on top of the χ2-distance vectors derived from the computed
representations. For the open and closed set identification
experiments, we simply use the cosine similarity (normal-
ized dot product). A critical difference between the LFW
verification protocols and the Probe-Gallery ones is that the
latter does not permit training on the LFW dataset. They,
therefore, demonstrate how face recognition algorithms per-
form on an unseen data distribution, as close as possible to
real-life applications. Also, as pointed out in [1], the Probe-
Gallery protocols correspond to many challenging practi-
cal scenarios, such as retrieval [11]. The importance of
such protocols as tools that differentiate face recognition
methods based on performance is confirmed by our results,
since methods that exhibit very similar results on the LFW
verification protocol display large performance gaps on the

Probe-Gallery ones, as shown in Table 1. In all of our ex-
periments we follow the unrestricted protocol using labeled
outside data [9]. We reiterate the importance of having a
large scale training set in hand: training the initial net [22]
using 500K images on CASIA [25], the largest public face
dataset available today, obtains verification accuracy of only
93.5% on LFW, largely due to over-fitting. The code for
training the nets is written in Torch and uses the fbcunn ex-
tensions (see: [6]).

5.1. Compressed Representations

We first evaluate different compressed representations,
all utilizing the initial face representation system, with sizes
ranging from 4096 dimensions down to 8. These networks
were retrained as described in Sec. 3.2 on the 4 million im-
ages associated with 4,030 random identities used in [22].

Table 1 shows that compression improves generaliza-
tion considerably. With only 256 dimensions, the obtained
Rank-1 accuracy stands on 72.3% on the Closed Set proto-
col, and DIR 46.3% at 1% FAR on the Open Set, and greatly
outperforms the original 4096D representation. Note, how-
ever, that the difference in the verification protocol remains
within a 1% range when compressing the 4096 dimensions
down to 64, and either due to performance saturation and/or
the type of benchmark, differences in face recognition ca-
pabilities are not captured well.

5.2. Bootstrapped Representations

We now compare the representation learned on the 55K
bootstrapped identities (4.5M faces) with those learned
from randomly selected 108K identities (3.2M faces) and
even 250K identities (7.5M faces), as shown in Table 2.
We note that: (i) The deep neural network (DNN) can ben-
efit from additional amount of training data, e.g., 250K
identities, boost the recognition performance over those
trained on 4K identities in Table 1. (ii) The bootstrapped



Figure 6. Left: The ROC curves on the face verification unrestricted protocol. Right: The DIR vs. FAR curves on the Open Set protocol.
As mentioned above, for identification, training on LFW images is not permitted as it invalidates the comparison to baselines; had we
jointly fit a multi-class linear SVM to the gallery, the best model would achieve 69% DIR @ 1% on the open set. Best viewed in color. The
ordinate scales are different. COTS graphs were reconstructed from [1].

Dim. 4096 1024 512 256 128 64 32 16 8
Verifica. 97.00 96.72 96.78 97.17 96.42 96.10 94.50 92.75 89.42
Rank-1 60.9 64.9 67.4 72.3 69.1 66.5 39.6 23.2 7.00
Rank-10 78.7 83.9 85.2 90.4 88.8 87.7 70.8 52.9 24.7
DIR@1% 41.9 44.7 46.1 46.3 44.1 36.7 12.2 5.37 0.33

Table 1. Performance on the three protocols, when varying the di-
mensionality of the representations. Performance is measured in
terms of the verification accuracy (%) of the unrestricted verifi-
cation protocol, Rank-1 and Rank-10 accuracy (%) on the Closed
Set, and the DIR (%) at 1% FAR on the Open Set.

training set of 55K identities, although five times smaller
than the biggest training set used, delivers better Probe-
Gallery performance. (iii) An even larger improvement is
obtained when the locally-connected layers (L4-L5-L6) are
expanded as described in Sec. 3.4, and the extended 256D
and 1024D representations (denoted as 256+ and 1024+)
generalize better than their unmodified counterparts. Larger
networks were also attempted but failed to improve perfor-
mance, e.g. 2048+ reduced Rank-1 accuracy by 4.21% on
the closed set.

5.3. Comparison with the State-of-the-art

The state of the art COTS face recognition system,
as evaluated by NIST in [7], and diligently benchmarked
by [1] on the LFW open and closed set protocols pro-
vides a unique insight as to how well our system com-
pares to the best commercial system available. The authors
of [1] have also employed an additional vendor that rec-
tifies non-frontal images by employing 3D face modeling
and improved the results of the baseline COTS-s1 system,
the combined system is denoted COTS-s1+s4. For further
comparison, we have evaluated the publicly available LFW

Random 108K
256 512 1024 2048

Verifca. 97.35 97.62 96.90 96.47
Rank-1 69.7 68.1 70.2 68.4
Rank-10 88.5 87.8 90.1 88.1
DIR@1 51.3 46.5 51.0 47.0

Random 250K
256 512 1024 2048

Verifca. 96.33 97.10 97.67 96.30
Rank-1 59.6 74.0 74.9 63.9
Rank-10 86.0 91.7 90.9 81.7
DIR@1 38.1 54.7 58.7 45.3

Bootstrap 55K
1024 256+ 1024+ 2048+

Verifca. 97.57 97.58 98.00 97.92
Rank-1 75.9 77.0 82.1 77.9
Rank-10 91.1 91.7 93.7 92.0
DIR@1 56.2 57.6 59.2 54.5

Table 2. Performance of the three protocols on different training
sets. The three rightmost columns (denoted by 256+, 1024+, and
2048+) report results using the architecture discussed in Sec. 3.4.

high dimensional LBP features of [3], denoted as BLS,
which are published online in their raw format, i.e. before
applying the prescribed supervised metric learning method.
Finally, in order to push our results further, we fuse four of
the networks trained in our experiments (namely, the initial,
Random-108K, Random-250K and 1024+ Bootstrap-55K,
all 1024d) by simply concatenating their features, and re-
port a slight improvement, denoted as Fusion. Note that
for the LFW verification benchmark only, [19] reports an
accuracy of 99.15%. In contrast to our work, this result
employs hundreds of CNNs fused with background infor-
mation from the LFW images. Our network is limited to



Method DF BLS COTS COTS 1024+ Fusion
[22] [3]∗ s1 [1] s1+s4 [1]

Verifica. 97.35 93.18 - - 98.00 98.37
Rank-1 64.9 18.1 56.7 66.5 82.1 82.5
DIR @ 1% 44.5 7.89 25 35 59.2 61.9

Table 3. Comparison to state of the art that includes the COTS
method and two recent methods, in terms of the Probe-Gallery’s
Rank-1 accuracy (%) on the Closed Set, the DIR at 1% FAR on the
Open Set, as well as the verification protocol. ∗For [3] only the
published raw features are used and not the full system. The full
system achieves 95.17% on the verification task. For both COTS
the verification performance was not reported.

Figure 7. Examples of successful (left) and failed (right) probed
identifications on our validation set. A successful match is when a
probe achieves the highest similarity to its true-mate in the gallery
(Rank-1), failure otherwise. Permission granted by the subjects.

the face region (‘cropped’) which helps remove important
dataset-specific biases [14] and even with a single network
we achieve 98.0% verification performance. For instance, a
single network of [19] obtains up to 95.43%. Table 3 and
Figure 6 summarize these results. Our best method low-
ers the state of the art miss rate on the closed set protocol
by 57%, and by 45%, at the same precision level, on the
open set protocol. The error in the verification protocol is
reduced by 38% with respect to the initial baseline system.

5.4. Model Selection

Since the LFW verification protocol [1] does not allow
model selection of any kind, we selected the best model us-
ing a separate internal validation dataset, that consists of
10,000 individuals. As gallery we take 55,000 images (an
average of 5.5 face images, per identity). At test time, we
perform 10 queries per person, using an additional set of
100,000 images. We search the probe faces with the cosine
similarity using the 4096 dimensional initial representation
in [22], the compressed 256D and the bootstrapped 1024+
representations. Performance is measured by the Rank-1
accuracy and the DIR at 1% and 0.1% FAR. The results are
listed in Table 4, and confirm that (i) the compressed 256D
representation generalizes better than the 4096D one; and
(ii) the bootstrapped 1024+ improves the DIR substantially
for the low 0.1% FAR. A few examples of successful and
failed probed faces are shown in Fig. 7.

Representation norm in retrieval. We have also verified
on this 10, 000 identity validation set that the representation
norm is linked to the identification accuracy. As shown in

4096 256 1024+
Rank-1 67.87 70.60 72.94
DIR @ 1% 51.02 53.39 59.60
DIR @ 0.1% 37.79 38.96 46.97

Table 4. Probe-Gallery results on an internal dataset used for
model selection.

Fig. 5(d), there’s a clear correlation between the retrieval
success, measured in terms of the minimum rank of one of
the true gallery images in the retrieval list, and the repre-
sentation norm. The correlation is extremely strong (ρ =
-0.251), and there is a sizable gap between the mean norm
of the successful rank-1 queries and the unsuccessful ones.

6. Summary
Face recognition is unlike any other recognition task in

several ways. First, although it is only one object, it is
by far the most frequent entity in the media, and there are
billions of unique instances (identities) to differentiate be-
tween. Second, since the universe of faces is open in prac-
tice, the most interesting problems are Transfer Learning
tasks, where it is required to learn how to represent faces in
general. This representation is then tested on unseen iden-
tities. This is in contrast to training on closed tasks such as
ImageNet’s Image Classification challenge where recogni-
tion performance is optimized directly on a fixed set of 1000
classes. Accurate face alignment enables us to concentrate
solely on the underlying inter-personal variances that exist
in face recognition using deep convolutional nets. Recent
works in the domain of face recognition have yielded im-
pressive results by utilizing large and deep convolutional
nets. However, there is no clear understanding of why they
perform so well and what the important factors in such sys-
tems are. We explore the task of transferring representation
of faces in a number ways. First, we identify and explain
the role of the network’s bottleneck as an important regular-
izer between training-set specificity and generality. Second,
we have identified a saturation point in performance, as the
number of training samples grows beyond what has been
explored in the past, and provided an efficient method that
alleviates this by modifying the common practice of ran-
domly subsampling the training set. Third, we show how
the representation layer of faces is constructed and affected
by distortions, linking between its reduced norm to the un-
desirable increase in uncertainty. Lastly, our work is unique
in that it allows a direct comparison of commercial systems
to those published in the academic literature, on the bench-
mark task used in practice to compare actual commercial
systems. We conjecture that the impact of these discover-
ies goes beyond face recognition, and is applicable to other
large scale learning tasks.
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